簡易檢索 / 詳目顯示

研究生: 林裕盛
Lin, Yu-Sheng
論文名稱: 具特殊幾何尺寸之擺動型或直動型滾子從動件空間凸輪機構的設計參數避免過切範圍研究
On the Ranges of Design Parameters for Avoiding Undercutting of Spatial Cam Mechanisms with an Oscillating or a Translating Roller Follower Having Special Geometrical Dimensions
指導教授: 邱顯堂
Chiou, Shen-Tarng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 232
中文關鍵詞: 空間凸輪機構擺動型或直動型滾子從動件傳動性能指標過切特殊幾何尺寸
外文關鍵詞: special geometrical dimensions, spatial cam mechanisms, oscillating or translating roller follower, the indices of transmission performance, undercutting
相關次數: 點閱:198下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因凸輪機構具有容易設計、容易獲得動平衡以及可作高速傳動等之優點,故在工業上之應用甚廣,其基本功用在於將旋轉運動與往復直線運動或往復搖擺運動作相互之變換。在設計空間凸輪機構時,除了設計其曲面以達到所需之運動特性外,尚須進行其曲率分析以避免過切現象的發生,以致增加了設計所需的時間以及繁雜度。本文針對各類具特殊幾何尺寸之擺動型或直動型滾子從動件空間凸輪機構,探討其設計參數之避免過切範圍,並藉由傳動性能指標驗證各特殊化幾何尺寸組合之凸輪類型的可行性。
    本文以齊次坐標轉換矩陣作為坐標系轉換的工具,以共軛理論作為創成凸輪曲面的依據,建立其曲面設計、曲率分析、傳動性能評估以及避免過切條件等之數學模式。針對各種類型之幾何設計參數特殊化組合,利用避免過切條件決定其不過切之參數範圍以得到無干涉或過切現象之設計,並利用傳動性能指標評估其傳動之特性。最後再分別針對擺動型與直動型滾子從動件空間凸輪機構各舉一設計實例,說明該法的使用並進行其結果之驗證。
    根據本文所得的結果可知,並非所有特殊化幾何設計參數之組合皆能使用。而針對所有可行之幾何設計參數特殊化組合,本文提出不過切條件具解析解之參數的數學模式,可提供使用者在設計這些機構時之參考。

    Cam mechanisms are used in various automatic machinery due to the advantages of providing the simplest means of achieving almost any desired follower motion, better dynamic balance, and allowing high-speed applications. Their fundamental function is to transfer a rotating motion into a translating motion or an oscillating motion. When designing spatial cam mechanisms, except cam surface design for satisfying the required motion characteristics, the curvature analysis is needed to avoid undercutting. These make the design process time-consuming and perplexity. For each kind of spatial cam mechanisms with an oscillating or translating roller follower having special geometrical dimensions, to determine the ranges of design parameters for avoiding undercutting is the main subject of this study.
    Models of surface design, curvature analysis, indices of transmission performance and the condition of avoiding undercutting are developed in this study, based on homogeneous coordinate transformation and theory of conjugate surfaces. For each spatial cam mechanism having special geometrical dimensions, the analytical expressions (if they exist) of the ranges of design variables to avoid undercutting are derived. Furthermore, the indices of transmission performance are used to verify the usability of these mechanisms. A design example is given for each of spatial cam mechanisms with an oscillating or translating roller follower having special geometrical dimensions, to explain the usage of the propose methodology and also to verify its correctness.
    According to the results of this study, not every kind of combinations of special geometrical dimensions of the mechanism can be used. For those usable spatial cam mechanisms, the analytical expressions for determining the ranges of design parameters to avoid undercutting are given in this study, and they are believed to be valuable for the research and development of these mechanisms.

    摘要 i 誌謝 ii 目錄 iii 表目錄 vii 圖目錄 ix 符號說明 xii 第一章 前言 1 第二章 理論基礎 7 2.1 齊次坐標轉換矩陣與D-H矩陣 7 2.2 共軛曲面與包絡理論 10 2.3 包絡曲面之曲率 12 2.4 線接觸型式兩嚙合曲面避免過切之條件 18 2.5 傳動性能之評估 21 2.6 結論 23 第三章 擺動型從動件凸輪機構之設計與分析模式 24 3.1 凸輪機構之坐標設定與坐標轉換矩陣 24 3.2 凸輪曲面方程式 27 3.3 曲面曲率分析與參數之不過切範圍 29 3.4 機構傳動性能之評估 33 3.5 結論 35 第四章 擺動型從動件凸輪機構之實例設計與分析 36 4.1 幾何設計參數之設定 36 4.2 特殊幾何設計參數組合之實例分析 38 4.2.1 數學分析模式之建立 39 4.2.1.1 嚙合方程式與曲面設計 40 4.2.1.1.1 圓錐型滾子嚙合件 40 4.2.1.1.2 圓柱型滾子嚙合件 40 4.2.1.2 曲率分析與曲面不過切條件 41 4.2.1.2.1 圓錐滾子型嚙合件 41 4.2.1.2.2 圓柱滾子型嚙合件 42 4.2.1.2.2.1 參數r之不過切範圍 43 4.2.1.2.2.2 參數a之不過切範圍 44 4.2.1.2.2.3 其他參數之不過切範圍 44 4.2.1.3 傳動性能評估 45 4.2.1.3.1 圓錐滾子型嚙合件 45 4.2.1.3.2 圓柱滾子型嚙合件 46 4.2.2 設計實例與分析 48 4.2.2.1 曲率分析 49 4.2.2.2 傳動性能評估 54 4.2.2.3 曲面不過切參數範圍 58 4.2.2.3.1 參數r之不過切範圍 58 4.2.2.3.2 參數a之不過切範圍 64 4.3 不可行之特殊幾何設計參數組合 73 4.3.1 同時包含 及 的幾何設計參數組合 73 4.3.2 同時包含 及 的幾何設計參數組合 75 4.3.3 同時包含 、 及 的幾何設計參數組合 76 4.4 其他類特殊幾何參數組合之參數不過切範圍 78 4.5 結論 78 第五章 直動型從動件凸輪機構之設計與分析模式 83 5.1 凸輪機構之坐標設定與坐標轉換矩陣 83 5.2 凸輪曲面方程式 85 5.3 曲面曲率分析與參數之不過切範圍 88 5.4 機構傳動性能之評估 92 5.5 結論 94 第六章 直動型從動件凸輪機構之實例設計與分析 95 6.1 幾何設計參數之設定 95 6.2 特殊幾何設計參數組合之實例分析 97 6.2.1 數學分析模式之建立 98 6.2.1.1 嚙合方程式與曲面設計 99 6.2.1.1.1 圓錐滾子型嚙合件 99 6.2.1.1.2 圓柱滾子型嚙合件 99 6.2.1.2 曲率分析與曲面不過切條件 100 6.2.1.2.1 圓錐滾子型嚙合件 101 6.2.1.2.2 圓柱滾子型嚙合件 101 6.2.1.2.2.1 參數r之不過切範圍 102 6.2.1.2.2.2 參數b之不過切範圍 103 6.2.1.2.2.3 參數a之不過切範圍 104 6.2.1.2.2.4 其他參數之不過切範圍 104 6.2.1.3 傳動性能評估 104 6.2.1.3.1 圓錐滾子型嚙合件 105 6.2.1.3.2 圓柱滾子型嚙合件 106 6.2.2 設計實例與分析 108 6.2.2.1 曲率分析 109 6.2.2.2 傳動性能評估 114 6.2.2.3 曲面不過切參數範圍 118 6.2.2.3.1 使參數r不過切之範圍 118 6.2.2.3.2 使參數b不過切之範圍 124 6.3 不可行之特殊幾何設計參數組合 133 6.4 其他類特殊幾何參數組合之參數不過切範圍 134 6.5 結論 137 第七章 結論與建議 139 參考文獻 142 附錄A 一元二次不等式之解析解法 150 附錄B 第四章參數不過切範圍之數值解法及結果 155 附錄C 具解析解之參數的不過切條件表示式 156 附錄D 第六章參數不過切範圍之數值解法及結果 191 附錄E 具解析解之參數的不過切條件表示式 192 英文摘要 230 自述 232

    Bair, B.-W., 2002, “Computerized Tooth Profile Generation of Elliptical Gears Manufactured by Shaper Cutters,” Journal of Materials Processing Technology, Vol. 122, No. 2-3, pp. 139-147.
    Baxter, M. L., 1948, "Curvature-Acceleration Relations for Plane Cams," ASME Transactions, Vol. 70, pp. 483-489.
    Baxter, M. L., 1962, "Basic Theory of Gear-Tooth Action and Generation," Gear Handbook (Edited by D. W. Dudley), McGraw-Hill, New York, U.S.A., Chap. 1.
    Chang, S.-L., and Tsay, C.-B., 1998, "Computerized Tooth Profile Generation and Undercut Analysis of Noncircular Gears Manufactured with Shaper Cutters," ASME Transactions, Journal of Mechanical Design, Vol. 120, pp. 92-99.
    Chen, C. H., 1979, "Boundary Curve, Singular Solution, Complementary Conjugate Surfaces and Conjugation Analysis in Theory of Conjugate Surface," Proceedings of the 5th World Congress on the Theory of Machines and Mechanisms, Montreal, Canada, pp. 1478-1481.
    Chen, C. H., 1981, "A-3 Tooth Form of PK Conjugation - A New Design Concept for Gear Tooth Form," Proceedings of the International Symposium on Gearing and Power Transmissions, Tokyo, Japan, pp. 11-15.
    Chen, C.-K., Chiou, S.-T., Fong, Z.-H., Lee, C.-K. and Chen, C.-H., 2001, "Mathematical Model of Curvature Analysis for Conjugate Surface with Generalized Motion in Three Dimensions," Proceedings of the Institution of Mechanical Engineers, Part C, Vol. 215, pp. 487-502.
    Chen, F. Y., 1982, Mechanics and Design of Cam Mechanisms, Pergamon Press, New York, U.S.A..
    Chen, Y.-C., and Tsay, C.-B., 2001, “Mathematical Model and Undercutting Analysis of Modified Circular-Arc Helical Gears,” Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C, Vol. 22, No. 1, pp. 41-51.
    Colbourne, J. R., 1987, The Geometry of Involute Gears, Springer-Verlag, New York, U.S.A., pp. 229-238.
    Colbourne, J. R., 1989, "The Curvature of Helicoids," Mechanism and Machine Theory, Vol. 24, No. 3, pp. 213-221.
    De Donno, M., and Litvin, F. L., 1999, "Computerized Design, Generation and Simulation of a Spiroid Worm-Gear Drive with a Ground Double-Crown Worm," ASME Transactions, Journal of Mechanical Design, Vol. 121, No. 2, pp. 264-273.
    Denavit, J., and Hartenberg, R. S., 1955, "A Kinematics Notation for Lower Pair Mechanisms Based on Matrices," ASME Transactions, Journal of Applied Mechanics, Vol. 22, No. 2, pp. 215-221.
    Dhande, S. G., Bhadoria, B. S., and Chakraborty, J., 1975, "A Unified Approach to the Analytical Design of Three Dimensional Cam Mechanisms," ASME Transactions, Journal of Engineering for Industry, Vol. 97B, No. 1, pp. 327-333.
    Dhande, S. G., and Chakraborty, J., 1976a, "Curvature Analysis of Surface in Higher Pair Contact; Part 1: An Analytical Investigation," ASME Transactions, Journal of Engineering for Industry, Vol. 98, No. 2, pp. 397-402.
    Dhande, S. G., and Chakraborty, J., 1976b, "Curvature Analysis of Surface in Higher Pair Contact; Part 2: Application to Spatial Cam Mechanisms," ASME Transactions, Journal of Engineering for Industry, Vol. 98, No. 2, pp. 403-409.
    Dhande, S. G., and Chakraborty, J., 1977, Kinematics and Geometry of Planar and Spatial Cam Mechanisms, Wiley Eastern Limited, New Delhi, India.
    Dooner, D. B., and Seireg, A. A., 1995, The Kinematic Geometry of Gearing, John Wiley & Sons, New York, U.S.A..
    Feng, P.-H., Litvin, F. L., Townsend, D. P., and Handschuh, R. F., 1999, "Determination of Principal Curvatures and Contact Ellipse for Profile Crowned Helical Gears," ASME Transactions, Journal of Mechanical Design, Vol. 121, pp. 107-111.
    Fong, Z.-H., and Tsay, C.-B., 1992, "The Undercutting of Circular-Cut Spiral Bevel Gears," ASME Transactions, Journal of Mechanical Design, Vol. 114, pp. 317-325.
    Fong, Z.-H., and Tsay, C.-W., 2000, "Study on the Undercutting of Internal Cycloidal Gear with Small Tooth Difference," Transactions of the Chinese Institute of Engineers, Journal of the Chinese Society of Mechanical Engineers, Vol. 21, No. 4, pp. 359-367.
    Gonzalez-Palacios, M. A., and Angeles, J., 1992, "On the Design of Planar and Spherical Pure-Rolling Indexing Cam Mechanisms," Proc. 1992 ASME Mechanisms Conference, Mechanical Design and Synthesis, DE-Vol 46, pp. 323-328.
    Gonzalez-Palacios, M. A., and Angeles, J., 1994, "Synthesis of Contact Surfaces of Spherical Cam-Oscillating Roller-Follower Mechanisms: A General Approach," ASME Transactions, Journal of Mechanical Design, Vol 116, No1. pp. 315-319.
    Gosselin, C., Nonaka, T., Shiono, Y., Kubo, A., and Tatsuno, T., 1998, "Identification of the Machine Settings of Real Hypoid Gear Tooth Surfaces," ASME Transactions, Journal of Mechanical Design, Vol. 120, pp. 429-440.
    Hori, K., Hayashi, I., and Iwatsuki N., 1997, "The Ideal Tooth Profiles of Conical-External and -Internal Gears Meshing with Cylindrical-Involute Gears over the Entire Tooth Width," Transactions of JSME, Part C, Vol. 63, No. 613, pp. 3235-3242.
    Jesen, P. W., 1987, Cam Design and Manufacture, Marcel Dekker, New York, U.S.A..
    Kang, Y.-H., and Yan, H.-S., 1996, "Curvature Analysis of Variable Pitch Lead Screws with Cylindrical Meshing Elements," Transactions of the Canadian Society for Mechanical Engineering, Vol. 20, No. 2, pp. 139-157.
    Kawasaki, K., and Tamura, H., 1997, "Method for Cutting Hypoid Gears (Duplex Spread-Blade Method)," JSME International Journal, Series C, Vol. 40, No. 4, pp. 768-775.
    Kim, V., 1990, "Limitation of Worm and Worm Gear Surfaces in Order to Avoid Undercutting," Gear Technology, pp. 30-35.
    Lai, H.-Y.; and Wei, E.-J., 2000, “Performance Evaluation of SCORF Systems Using Lubrication and Undercutting Indices,” JSME International Journal, Series C, Vol. 43, No. 1, pp. 212-221.
    Litvin, F. L., 1968, Theory of Gearing, (in Russian) 2nd ed., Nauka, Moscow, Russian.
    Litvin, F. L., 1989, Theory of Gearing, NASA, Washington, D.C., U.S.A..
    Litvin, F. L., 1994, Gear Geometry and Applied Theory, PTR Prentice-Hall, Englewood Cliffs, New Jersey, U. S. A..
    Litivin, F. L., and Gutman, Y., 1981, "Methods of Synthesis and Analysis for Hypoid Gear-Drives of Formate and Helixform," ASME Transactions, Journal of Mechanical Design, Vol. 103, pp. 83-113.
    Litvin, F. L., Krylov, N. N., and Erikhov, M. L., 1975, "Generation of Tooth Surfaces by Two-Parameter Enveloping," Mechanism and Machine Theory, Vol. 10, No. 5, pp. 365-373.
    Litvin, F. L., Kuan, C., Kieffer, J., Bossler, R., and Handschuh, R. F., 1991, "Straddle Design of Spiral Bevel and Hypiod Pinions and Gears," ASME Transactions, Journal of Mechanical Design, Vol. 113, No. 4, pp. 422-426.
    Litvin, F. L., Peng, A., and Wang, A., 1999, "Limitation of Gear Tooth Surfaces by Envelopes to Contact Lines and Edge of Regression," Mechanism and Machine Theory, Vol. 34, pp. 889-902.
    Meng, J.-L., Hsieh, K.-E., and Tsay, C.-B., 1987, "An Analytical Method for Synthesis of Cam Profiles," Journal of the Chinese Society of Mechanical Engineers, Vol. 8, No. 4, pp. 271-276.
    Norton, R. L., 1999, Design of Machinery, 2nd ed., McGraw-Hill, New York, U.S.A., Chap. 8-Chap. 9.
    Nutbourne, A. W., and Martin, R. R., 1988, Differential Geometry Applied to Curve and Surface Design, Vol. 1, Ellis Horwood Limited, Chichester, England.
    Raven, F. H., 1959, "Analytical Design of Disk Cams and Three-Dimensional Cams by Independent Position Equations," ASME Transactions, Journal of Applied Mechanics, Vol. 81, pp. 18-24.
    Reeve, J., 1995, Cams for Industry, Mechanical Engineering Publications Limited, London, England.
    Shtipelman, B. A., 1978, Design and Manufacture of Hypoid Gears, John Wiley and Sons, New York, U. S. A., pp. 148-176.
    Takahashi, K., and Ito, N., 1986, "Third-Order Surface Application to Determine the Tooth Contact Pattern of Hypoid Gears," ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 108, pp. 263-269.
    The MathWorks, 1996, Matlab, the Language of Technical Computing; Using MATLAB, Version 5, The MathWorks, Inc., Maryland, U.S.A..
    Tsai, M.-J., and Lee, H.-W., 1992, "Transmissivity and Manipulability of Spatial Mechanisms," Proceedings of Flexible Mechanisms, Dynamics, and Analysis 22nd Biennial Mechanisms Conference, ASME, Design Engineering Division, New York, pp. 295-303.
    Tsai, M.-J., and Lee, H.-W., 1994, “Generalized Evaluation for the Transmission Performance of Mechanisms,” Mechanism and Machine Theory, Vol. 29, No. 4, pp. 607-618.
    Tsai, Y.-C., and Jehng, W.-K., 1998, "A Kinematics Parametric Method to Generate New Tooth Profiles of Gear Sets with Skew Axes," Mechanism and Machine Theory, Vol. 34, No. 6, pp. 857-876.
    Tsay, D. M., and Hwang, G. S., 1994a, "Application of the Theory of Envelope to the Determination of Camoid Profile with Translating Followers," ASME Transactions, Journal of Mechanical Design, Vol. 116, pp. 320-325.
    Tsay, D. M., and Hwang, G. S., 1994b, "The Profile Determination and Machining of Camoids with Oscillating Spherical Followers," ASME Transactions, Journal of Engineering for Industry, Vol. 116, pp. 355-362.
    Tsay, D. M., and Wei, H. M., 1993, "Design and Machining of Cylindrical Cams with Translating Conical Followers," Computer-Aided Design, Vol. 25, No. 10, pp. 655-660.
