簡易檢索 / 詳目顯示

研究生: 羅小惠
Lo, Hsiao-Hui
論文名稱: 糖尿病足潰瘍流行病學和最新治療方法之綜述及現有治療方式的臨床療效比較
A review of epidemiology and advanced therapeutic approaches for diabetic foot ulcers and the efficacy comparison of the current therapeutics
指導教授: 周辰熹
Chou, Chen-Hsi
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 124
中文關鍵詞: 糖尿病足潰瘍先進DFU療法輔助DUF治療促進DFU癒合慢性傷口癒合
外文關鍵詞: Diabetic foot ulcers, Advanced DFU therapeutics, Adjunctive DFU treatment, enhanced DFU healing, Chronic wound healing
相關次數: 點閱:213下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖尿病足潰瘍 (DFU) 是糖尿病最具破壞性的併發症之一,具有顯著的發病率和死亡率風險。約 85% 未治癒的DFU會導致下肢截肢,值得注意的是,39~68% 的截肢患者會在 5 年內死亡。因此,尋找出可以完全治癒或可加速癒合慢性糖尿病足潰瘍 (DFU) 的不同或更進步的治療方法具有重要意義。此研究對 DFU 的現行流行病學和新興療法或輔助治療方法進行審查,並通過隨機對照臨床試驗的系統審查,間接比較所選當前新興療法的臨床療效試驗。此研究使用以下數據庫進行文獻檢索:MEDLINE (PubMed)、EMBASE、Cochrane 對照試驗中心註冊中心 (CENTRAL) 和中國學術期刊網路出版總庫 (CAJD),搜尋系統文獻回顧、統合分析、醫療科技評估 (Health Technology Assessment, HTA)和隨機對照試驗的臨床研究等文獻確認治療DFU之新興療法或輔助治療方法在治療 DFU 的傷口完全癒合率或傷口完全閉合率或加速傷口癒合率方面展現其臨床療效。先進的敷料、皮膚移植和組織工程皮膚替代品、rhPDGF 和 rhEFG 等生長因子、負壓傷口療法、高壓氧療法、自體血小板凝膠和 ON101 乳膏是目前作為輔助DFU 標準護理的新興療法。隨著更多DFU 新興療法的臨床療效發現,需要進一步考慮其他因素包括患者的生活品質和治療成本的經濟評估,以確認這些新興療法可以為 DFU 患者帶來實質性的改善。

    Diabetic foot ulcer is one of the most devastating complications of diabetes, carrying significant morbidity and mortality risks. About 85% of unhealed DFUs result in lower limb amputation, and notably, 39~68% of amputated patients die within 5 years. It is of great interest to explore different advanced DFU therapeutic approaches that can repair or accelerate healing in chronic DFUs. The purpose of the study is to perform a state-of-the-art review of current epidemiology and advanced therapeutics for DFU and provide an indirect comparison of the clinical efficacy of the selected current therapeutic approaches through a systematic review of the randomized controlled clinical trials. A literature search was performed using the databases: MEDLINE (PubMed), EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL) and China and Academic Journal Network Publishing Database (CAJD) to retrieve systematic reviews, meta-analyses, health technology assessments and clinical reviews of randomized controlled trials and to identify the advanced therapeutic approaches or adjunctive treatment methods that demonstrated clinical efficacy. Advanced dressings, skin grafts and tissue-engineering skin substitutes, growth factors such as rhPDGF and rhEFG, negative pressure wound therapy, hyperbaric oxygen therapy, autologous platelet gel and ON101 cream are among the current advanced therapeutics as adjunct to standard of care to treat DFUs. With more findings in the clinical efficacies of the current advanced DFU treatments, further economic evaluations taking other factors including patients’ quality of lives and costs of treatments into consideration are needed as to examine the substantial improvement these advanced treatments can bring to the DFU patients.

