簡易檢索 / 詳目顯示

研究生: 張哲瑋
Chang, Che-Wei
論文名稱: 探討各別使用單一圓孔電極及對稱式雙圓孔電極液晶透鏡錄製全息光學元件其效能之研究
Performance of holographic optical elements individually fabricated by means of single and symmetric pair hole-patterned electrode liquid crystal lenses
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 液晶透鏡全息光學元件菲涅爾區圖樣
外文關鍵詞: Liquid crystal lens, holographic optical elements, Fresnel zone pattern
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討液晶透鏡之電極對稱性對透鏡全息光學元件製作與性能之影響,液晶透鏡的電極結構使用單一與對稱成對圓孔電極兩種設計,其光學能力的評估則分別進行觀察相位延遲環、焦距與焦點等表徵。同時,液晶透鏡的相位延遲環與理想二次曲線方程式進行擬合並計算其出RMS數值,實驗結果顯示對稱成對圓孔電極的液晶透鏡具有較小的RMS值及較佳的焦點表現,而相位延遲環的完整程度在兩種電極結構的液晶透鏡皆具有理想的表現,且分別對應之最短焦距的皆是20公分左右,但對稱成對圓孔電極的液晶透鏡需要較高的電壓才能達到相同的焦距。由於單以液晶透鏡製作透鏡全息光學元件仍無法得到理想的菲涅爾區圖樣(Fresnel zone pattern),因此採用液晶透鏡結合玻璃透鏡進行全息光學元件製作,實驗結果顯示使用對稱成對圓孔電極液晶透鏡的組合透鏡具有較佳的焦點表徵,且其全息干涉可以得到理想的菲涅爾區圖樣(Fresnel zone pattern)。將實驗製作完成之透鏡全息光學元件全相片進行焦點還原觀察與測量,結果顯示使用對稱成對圓孔電極液晶透鏡的組合透鏡其全息光學元件重建之焦點表現具有較集中的光點,顯示對稱成對圓孔電極液晶透鏡確實能有助於全息光學元件的性能改善。

    This paper focuses on the application of liquid crystal lenses in recording holographic optical elements. The electrode structure of the liquid crystal lenses is modified from the original asymmetric single-hole design to a symmetric dual-hole configuration. The optical capabilities of the two different electrode structures are measured, and it is observed that the liquid crystal lens with symmetric dual-hole electrodes exhibits smaller RMS values and more concentrated focal light spots. However, when both types of liquid crystal lenses are individually used in recording holographic optical elements, satisfactory results in terms of Fresnel zone pattern are not achieved. Therefore, experiments are conducted by combining the two electrode structures of liquid crystal lenses with glass lenses. The results demonstrate that the combined lens using symmetric samples can reproduce more ideal light spots, indicating that the symmetric dual-hole electrode design indeed contributes to the recording of holographic optical elements.

    摘要 i Abstract ii 誌謝 x 目錄 xi 圖目錄 xv 表目錄 xvii 第一章 緒論 1 1.1前言 1 1.2研究動機 6 第二章 實驗原理 7 2.1液晶介紹 7 2.1.1 液晶起源 7 2.1.2 液晶分類 7 2.1.3 液晶的光學特性 9 2.2圓孔型電極液晶透鏡 13 2.2.1 液晶透鏡原理 13 2.2.2 液晶透鏡之相位延遲環 18 2.2.3 孔型電極液晶透鏡之不連續線成因與解決方式 20 2.3全息光學元件 22 2.3.1 全息光學元件干涉原理 22 2.3.2 全息光學元件曝光光路 25 第三章 實驗材料與裝置 27 3.1實驗材料 27 3.1.1 液晶E7 27 3.1.2 NOA65光學膠 28 3.1.3 光聚合薄膜 (Photo-curable polymer film) 28 3.2圓孔型電極液晶透鏡製作 28 3.2.1 材料用途與相關製程設備 28 3.2.2 圓孔型電極基板製作 30 3.2.3 液晶盒的組裝 33 3.3液晶透鏡光學性能量測 37 3.3.1 液晶透鏡相位延遲環量測 37 3.3.2 焦距量測 38 3.4全息光學元件製作 39 3.4.1 全息光學元件之錄製光路 39 3.4.2 全息光學元件之還原光路 40 第四章 實驗結果與討論 41 4.1.對稱性圓孔型電極及非對稱圓孔型電極液晶透鏡量測 41 4.1.1 對稱性圓孔型電極及非對稱圓孔型電極液晶透鏡相位延遲環 41 4.1.2 對稱性圓孔型電極及非對稱圓孔型電極液晶透鏡焦距分布 44 4.1.3 對稱性圓孔型電極及非對稱圓孔型電極液晶透鏡RMS分析 45 4.1.4 對稱性圓孔型電極及非對稱圓孔型電極液晶透鏡焦點前後光點之狀況 47 4.1.5 對稱性圓孔型電極及非對稱圓孔型電極液晶透鏡焦點光強度分布差異 53 4.2.液晶透鏡施做全息光學元件 57 4.2.1 對稱性圓孔型電極及非對稱圓孔型電極液晶透鏡同側曝光之全息光學元件錄製結果 57 4.3.液晶透鏡結合玻璃透鏡施做全息光學元件 64 4.3.1 對稱性圓孔型電極及非對稱圓孔型電極液晶透鏡結合玻璃透鏡同側曝光之全息光學元件錄製結果 64 4.4.透鏡全息光學元件之重建焦點 67 4.4.1 對稱性圓孔型電極及非對稱圓孔型電極液晶透鏡結合玻璃透鏡施錄製全相片還原光點之光強度分布差異 67 第五章 結論與未來展望 70 5.1結論 70 5.2未來展望 72 參考資料 73