    Tsay, D. M., and Wei, H. M., 1996, " A General Approach to the Determination of Planar and Spatial Cam Profiles," ASME Transactions, Journal of Mechanical Design, Vol. 118, No. 10, pp. 259-265.
    Wang, W.-H., Tseng, C.-H., and Tsay, C.-B., 1997, "Analysis of Preload Condition in Spatial Cam Mechanisms," Transactions of the Chinese Institute of Engineers, Journal of the Chinese Society of Mechanical Engineers, Series C, Vol. 18, No. 4, pp. 311-319.
    Wang, W. H., Tseng, C. H., and Tsay, C. B., 1997, "Surface Contact Analysis for a Spatial Cam Mechanism," ASME Transactions, Journal of Mechanical Design, Vol. 119, No. 1, pp. 169-177.
    Wildhaber, E., 1956, "Surface Curvature," Product Engineering, Vol. 27, No. 5, pp. 184-191.
    Yan, H.-S., and Chen, H.-H., 1994, "Geometry Design and Machining of Roller Gear Cams with Cylindrical Rollers," Mechanism and Machine Theory, Vol. 29, No. 6, pp. 803-812.
    Yan, H.-S., and Cheng, W.-T., 1998, "Axode Synthesis of Cam-Follower Mechanisms with Hyperboloidal Rollers," JSME International Journal, Series C, Vol. 41, No. 3, pp. 460-469.
    Yan, H.-S., and Cheng, W.-T., 1999, "Curvature Analysis of Spatial Cam-Follower Mechanisms," Mechanism and Machine Theory, Vol. 34, No. 2, pp. 319-339.
    Yang, S.-C., and Chen, C.-K., 2000, "Applying Two-Parameter Envelope Theory to Determining Spherical Cam Profile with Cylindrical Followers," Transactions of the Canadian Society for Mechanical Engineering, Vol. 24, No. 2, pp. 415-435.
    卯一宏,2001,〝具擺動型或直動型圓錐滾子從動件空間凸輪機構之曲面設計及過切條件的研究〞,碩士論文,國立成功大學機械工程研究所,台南,台灣。
    李宏文,1993,〝機構運動及力量傳動性能探討〞,博士論文,國立成功大學機械工程研究所,台南,台灣。
    李肇祿,2001,〝兩型一次包絡變導程螺桿機構之設計參數的避免過切範圍研究〞,碩士論文,國立成功大學機械工程研究所,台南,台灣。
    邱顯堂,陳志弘,1998,”一次包絡曲面曲率分析及其於變導程螺桿機構之應用”,中華民國機構與機器原理學會,第一屆全國機構與機器設計學術研討會論文集,205-212頁。
    林聰益,1997,"滾齒凸輪機構之設計與動力測試",碩士論文,國立成功大學機械工程研究所,台南,台灣。
    孫建勳,1994,"具圓錐嚙合件之變導程螺桿機構之運動優化設計",碩士論文,國立成功大學機械工程研究所,台南,台灣。
    張哲榕,2000,"兼具平移及搖擺嚙合件之變導程螺桿機構曲面設計及過切條件研究",碩士論文,國立成功大學機械工程研究所,台南,台灣。
    陳志弘,1997,"多重包絡及其應用於變導程螺桿機構的曲面設計之研究",碩士論文, 國立成功大學機械工程研究所,台南,台灣。
    陳志新,1985,共軛曲面基本原理,科學出版社,北京,中國。
    陳朝光,唐余勇,吳宏業,1998,微分幾何及其在機械工程中的應用,哈爾濱工業大學出版社,北京,中國。
    鄭文騰,1996,"凸輪從動件系統的運動合成與分析",博士論文,國立成功大學機械工程研究所,台南,台灣。
    蘇健榮,1999,"變導程螺桿機構及兩型蝸桿蝸輪機構過切條件之研究”,碩士論文,國立成功大學機械工程研究所,台南,台灣。

    下載圖示 校內:2004-07-18公開
    校外:2005-07-18公開
    QR CODE