    Contents List of Abbreviations VI 1. Chapter 1: Diabetic foot ulcer and unmet medical needs 1 1.1. Introduction 1 1.2. Diabetic foot ulcers: A Serious Condition 1 1.3. DFUs require multidisciplinary therapy 2 1.4. Medical burden and unmet needs in DFU 4 2. Chapter 2: Current advanced therapeutic approaches for DFUs 6 2.1. Introduction 6 2.2. Methods 7 2.3. Results 8 2.3.1. Advanced Dressings (Sucrose octasulfate dressing and LeucoPatch) 11 2.3.2. Regranex® 12 2.3.3. Negative Pressure Wound Therapy (NWPT) 14 2.3.4. Hyperbaric Oxygen Therapy (HBOT) 16 2.3.5. Skin Grafts and Tissue-engineered Skin Substitute 17 2.3.6. Topical application of platelet-rich plasma (Autologous platelet gel) 25 2.3.7. Topical Epidermal Growth Factor Spray (rhEGF) 25 2.3.8. ON101 Cream 27 2.3.9. Combination of two adjunctive therapies with different mechanisms 28 2.4. Discussion 29 2.4.1. Moist wound dressings 29 2.4.2. Energy-based therapies 30 2.4.3. Chinese herbal medicine 31 2.4.4. Fibroblast growth factor (FGF) 31 2.4.5. Vascular endothelial growth factor (VEGF) 32 2.4.6. Granulocyte colony-stimulating factor (G-CSF) 32 2.5. Limitation 33 2.6. Conclusion 35 3. Chapter 3: An indirect comparison of the therapeutic efficacy of ON101 cream and Regranex® gel in the treatment of DFU 36 3.1. Introduction 36 3.2. Methods 40 3.2.1. Eligibility criteria 41 3.3. Results 42 3.3.1. Clinical literature search 42 3.3.2. Regranex® gel 0.01% 45 3.3.3. Fespixon® (ON101 Cream) 50 3.4. Discussion 56 3.5. Conclusions 64 4. Chapter 4: An indirect comparison of the therapeutic efficacy of ON101 Cream and Dermagraft® in the treatment of DFU 67 4.1. Introduction 67 4.2. Methods 69 4.2.1. Eligibility criteria 69 4.3. Result 71 4.3.1. Clinical literature search 71 4.3.2. Dermagraft® 73 4.3.3. Fespixon® cream (ON101) 74 4.4. Discussion 76 4.5. Conclusions 83 5. Chapter 5: The challenge in product development for DFU treatments: An industry view 84 5.1. The assessment of immunopathy is not covered by the current wound classification systems for DFUs 85 5.2. Current medical practices in standard care mainly focus on wound care rather than wound healing 89 5.3. Products with clinical efficacy in wound healing are mostly used as adjunctive therapies instead of standard of care 97 5.4. Conclusion 100 6. Reference 100

    1. Saeedi P, Petersohn I, Salpea P, Malanda B et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019;157:107843
    2. Mavrogenis AF, Megaloikonomos PD, Antoniadou T, Igoumenou VG et al. Current concepts for the evaluation and management of diabetic foot ulcers. EFORT Open Rev. 2018; 3(9): 513–525
    3. National Diabetes Statistics Report, 2020
    4. Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis 2017 Mar;49(2):106-116
    5. Armstrong DG, Swerdlow MA, Armstrong AA, Conte MS et al. Five-year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J Foot Ankle Res. 2020; 24;13(1):16.
    6. Rathnayake A, Saboo A, Malabu UH, Falhammar H. Lower extremity amputations and long-term outcomes in diabetic foot ulcers: A systematic review. World J Diabetes. 2020;11(9):391-399.
    7. IWGDF Guidelines 2019.
    8. Wu L, Norman G, Dumville JC, O'Meara S et al. Dressings for treating foot ulcers in people with diabetes: an overview of systematic reviews. Cochrane Database Syst Rev. 2015; 2015(7):CD010471.
    9. Snyder D, Sullivan N, Margolis D, et al. Rockville (MD): Agency for Healthcare Research and Quality (US); 2020 Feb 2.
    10. Monteiro-Soares M, Boyko EJ, Jeffcoate W, Mills JL et al. Diabetic foot ulcer classifications: A critical review. Diabetes Metab Res Rev. 2020;36 Suppl 1:e3272.
    11. Jalilian M, Ahmadi Sarbarzeh P, Oubari S. Factors Related to Severity of Diabetic Foot Ulcer: A Systematic Review. Diabetes Metab Syndr Obes. 2020;13:1835-1842
    12. Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci. 2018;1411(1):153-165.
    13. Hicks CW, Canner JK, Mathioudakis N, Lippincott C et al. Incidence and Risk Factors Associated With Ulcer Recurrence Among Patients With Diabetic Foot Ulcers Treated in a Multidisciplinary Setting. J Surg Res. 2020; 246:243-250
    14. Parisi L, Gini E, Baci D, Tremolati M et al. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res. 2018; 2018:8917804
    15. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018; 233(9):6425-6440.
    16. Tarnuzzer RW, Schultz GS. Biochemical analysis of acute and chronic wound environments. Wound Repair Regen. 1996; 4(3):321-5.
    17. Rőszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm. 2015; 2015:816460
    18. Driver VR, Fabbi M, Lavery LA, Gibbons G. The costs of diabetic foot: the economic case for the limb salvage team. J Vasc Surg. 2010; 52(3 Suppl):17S-22S
    19. Rice JB, Desai U, Cummings AK, Birnbaum HG et al. Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care. 2014;37(3):651-8.
    20. Raghav A, Khan ZA, Labala RK, Ahmad J et al. Financial burden of diabetic foot ulcers to world: a progressive topic to discuss always. Ther Adv Endocrinol Metab. 2018; 9(1):29-31
    21. IWGDF Guidelines 2019
    22. Mavrogenis AF, Megaloikonomos PD, Antoniadou T et al. Current concepts for the evaluation and management of diabetic foot ulcers. EFORT Open Rev. 2018; 3(9): 513–525.
    23. Jupiter DC, Thorud JC, Buckley CJ, Shibuya N. The impact of foot ulceration and amputation on mortality in diabetic patients. I: From ulceration to death, a systematic review. Int Wound J. 2016; 13(5): 892–903
    24. Armstrong DG, Swerdlow MA, Armstrong, AA et al. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J Foot Ankle Res. 2020; 13(1):16.
    25. YY, Lin CW, Cheng NC et al. Effect of a novel macrophage-regulating drug on wound healing in patients with diabetic foot ulcers a randomized clinical trial. JAMA Netw Open 2021; 4(9).
    26. Yazdanpanah L, Nasiri M, Adarvishi S. Literature review on the management of diabetic foot ulcer. World J Diabetes. 2015; 6(1):37-53.
    27. Everett E, Mathioudakis N. Nestoras Mathioudakis. Update on management of diabetic foot ulcers. Ann N Y Acad Sci. 2018; 1411(1):153-165.
    28. Edmonds M, Lázaro-Martínez JL, Alfayate-García JM et al. Sucrose octasulfate dressing versus control dressing in patients with neuroischaemic diabetic foot ulcers (Explorer): an international, multicentre, double-blind, randomised, controlled trial. Lancet Diabetes Endocrinol. 2018; 6(3):186-196
    29. Game F, Jeffcoate W, Tarnow L et al. LeucoPatch system for the management of hard-to-heal diabetic foot ulcers in the UK, Denmark, and Sweden: an observer-masked, randomised controlled trial. Lancet Diabetes Endocrinol. 2018; 6(11):870-878.
    30. Assessment report for Regranex. European Medicines Agency 2010; No. EMA/H/C/000212/A20/0033.
    31. Smith & Nephews. Package insert of Regranex Gel 0.01% (becaplermin) under BLA 103691. Drugs@FDA: FDA-Approved Drugs 2019, SUPPL-5138.
    32. Smiell JM, Wieman TJ, Steed DL et al. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen. 1999; 7(5):335-46.
    33. Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo-controlled double-blind study. Diabetes Care 1998; 21(5):822-7.
    34. A Ubbink DT, Westerbos SJ, Nelson EA, Vermeulen H. A systematic review of topical negative pressure therapy for acute and chronic wounds. Br J Surg. 2008 ; 95(6):685-92.
    35. Blume PA, Walters J, Payne W, Ayala J et al. Comparison of Negative Pressure Wound Therapy Using Vacuum-Assisted Closure With Advanced Moist Wound Therapy in the Treatment of Diabetic Foot Ulcers. Diabetes Care. 2008; 31(4):631-6.
    36. Indications for Hyperbaric Oxygen Therapy. Undersea and hyperbaric medical society 14th edition.
    37. Sharma R, Sharma SK, Mudgal SK, Jelly P et al. Rakesh Efficacy of hyperbaric oxygen therapy for diabetic foot ulcer, a systematic review and meta-analysis of controlled clinical trials. Sci Rep. 2021; 11(1):2189.
    38. Mendy Hatibie Oley, Maximillian Christian Oley, Djony E. Tjandra et al. Hyperbaric oxygen therapy in the healing process of foot ulcers in diabetic type 2 patients marked by interleukin 6, vascular endothelial growth factor, and PEDIS score: A randomized controlled trial study. International Journal of Surgery Open Volume 27, 2020, Pages 154-161
    39. Ortega MA, Fraile-Martinez O, García-Montero C, Callejón-Peláez E et al. A General Overview on the Hyperbaric Oxygen Therapy: Applications, Mechanisms and Translational Opportunities. Medicina (Kaunas). 2021; 57(9): 864
    40. Caroline Bay, Zachary Chizmar, Edward M Reece et al. Comparison of Skin Substitutes for Acute and Chronic Wound Management. Semin Plast Surg. 2021; 35(3):171-180.
    41. Serena TE, Yaakov R, Moore S, Cole W et al. A randomized controlled clinical trial of a hypothermically stored amniotic membrane for use in diabetic foot ulcers. J Comp Eff Res. 2020; 9(1):23-34.
    42. Lavery LA, Fulmer J, Shebetka KA, Regulski M, et al. The efficacy and safety of Grafix for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Randomized Controlled Trial Int Wound J. 2014;11(5):554-60.
    43. Marston WA, Hanft J, Norwood P et. al. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 2003; 26(6):1701-5.
    44. Hanft JR, Surprenant MS. Healing of chronic foot ulcers in diabetic patients treated with a human fibroblast-derived dermis. J Foot Ankle Surg. 2002 Sep; 41(5):291-9.
    45. Steinberg JS, Edmonds M, Hurley DP Jr, King WN. Confirmatory Data from EU Study Supports Apligraf for the Treatment of Neuropathic Diabetic Foot Ulcers. J Am Podiatr Med Assoc. 2010;100(1):73-7.
    46. Veves A, Falanga V, Armstrong DG, Sabolinski ML. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care. 2001; 24(2):290-5.
    47. Tettelbach W, Cazzell S, Reyzelman AM, Sigal F et al. A confirmatory study on the efficacy of dehydrated human amnion/chorion membrane dHACM allograft in the management of diabetic foot ulcers: A prospective, multicentre, randomised, controlled study of 110 patients from 14 wound clinics. Int Wound J. 2019; 16(1):19-29
    48. Driver VR, Lavery LA, Reyzelman AM, Dutra TG et al. A clinical trial of Integra Template for diabetic foot ulcer treatment. Wound Repair Regen. 2015; 23(6):891-900.
    49. Gentzkow GD, Iwasaki SD, Hershon KS Mengel M et al. Use of dermagraft, a cultured human dermis, to treat diabetic foot ulcers. Diabetes Care. 1996; 19(4):350-4.
    50. Tettelbach W, Cazzell S, Sigal F, Caporusso JM et al. A multicentre prospective randomised controlled comparative parallel study of dehydrated human umbilical cord (EpiCord) allograft for the treatment of diabetic foot ulcers. Int Wound J. 2019;16(1):122-130.
    51. Zelen CM, Orgill DP, Serena TE, Galiano RE et al. An aseptically processed, acellular, reticular, allogenic human dermis improves healing in diabetic foot ulcers: A prospective, randomised, controlled, multicentre follow-up trial. Int Wound J. 2018;15(5):731-739.
    52. Davison-Kotler et al. A universal classification system of skin substitutes inspired by factorial design. Tissue Engineering Part B: ReviewsVol. 24, No. 4.
    53. Lee KH. Tissue-engineered human living skin substitutes: development and clinical application. Yonsei Med J 2000; 41:774-779. Use of an aseptically processed, dehydrated human amnion and chorion membrane improves likelihood and rate of healing in chronic diabetic foot ulcers: A prospective, randomised, multi-centre clinical trial in 80 patients. Int Wound J. 2018 Dec;15(6):950-957.
    54. Álvaro-Afonso, Francisco J, García-Álvarez, Yolanda et al. Advances in Dermoepidermal Skin Substitutes for Diabetic Foot Ulcers.
    55. Alrubaiy L, Al-Rubaiy KK. Skin Substitutes: A Brief Review of Types and Clinical Applications. Oman Med J. 2009; 24(1): 4–6. Current Vascular Pharmacology, Volume 18, 2020
    56. Snyder RJ, Shimozaki K, Tallis A, Kerzner M, Reyzelman A et al. A Prospective, Randomized, Multicenter, Controlled Evaluation of the Use of Dehydrated Amniotic Membrane Allograft Compared to Standard of Care for the Closure of Chronic Diabetic Foot Ulcer. Wounds. 2016; 28(3):70-7.
    57. Driver VR, Lavery LA, Reyzelman AM, Dutra TG et al. A clinical trial of Integra Template for diabetic foot ulcer treatment. Wound Repair Regen. 2015; 23(6):891-900.
    58. Reyzelman A, Crews RT, Moore JC, et al. Clinical effectiveness of an acellular dermal regenerative tissue matrix compared to standard wound management in healing diabetic foot ulcers: a prospective, randomised, multicentre study. Int Wound J. 2009 Jun;6(3):196–208.
    59. Brigido SA. The use of an acellular dermal regenerative tissue matrix in the treatment of lower extremity wounds: a prospective 16-week pilot study. Int Wound J. 2006 Sep;3(3):181–7.
    60. Lee KH. Tissue-engineered human living skin substitutes: development and clinical application. Yonsei Med J 2000; 41:774-779.
    61. Alrubaiy L, Al-Rubaiy KK. Skin Substitutes: A Brief Review of Types and Clinical Applications. Oman Med J. 2009; 24(1): 4–6.
    62. Bello YM, Falabella AF, Eaglstein WH. Falabella AF, Eaglstein WH. Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol. 2001;2(5):305-13
    63. Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin
    Dermatol 2005; 23:403-412.
    64. Snyder D, Sullivan N, Margolis D, et al. Rockville (MD): Agency for Healthcare Research and Quality (US); 2020 Feb 2.
    65. Harris PA, di Francesco F, Barisoni D, Leigh IM et al. Use of hyaluronic acid and cultured autologous keratinocytes and fibroblasts in extensive burns. Lancet. 1999; 353(9146):35-6.
    66. Vyas KS, Vasconez HC. Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds. Healthcare (Basel). 2014; 2(3): 356–400
    67. Hanft JR, Surprenant MS. Healing of chronic foot ulcers in diabetic patients treated with a human fibroblast-derived dermis. J Foot Ankle Surg. 2002 Sep; 41(5):291-9.
    68. Gimble JM, Frazier T, Wu X, Uquillas AA, Llamas C et al. Sterilized Microvascular Tissue Product Improves Healing in a Murine Pressure Ulcer Model. Plast Reconstr Surg Glob Open. 2018; 6(11): e2010.
    69. Gould LJ, Orgill DP, Armstrong DG, Galiano RD et al. 2021mproved healing of chronic diabetic foot wounds in a prospective randomised controlled multi-centre clinical trial with a microvascular tissue allograft. Int Wound J. 2022;19(4):811-825.
    70. Martinez-Zapata MJ, Martí-Carvajal AJ, Solà I, Expósito JA, Bolíbar I et al. Autologous platelet-rich plasma for treating chronic wounds. Cochrane Database Syst Rev. 2016; 2016(5):CD006899.
    71. 王惠穎,. 自體血小板凝膠在糖尿病足潰瘍治療中的應用分析. 世界最新醫學信息文摘; 2017 (96).
    72. 胡麗,皮銀珍,胡韻婷,王環君,趙晉晉,. 自體富血小板凝膠治療難治性糖尿病足潰瘍的療效和機制[J]. 貴州醫科大學學報; 2020 (12).
    73. Hirase T, Ruff E, Surani S, Ratnani I. Topical application of platelet-rich plasma for diabetic foot ulcers: A systematic review. World J Diabetes. 2018; 9(10):172-179.
    74. Sridharan K, Sivaramakrishnan G. Growth factors for diabetic foot ulcers: mixed treatment comparison analysis of randomized clinical trials. Br J Clin Pharmacol. 2018; 84(3): 434–444.
    75. Park KH, Han SH, Hong JP, Han SK et al. Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: A phase III multicenter, double-blind, randomized, placebo-controlled trial. Diabetes Res Clin Pract. 2018; 142:335-344.
    76. Zhou Junli, Wang Xiaojun, Wang Haijiao, Li Chun. A network meta-analysis of the efficacy of new medical dressings for diabetic foot ulcers. Chinese Journal of Tissue Engineering Research 2022; (16): 2562-2569.
    77. Wang Y, Cao HJ, Wang LQ, Lu CL et al.The effects of Chinese herbal medicines for treating diabetic foot ulcers: A systematic review of 49 randomized controlled trials. Complement Ther Med. 2019; 44:32-43.
    78. 陳康,. 負壓封閉引流技術聯合局部氧療治療糖尿病足慢性創面的效果分析. 當代醫藥論叢; 2020 (1).
    79. 劉振斌,王剛,李夢虎,. 富血小板血漿聯合點狀植皮術治療糖尿病足創面的臨床療效研究[J]. 中國中西醫結合外科雜志; 2021 (4).
    80. 鮑瓊,李紅紅,. 人工真皮聯合負壓引流技術修復糖尿病足創面的療效研究[J]. 中國美容醫學,2019,(6).
    81. 張帥. 糖尿病足潰瘍治療研究進展. 中國城鄉企業衛生; 2022 (2).
    82. 何浩韞,. 糖尿病足潰瘍影響因素與治療的研究進展. 中國城鄉企業衛生; 2022 (6).
    83. Saeedi P, Petersohn I, Salpea P et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diab Res Clin Practice 2019; 157:107843.
    84. Mavrogenis AF, Megaloikonomos PD, Antoniadou T et al. Current concepts for the evaluation and management of diabetic foot ulcers. EFORT Open Rev. 2018; 3(9): 513–525.
    85. National Diabetes Statistics Report, 2020; Center for Disease Control and Prevention, USA.
    86. Zhang P, Lu J, Jing Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med. 2017; 49(2):106-116.
    87. Armstrong DG, Swerdlow MA, Armstrong AA et al. Five-year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J Foot Ankle Res. 2020; 13(1):16.
    88. Rathnayake A, Saboo A, Malabu UH, Falhammar H. Lower extremity amputations and long-term outcomes in diabetic foot ulcers: A systematic review. World J Diabetes. 2020; 11(9): 391–399.
    89. Schaper NC, van Netten JJ, Apelqvist J et al. IWGDF Guidelines on the prevention and management of diabetic foot disease 2019
    90. Wu L, Norman G, Dumville JC et al. Dressings for treating foot ulcers in people with diabetes: an overview of systematic reviews. Cochrane database of systematic reviews 2015; Issue 7. Art. No.: CD010471.
    91. Snyder DL, Sullivan N, Margolis DJ, Schoelles K. Skin substitutes for treating chronic wounds. Rockville (MD): Agency for Healthcare Research and Quality (US) 2020; AHRQ Technology Assessments Project ID No. WNDT0818.
    92. Monteiro-Soares M, Boyko EJ, Jeffcoate W et al. Diabetic foot ulcer classifications: A critical review. Diabetes Metab Res Rev. 2020; 36 Suppl 1: e3272.
    93. Jalilian M, Ahmadi Sarbarzeh P, Oubari S. Factors Related to Severity of Diabetic Foot Ulcer: A Systematic Review. Diabetes Metab Syndr Obes. 2020; 13: 1835–1842.
    94. Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci 2018; 1411(1):153-165.
    95. Hicks CW, Canner JK, Mathioudakis N et al. Incidence and Risk Factors Associated with Ulcer Recurrence Among Patients With Diabetic Foot Ulcers Treated in a Multidisciplinary Setting. J Surg Res. 2020; 246:243-250.
    96. Parisi L, Gini E, Baci D et al. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res. 2018; 2018:8917804.
    97. Edmonds M. A renaissance in diabetic foot care: new evidence-based treatments. Lancet Diabetes Endocrinol 2018; 6(11):837-838.
    98. Tarnuzzer RW, Schultz GS. Biochemical analysis of acute and chronic wound environments. Wound Repair Regen 1996; 4(3):321-5.
    99. Louiselle AE, Niemiec SM, Zgheib C, Liechty KM. Macrophage polarization and diabetic wound healing. Transl Res. 2021; 236:109-116.
    100. Driver VR, Fabbi M, Lavery LA, Gibbons G. The costs of diabetic foot: the economic case for the limb salvage team. J Vasc Surg. 2010; Volume 52(3 Suppl):17S-22S.
    101. Rice JB, Desai U, Cummings AKG et al. Burden of diabetic foot ulcers for medicare and private insurers; Diabetes Care. 2014;37(3):651-658.
    102. Raghav A, Khan ZA, Labala RK et al. Financial burden of diabetic foot ulcers to world: a progressive topic to discuss always. Ther Adv Endocrinol Metab 2018; 9(1):29-31.
    103. Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo-controlled double-blind study. Diabetes Care 1998; 21(5):822-7.
    104. Assessment report for Regranex. European Medicines Agency 2010; No. EMA/H/C/000212/A20/0033.
    105. Smith & Nephews. Package insert of Regranex Gel 0.01% (becaplermin) under BLA 103691. Drugs@FDA: FDA-Approved Drugs 2019, SUPPL-5138.
    106. Smiell JM, Wieman TJ, Steed DL et al. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen. 1999; 7(5):335-46.
    107. YY, Lin CW, Cheng NC et al. Effect of a novel macrophage-regulating drug on wound healing in patients with diabetic foot ulcers a randomized clinical trial. JAMA Netw Open 2021; 4(9).
    108. Oneness Biotech Co., Ltd. Investor Presentation. 39th Annual J.P Morgan Healthcare Conference 2021. https://www.onenessbio.com/download/Shareholder/ShareholderMeeting/2021/JP/JP-Conference-EN.pdf
    109. Oneness Biotech Co., Ltd. Package insert of Fespixon Cream (ON101) under Taiwan FDA Approval number: 060827. Taiwan FDA Certification 2021.
    110. Moganti K, Feng Li, Schmuttermaier C et al. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages. Immunobiology. 2017; 222(10):952-959.
    111. Christman AL, Selvin E, Margolis DJ et al. Hemoglobin A1c predicts healing rate in diabetic wounds. J Invest Dermatol 2011; 131(10):2121-7.
    112. Mirza RE, Fang M, Weinheimer-Haus EM et al. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes. 2014; 63(3):1103-14.
    113. Kuo YS, Chien HF, Lu W. Plectranthus amboinicus and Centella asiatica cream for the treatment of diabetic foot ulcers. Evid Based Complement Alternat Med. 2012; 2012: 418679.
    114. Arumugam G, Swamy MK, Sinniah UR. Plectranthus amboinicus (Lour) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules. 2016;21(4):369.
    115. Meeran MFN, Goyal SN, Suchal K et al. Pharmacological properties, molecular mechanisms, and pharmaceutical development of Asiatica cid: a pentacyclic triterpenoid of therapeutic promise. Front Pharmacol. 2018; 9:892.
    116. Leu WJ, Chen JC, Guh JH. Extract from Plectranthus amboinicus inhibit maturation and release of interleukin 1β through inhibition of NF-κB nuclear translocation and NLRP3 inflammasome activation. Front Pharmacol. 2019; 10:573.
    117. Sawatdee S, Choo chuay K, Chanthorn W, Srichana T. Evaluation of the topical spray containing Centella asiatica extract and its efficacy on excision wounds in rats. Acta Pharm.2016;66(2): 233-244.
    118. Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E et al. Centella asiatica in dermatology: an overview. Phytother Res. 2014; 28(8):1117-24.
    119. Shapouri-Moghaddam A, Mohammadian S, Vazini H et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018; 233(9):6425-6440.
    120. Aitcheson SM, Francesca D. Frentiu FD, Hurn SE et al. Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds. Molecules. 2021; 26(16): 4917. Results

    121. National Diabetes Statistics Report, 2022.
    122. Gu K, Cowie CC, Harris MI. Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971-1993. Diabetes Care. 1998; 21(7):1138-45.
    123. Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence. N Engl J Med. 2017; 376(24):2367-2375.
    124. Armstrong DG, Swerdlow MA, Armstrong, AA et al. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J Foot Ankle Res. 2020; 13(1):16.
    125. Shapouri-Moghaddam A, Mohammadian S, Vazini H et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018; 233(9):6425-6440.
    126. Tarnuzzer RW & Schultz GS. Biochemical analysis of acute and chronic wound environments. Wound Repair Regen. 1996; 4(3):321-5
    127. Moganti K, Feng Li, Schmuttermaier C et al. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages. Immunobiology. 2017; 222(10):952-959.
    128. Mirza RE, Fang M, Weinheimer-Haus EM et al. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes. 2014; 63(3):1103-14.
    129. Aitcheson SM, Frentiu FD, Hurn SE et al. Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds. Molecules. 2021; 26(16): 4917.
    130. Schaper NC, van Netten JJ, Apelqvist J et al. IWGDF Guidelines on the prevention and management of diabetic foot disease 2019.
    131. Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci 2018; 1411(1):153-165.
    132. Hart CE, Loewen-Rodriguez A, Lessem JM. Dermagraft: Use in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle) 2012; 1(3):138-141
    133. Jalilian M, Ahmadi Sarbarzeh P & Oubari, S. Factors Related to Severity of Diabetic Foot Ulcer: A Systematic Review. Diabetes Metab Syndr Obes. 2020; 13: 1835–1842.
    134. YY, Lin CW, Cheng NC et al. Effect of a novel macrophage-regulating drug on wound healing in patients with diabetic foot ulcers a randomized clinical trial. JAMA Netw Open 2021; 4(9).
    135. Oneness Biotech Co., Ltd. Investor Presentation. 39th Annual J.P Morgan Healthcare Conference 2021. https://www.onenessbio.com/download/Shareholder/ShareholderMeeting/2021/JP/JP-Conference-EN.pdf
    136. Oneness Biotech Co., Ltd. Package insert of Fespixon® Cream (ON101) under Taiwan FDA Approval number: 060827. Taiwan FDA Certification 2021.
    137. Marston WA, Hanft J, Norwood P et. al. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 2003; 26(6):1701-5.
    138. Supp DM & Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol 2005; 23:403-412.
    139. Pammer J, Weninger W & Tschachler E. Human Keratinocytes Express Cellular Prion-Related Protein in Vitro and during Inflammatory Skin Diseases. Am J Pathol. 1998; 153(5): 1353–1358.
    140. Harris PA, di Francesco F, Barisoni D et L. Use of hyaluronic acid and cultured autologous keratinocytes and fibroblasts in extensive burns. Lancet. 1999; 2;353(9146):35-6
    141. Moganti K, Feng Li, Schmuttermaier C et al. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages. Immunobiology. 2017; 222(10):952-959.
    142. Christman AL, Selvin E, Margolis DJ et al. Hemoglobin A1c predicts healing rate in diabetic wounds. J Invest Dermatol 2011; 131(10):2121-7.
    143. Mirza RE, Fang M, Weinheimer-Haus EM et al. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes. 2014; 63(3):1103-14.
    144. Kuo YS, Chien HF, Lu W. Plectranthus amboinicus and Centella asiatica cream for the treatment of diabetic foot ulcers. Evid Based Complement Alternat Med. 2012; 2012: 418679.
    145. Arumugam G, Swamy MK, Sinniah UR. Plectranthus amboinicus (Lour) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules. 2016;21(4):369.
    146. Leu WJ, Chen JC, Guh JH. Extract from Plectranthus amboinicus inhibit maturation and release of interleukin 1β through inhibition of NF-κB nuclear translocation and NLRP3 inflammasome activation. Front Pharmacol. 2019; 10:573
    147. Sawatdee S, Choo chuay K, Chanthorn W, Srichana T. Evaluation of the topical spray containing Centella asiatica extract and its efficacy on excision wounds in rats. Acta Pharm.2016;66(2): 233-244.
    148. Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E et al. Centella asiatica in dermatology: an overview. Phytother Res. 2014; 28(8):1117-24.
    149. Lin CW, Chen CC, Huang WY et al. Restoring Prohealing/Remodeling-Associated M2a/c Macrophages Using ON101 Accelerates Diabetic Wound Healing. JID Innov. 2022; 2(5):100138
    150. Melkun ET & Few JW. The use of biosynthetic skin substitute (Biobrane) for
    axillary reconstruction after surgical excision for hidradenitis suppurativa.
    Plast Reconstr Surg. 2005; 115(5):1385-8.
    151. Alrubaiy L & Al-Rubaiy KK. Skin Substitutes: A Brief Review of Types and Clinical Applications. Oman Med J. 2009; 24(1):4-6
    152. O'Leary R, Arrowsmith M, Wood EJ. Characterization of the living skin equivalent as a model of cutaneous re-epithelialization. Cell Biochem Funct. 2002; 20(2):129-41
    153. Gail Naughton, Jonathan Mansbridge, Gary Gentzkow. A Metabolically Active Human Dermal Replacement for the Treatment of Diabetic Foot Ulcers. Artificial Organs; 1997 21(11):1203-1210.
    154. S Syafril. Pathophysiology diabetic foot ulcer. 2018 IOP Conf. Ser.: Earth Environ. Sci. 125 012161
    155. Bandyk DF. The diabetic foot: Pathophysiology, evaluation, and treatment. Semin Vasc Surg. 2018;31(2-4):43-48.
    156. Monteiro-Soares M, Russell D, Boyko EJ, Jeffcoate W et al. Guidelines on the classification of diabetic foot ulcers (IWGDF 2019). Diabetes Metab Res Rev. 2020;36 Suppl 1:e3273.
    157. Caetano AP, Conde Vasco I, Veloso Gomes F, Costa NV et al. Successful Revascularization has a Significant Impact on Limb Salvage Rate and Wound Healing for Patients with Diabetic Foot Ulcers: Single-Centre Retrospective Analysis with a Multidisciplinary Approach. Cardiovasc Intervent Radiol. 2020; 43(10):1449-1459.
    158. Guidance for Industry Chronic Cutaneous Ulcer and Burn Wounds - Developing Products for Treatment. 2006 June by US FDA
    159. Warriner RA 3rd, Snyder RJ, Cardinal MH. Differentiating diabetic foot ulcers that are unlikely to heal by 12 weeks following achieving 50% percent area reduction at 4 weeks. Int Wound J. 2011; 8(6): 632–637.
    160. Sood A, Granick MS, Tomaselli NL. Wound Dressings and Comparative Effectiveness Data. Adv Wound Care (New Rochelle). 2014; 3(8):511-529
    161. Dabiri G, Damstetter E, Phillips TJ. Choosing a Wound Dressing Based on Common Wound Characteristics. Adv Wound Care (New Rochelle). 2016; 5(1): 32–41.
    162. Frykberg RG, Banks J. Challenges in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle). 2015;4(9):560-582
    163. Eleftheriadou I, Samakidou G, Tentolouris A, Papanas N et al. Nonpharmacological Management of Diabetic Foot Ulcers: An Update. Int J Low Extrem Wounds. 2021;20(3):188-197
    164. Richard JL, Parer-Richard C, Daures JP, et al. Effect of topical basic fibroblast growth factor on the healing of chronic diabetic neuropathic ulcer of the foot. A pilot, randomized, double-blind, placebo-controlled study. Diabetes Care. 1995; 18(1):64-9
    165. Olympus Biotech Corporation. The TRAfermin in Neuropathic Diabetic Foot Ulcer Study - Northern Europe The TRANS-North Study - Study Results. [Accessed August 16, 2017]; ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/results/NCT01217476?term=bFGF+diabetes&sect=X01256.
    166. Hanft JR, Pollak RA, Barbul A et al.: Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. J Wound Care. 2008, 17:30-2, 34-7. 10.12968/jowc.2008.17.1.27917
    167. Cruciani M, Lipsky BA, Mengoli C, de Lalla F. Granulocyte-colony stimulating factors as adjunctive therapy for diabetic foot infections. Cochrane Database Syst Rev. 2009;(3):CD006810.
    168. Dahlén AD, Dashi G, Maslov I et al. Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Front Pharmacol. 2022; 12:807548.

    下載圖示 校內:2025-01-11公開
    校外:2025-01-11公開
    QR CODE