    [1] Mitov, M., Liquid‐Crystal Science from 1888 to 1922: Building a Revolution. ChemPhysChem, 2014. 15(7): p. 1245-1250.
    [2] Blinov, L.M., Structure and properties of liquid crystals. Vol. 123. 2010: Springer Science & Business Media.
    [3] Lin, H.-C., M.-S. Chen, and Y.-H. Lin, A review of electrically tunable focusing liquid crystal lenses. Transactions on electrical and electronic materials, 2011. 12(6): p. 234-240.
    [4] Sato, S., Liquid-crystal lens-cells with variable focal length. Japanese Journal of Applied Physics, 1979. 18(9): p. 1679.
    [5] Vanackere, T., et al., Improvement of liquid crystal tunable lenses with weakly conductive layers using multifrequency driving. Optics Letters, 2020. 45(4): p. 1001-1004.
    [6] Wang, B., et al., Liquid crystal lens with spherical electrode. Japanese Journal of Applied Physics, 2002. 41(11A): p. L1232.
    [7] Pishnyak, O., S. Sato, and O.D. Lavrentovich, Electrically tunable lens based on a dual-frequency nematic liquid crystal. Applied Optics, 2006. 45(19): p. 4576-4582.
    [8] Lin, Y.-H., H.-S. Chen, and M.-S. Chen, Electrically tunable liquid crystal lenses and applications. Molecular Crystals and Liquid Crystals, 2014. 596(1): p. 12-21.
    [9] Fowler, C. and E. Pateras, Liquid crystal lens review. Ophthalmic and Physiological Optics, 1990. 10(2): p. 186-194.
    [10] Hsu, C.-J., J.-J. Jhang, and C.-Y. Huang, Large aperture liquid crystal lens with an imbedded floating ring electrode. Optics Express, 2016. 24(15): p. 16722-16731.
    [11] Gabor, D., Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers-part III: radio and communication engineering, 1946. 93(26): p. 429-441.
    [12] Hong, K., et al., Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality. Optics letters, 2014. 39(1): p. 127-130.
    [13] Maimone, A., A. Georgiou, and J.S. Kollin, Holographic near-eye displays for virtual and augmented reality. ACM Transactions on Graphics (Tog), 2017. 36(4): p. 1-16.
    [14] Lehmann, O., Flüssige Kristalle sowie Plastizität von Kristallen im allgemeinen, molekulare Umlagerungen und Aggregatzustandsänderungen. 1904: Verlag von Wilhelm Engelmann.
    [15] Trainer, N., Greener Synthesis of Poly-1, 3-Isobenzofurandione-4, 7-diphenyl. 2018.
    [16] 劉瑞祥, 松本正一, and 角田市良, 液晶之基礎與應用. 國立編譯館.
    [17] Yariv, A. and P. Yeh, Photonics: optical electronics in modern communications. 2007: Oxford university press.
    [18] Yang, D.-K. and S.-T. Wu, Fundamentals of liquid crystal devices. 2014: John Wiley & Sons.
    [19] Luckhurst, G., School of Chemistry, University of Southampton, UK SO17 1BJ Commentary on: On the Theory of Liquid Crystals, FC Frank, Discuss. Faraday Soc., 1958, 25, 19-28. 100 Years of Physical Chemistry, 2003: p. 225.
    [20] Khoo, I.C., Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Progress in Quantum Electronics, 2014. 38(2): p. 77-117.
    [21] Ye, M., et al., Properties of variable-focus liquid crystal lens and its application in focusing system. Optical review, 2007. 14: p. 173-175.
    [22] 張繼鴻, 發展一可用電壓調控焦距的液晶元件. 2003.
    [23] Ye, M. and S. Sato, Optical properties of liquid crystal lens of any size. Japanese journal of applied physics, 2002. 41(5B): p. L571.
    [24] Ren, H., et al., Liquid crystal lens with large focal length tunability and low operating voltage. Optics express, 2007. 15(18): p. 11328-11335.
    [25] Choi, Y., et al., Fabrication of a focal length variable microlens array based on a nematic liquid crystal. Optical materials, 2003. 21(1-3): p. 643-646.
    [26] Ye, M., B. Wang, and S. Sato, Driving of liquid crystal lens without disclination occurring by applying in-plane electric field. Japanese journal of applied physics, 2003. 42(8R): p. 5086.
    [27] Kuo, C.-H., et al., Influence of pretilt angle on disclination lines of liquid crystal lens. Applied Optics, 2012. 51(19): p. 4269-4274.
    [28] Hsu, C.J. and C.R. Sheu, Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization. Optics express, 2011. 19(16): p. 14999-15008.
    [29] 三宅和夫, RJ Collier, CB Burckhardt and LH Lin: Optical Holography, Academic Press, New York, 1971, 605日本物理学会誌, 1972. 27(5): p. 419-420.
    [30] Wang, Q.-H., et al. Augmented reality 3D display system based on holographic optical element. in Advances in Display Technologies IX. 2019. SPIE.
    [31] Zhang, H.-L., et al., Tabletop augmented reality 3D display system based on integral imaging. JOSA B, 2017. 34(5): p. B16-B21.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE