簡易檢索 / 詳目顯示

研究生: 楊帝威
Yang, Dee-Way
論文名稱: 以電泳沉積法製備YSZ薄膜之研究
Preparation of YSZ Thin Film by Electrophoretic Deposition Method
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 101
中文關鍵詞: 燃料電池電泳沉積法
外文關鍵詞: electrophoretic deposition, YSZ
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於國際間能源供給吃緊,石油原物料價格持續攀升,替代性能源議題再度受到重視,然而在眾多替代性能源議題中,又以固態氧化物燃料電池(Solid Oxide Fuel Cells-SOFCs)最受矚目,其原因為一般替代性能源只能應用於耗電量較低之產品應用,而固態氧化物燃料電池有多樣化的發電潛力,因此目前全球在此領域投入相當多人力及資源,期望能夠更早實現完全取代石油之新能源願景。
    早期固態氧化物燃料電池設計上,採用以厚膜式釔安定氧化鋯固態電解質(750 μm)作為支撐電池之基材,在其兩側分別塗佈薄層陰陽極,此厚膜電解質型固態氧化物燃料電池為使電解質層具有足夠之離子導電度,故須在高溫(900~1000℃)操作,然而高操作溫度會造成材料及週邊設備之選擇性受限、電極產生燒結現象、電極與電解質間發生反應、及運轉週期產生之熱應力等問題,近年來SOFC之發展趨勢多朝降低操作溫度之方向發展,主要降低SOFC操作溫度的方法有二:一是研發具更高離子導電率之電解質材料,以取代目前具有優良之高溫穩定性及機械強度之釔安定氧化鋯,二是利用薄膜製程製備固態電解質薄膜以降低電解質層電阻。
    本研究中,以陽極為基材並採用電泳沉積法(Electrophoretic deposition-EPD)將電解質層薄膜以製備固態氧化物燃料電池。電泳沉積法具有製程簡易、設備成本低、產品外型限制低及適合商業化大量生產等優點。本研究藉由不同碘電解質添加量,改變電泳懸浮液導電度及電泳懸浮粒子之列塔電位。觀察懸浮液中,懸浮粒子之穩定性,在碘添加量為0.6 g/L,電泳懸浮液具有最佳被覆效率。且加上不同外加電壓及不同導電率基材做為變數,探討電泳薄膜沉積之行為。最後再將研究數據配合電泳動力學方程式計算,得出電泳動力學參數(K),再以電泳動力學參數之變化對照實驗之參數改變量,確認本研究之理論合理性、正確性。本研究以導電陽極材料(NiO-YSZ)為基材,並利用電泳沉積法在陽極基材上沉積厚度約30 μm之YSZ電解質薄膜,電泳法沉積之薄膜再經過1400℃燒結2h後得到一約20 μm且完全緻密之電解質薄膜,並利用網印方式在其上塗佈陰極材料(La0.8Sr0.2MnO3)形成一完整之燃料電池結構(陽極/電解質/陰極) 。分別在600、700、800℃下,對此固態氧化物燃料電池進行電池測試,分別可得到0.21 W/cm2、0.65 W/cm2及1.12 W/cm2之電池功率。

    Due to its efficiency, and potentially low cost, solid oxide fuel cells (SOFCs) have been one of the most important energy devices for power generation.
    Traditionally, it’s common to apply the thick yittria-stablized zirconia (YSZ) solid state electrolyte (about 750 μm) as the support of the cells and follow by the deposition of thin layers as the anode and cathode. The working temperature of the cell using thick electrolyte SOFCs is at about 900~1000℃ in order to obtain the higher ion conductivity. But the high working temperature would limit the limitations of the materials used for SOFCs, due to the sintering of high surface area electrodes, the interaction between electrode and electrolyte, In order to reduce the operating temperature of SOFCs, two methods may used to solve the problem:
    1. Developing the electrolyte material with higher ion conductivity, to replace YSZ.
    2. Reducing the ohmic resistance using thin-film electrolyte.
    In this study, the electrophoretic deposition (EPD) was adopted to fabricate the thin-film the electrolyte of the SOFCs. The EPD is a simple process, with low cost, few limitations of the shape, and is suitable for mass-production. In this study, the success of EPD process is highly dependent on the stability of colloidal suspension. Therefore the iodine was added to enhance the conductivity and zeta potential of suspension. Then the applied voltage and current on the morphology of deposited YSZ thin film were examined by SEM. The electrically conducting anode was used as the substrate, depositing YSZ electrolyte thin film layer. About 30 μm YSZ electrolyte was deposited on anode substrate by EPD. Following by sintering at 1400℃ for 2 hours, then, the cathode layer was applied by screen printing upon the dense electrolyte. After a single cell was assembled the polarization rests were conducted at 600, 700, 800℃. The resulting power density is 0.21, 0.65, 1.12 W/cm2, respectively. Such a high power density indicates that EPD process is a feasible and cost-effective method for the fabrication of electrode-supported thin film SOFCs.

    總目錄 中文摘要 I 英文摘要 III 致謝V 總目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1燃料電池簡介1 1-2固態氧化物燃料電池2 1-3研究動機及目的4 第二章 理論基礎與文獻回顧 8 2-1-1 原理8 2-1-2 燃料電池之優點及應用8 2-1-3 燃料電池的分類11 2-2 固態氧化物燃料電池11 2-2-1 固態氧化物燃料電池之結構14 2-2-2 固態氧化物燃料電池之反應14 2-3 電動力現象的基本理論16 2-4 膠體表面荷電原理 19 2-4-1 膠體19 2-4-2 膠體顆粒表面電荷來源19 2-5 電雙層理論20 2-6電泳懸浮液的穩定性25 2-7電泳沉積之原理 27 2-7-1電泳沉積之方式27 2-7-2電泳懸浮液系統種類27 2-7-3 電泳沉積法之優點與應用 28 第三章 實驗方法與步驟29 3-1實驗方法及步驟流程29 3-2 導電率之量測30 3-3 電泳基材(NiO-YSZ)之製備 30 3-4-1 電泳懸浮液之配製30 3-4-2 Zeta 電位的量測 30 3-5 電泳沉積YSZ薄膜 30 3-6 燒結曲線之實驗 31 3-7 電泳釔安定氧化鋯初鍍膜之燒結31 3-8 氫氣氣氛下NiO-YSZ之還原 31 3-9 SEM之準備31 3-10 燃料電池之測試 32 第四章 結果與討論 36 4-1碘電解質(I2)添加量對於電泳懸浮液導電度及YSZ懸浮粒子表面列塔電位之影響 36 4-2碘電解質(I2)添加量對於電泳懸浮液導電度及YSZ懸浮粒子表面ζ電位之影響38 4-2-1碘電解質(I2)添加量對於YSZ電泳溶液導電度之影響 38 4-2-2碘電解質添加量對於YSZ顆粒表面ζ電位(Zeta potential)值之影響40 4-3電泳參數(外加電壓、外加電流、碘電解質添加量、電泳基材導電率)對8YSZ顆粒電泳沉積行為之影響 42 4-3-1 外加電壓與外加電流對8YSZ顆粒電泳沉積行為之影響 42 4-3-2外加電流對8YSZ顆粒電泳沉積行為之影響53 4-3-3 碘電解質添加量對於8YSZ薄膜電泳沉積行為之影響 55 4-4 電泳沉積YSZ薄膜之動力學探討 59 4-4-1 定電流之電泳沉積行為 59 4-4-2 定電壓之電泳沉積 67 4-5 電泳溫度對定電流系統及定電壓系統之影響73 4-5-1 電泳基材面積與外加電場強度對電泳溫度效應之影響 76 4-6 YSZ薄膜之顯微結構觀察79 4-6-1 燒結後YSZ薄膜表面及橫截面之顯微結構觀察 79 4-6-2 控制電泳溶液揮發速率之YSZ表面型態 81 4-6-3 外加電壓對於YSZ薄膜表面型態之影響 81 4-6-4 NiO-YSZ基材與YSZ薄膜還原後之顯微型態比較91 4-7 固態氧化物燃料電性量測93 第五章 結論 96 參考文獻 98 圖目錄 Table 1-1The differences of various Fuel Cells  6 Table 2-1 The differences between First cell、Second cell and Fuel Cell 9 Table 2-2 The differences of various Fuel Cells  13 Table 4-1 The various conductivities of NiO  61 Table 4-2 The various roughness of polished NiO(I) -YSZ substrates 87 表目錄 Fig. 1-1 The SOFC illustration of oxygen-ion conductor7 Fig. 1-2 The SOFC illustration of hydrogen-ion conductor7 Fig. 2-1The simple illustration of Fuel Cell9 Fig. 2-2 The reaction illustration of various Fuel Cells 12 Fig. 2-3 The reaction illustration of Solid Oxide Fuel Cell15 Fig. 2-4 The electron distribution illustration (a)the uniform electron distribution (b)the effected electron distribution by the applied electric field.  18 Fig. 2-5 The illustrations of electric dynamic phenomenon (a) electrophoretic (b) electroosmosis (c) streaming potential and (d) sedimentation potential 18 Fig. 2-6 The illustration of Helmholtz model 23 Fig. 2-7 The illustration of Gouy-Chapman model23 Fig. 2-8 The distribution illustration of electric double layer and interface electric potential 24 Fig. 2-9 The disperse illustration of colloidparticle (a) electrostatic repulsion (b)sterichindrance (c)electrosteric effect 26 Fig. 3-1 The illustration of experimental procedures 29 Fig. 3-2 The instrument illustration of measuring conductivity 33 Fig. 3-3 The instrument illustration of EPD34 Fig. 3-4 The Fuel Cells testing instrument illustration  35 Fig. 4-1 The distribution of the YSZ particles in the organic solvent  37 Fig. 4-2The suspension conductivity as a function of the iodine concentration39 Fig. 4-3 The YSZ zeta potential as a function of the iodine concentration  41 Fig. 4-4 The electrophoretic current as a function of deposition time with various applied voltages 45 Fig. 4-5 The charged passed as a function of applied voltage 46 Fig. 4-6 The total electric resistance between the electrodes as a function of deposition time with various applied voltage 47 Fig. 4-7 The electrophoretic current as a function of deposition time with various iodine-concentrations  48 Fig. 4-8 The electrophoretic current as a function of deposition time with various substrate-conductivities 49 Fig. 4-9 The deposition weight and deposition thickness as a function of applied voltage at constant deposition time  50 Fig. 4-10 The YSZ roughness as a function of applied voltage 51 Fig. 4-11 The deposition weight as a function of applied current density at constant deposition time 52 Fig.4-12 The deposition weight as a function of iodine concentration at constant deposition time, constant applied voltage (40 V) and mixed the NiO-YSZ substrate  54 Fig. 4-13 The illustration of electric repulsion obstructed the YSZ particles deposition between the surplus hydrogen ion and charged YSZ particles  56 Fig. 4-14 The surplus hydrogen ion occupied the deposited location obstruct the charged YSZ particles deposition 57 Fig. 4-15 The deposition weight as a function of deposition time with constant iodine concentration and various substrates (a) NiO(I)-YSZ (b) NiO(II)-YSZ (c) NiO(III)-YSZ in the constant current electrophoretic deposition  58 Fig. 4-16 The kinetic parameter as a function of deposition time with constant iodine concentration and various substrate conductivities in the constant current electrophoretic deposition 62 Fig. 4-17 The deposition weight as a function of deposition time with constant substrate component and various iodine concentrations (a) I2=0.6 g/l(b) I2=0.4 g/l (c) I2=0.2 g/l in the constant current electrophoretic deposition  64 Fig. 4-18 The kinetic parameter as a function of deposition time with constant substrate component and various iodine concentrations in the constant current electrophoretic deposition 65 Fig. 4-19 The deposition weight as a function of deposition time with constant iodine concentration and various substrates (a) NiO(I)-YSZ (b) NiO(II)-YSZ (c) NiO(III)-YSZ in the constant voltage electrophoretic deposition  68 Fig. 4-20 The kinetic parameter as a function of deposition time with constant iodine concentration and various substrates in the constant voltage electrophoretic deposition 68 Fig. 4-21 The deposition weight as a function of deposition time with constant substrate component and various iodine concentrations (a) I2=0.6 g/l(b) I2=0.4 g/l (c) I2=0.2 g/l in the constant current electrophoretic deposition  70 Fig. 4-22 The kinetic parameter as a function of deposition time with constant substrate component and various iodine concentrations in the constant voltage electrophoretic deposition 71 Fig.4-23 The deposited yield as a function of deposited temperature with constant current and (a) constant iodine concentration (0.6 g/l) in the suspension (b) constant conductivity of the substrate [NiO(I)-YSZ] 72 Fig.4-24 The deposited yield as a function of deposited temperature with constant voltage and (a) constant iodine concentration (0.6 g/l) in the suspension (b) constant conductivity of the substrate [NiO(I)-YSZ] 74 Fig.4-25 The deposited yield as a function of deposited temperature with constant voltage and different substrate area  75 Fig.4-26 The deposited yield as a function of deposited temperature with constant voltage and different applied voltage 77 Fig. 4-27 The sintering curve of YSZ bulk80 Fig. 4-28 The scanning electron microscopy of YSZ film (a) non-sintered, top view (b) non-sintered, cross-section and after sintering at (c) 1000 ℃, top view (d) 1200 ℃, top view (e) 1400 ℃, top view (f) 1400 ℃, cross-section for 2 h  82 Fig. 4-29 The scanning electron microscopy of YSZ film after sintering at 1400℃ for 2 h, and control the solvent evaporating velocity (a)0.5 ml/h(b) 1 ml/h (c) 1.5 ml/h (d) 2 ml/h (e) 2.5 ml/h (f) 3 ml/h 83 Fig. 4-30 The scanning electron microscopy of YSZ green film with various applied voltages (a) 30 V, (b) 90 V, (c) 150 V 85 Fig. 4-31 The scanning electron microscopy of YSZ film after sintering at 1100℃ for 2 hours with various applied voltages(a) 30 V (b) 90 V (c) 150 V86 Fig. 4-32 The scanning electron microscopy of YSZ film after sintering at 1200℃ for 2 hours with various roughness of substrates (a) A (b) B (c) C (d) D (e) E  89 Fig. 4-33The scanning electron microscopy of YSZ film after sintering at 1200℃ for 2 hours with various volume ratios of YSZ and NiO substrate (a) 30:40 (b) 40:60 (c) 50:50 (d) 60:40 (e) 70:30 (f) 80:2090 Fig. 4-34 The scanning electron microscopy of YSZ film after reducing92 Fig. 35 The YSZ thin film and bulk electric resistances as a function of temperature 94 Fig. 36 The power densities and voltages as a function of current densities at different temperature℃95

    [1]李邦哲譯, ”燃料電池”, 台灣經濟研究月刊,pp 72-74
    [2]呂承頤,“燃料電池在太空之應用,”能源、資源與環境,vol.3, No.1 pp2-6, 1990.
    [3] S.C. Singhal, “Science and Technology of Solid Oxide Fuel Cells,” MRS Bulletin, March 2000.
    [4] N.Q. Minh, “Ceramic Fuel Cell,” J.Am.Ceram. Soc.,76 [3] pp563-588, 1993.
    [4]A.O.Isenberg, in: J.D.E. McIntyre, S. Srinsvan, F.G. Will (Eds), Proc.Symp.Electrode Materials Processes for Energy Coversion and Storage, Vol. 77, Electrochemical Society, Pennington, NJ, p.572, 1977.
    [5] U. Pal, S.C. Singhal, J. Electrochem. Soc. 137, p. 293, 1990.
    [6] J. P. Dekker, V.E.J van Dieten, J. Schoonman, Solid State Ionics 47, p. 331, 1991.
    [7] A.C. Jones, Chem. Vap. Deposition 4, p. 169, 1998.
    [8] K.W. Chour, H. Chen, R. Xu, Thin Solid Films 304 , p. 106, 1997.
    [9] K. Honegger, E. Batawi, C. Sprecher, and R. Diethelm, in U. Stimming, S. C. Singhal, H. Tagawa, W.Lehnert (Eds.), Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells, p. 321, 1997.
    [10] T. Nakayama, H. Tajiri, K. Hiwatashi, H. NishiYama, S. Kojima, M. Aizawa, K. Eguchi, and H. Tagawa, W.Lehnert (Eds.), Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells, p. 187, 1997.
    [11] M. Cassidy, K. Kendall, C. Lindsay, in: B. Thorstensen(Ed.), Proc. 2nd European Solid Oxide Fuel Cell Forum, European SOFC Forum, Oberrohrdorf, Switzerland, p. 667, 1996.
    [12] J.Will,“Porous support structures and sintered thin film electrolytes for solid oxide fuel cells”, Diss. ETH No. 12876, ETH, Zurich, 1998.
    [13]Z. Peng and M. Liu, “Preparation of Dense Platinum-Yttria Stabilized Zirconia and Yttria Stabilized Zirconia Films on Porous La0.9Sr0.1MnO3 (LSM) Substrates,” J. Am. Ceram. Soc., 84 [2], pp. 283-88, 2001.
    [14]P. Sarkar and P. S. Nicholson, “Electrophoretic Deposition (EPD): Mechanism, Kinetics, and Application to Ceramic,” J. Am. Ceram. Soc., 79 , pp. 1987-2002, 1996.
    [15]T. Ishihara. K. Sato, and Y. Takita, “Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells.” J. Am. Ceram. Soc. 79 [4], pp.913-19, 1996.
    [16] T. Ishihara, K. Shimose, T. Kudo, H. Nishiguchi, T. Akbay, and Y. Takita, “Preparation of Yttria-Stabilized Zirconia Thin Film on Strontium-Doped LaMnO3 Cathode Substrates via Electrophoretic Deposition For Solid Oxide Fuel Cells.” J. Am. Ceram. Soc. 83 [8], pp.1921-27, 2000.
    [17]F. Chen, M. Liu, “Preparation of yttria-stabilized zirconia thin film on La0.85Sr0.15MnO3 and LSM-YSZ substrates using an electrophoretic deposition (EPD) process.” J. Eur. Ceram. Soc., 21, pp.127-134, 2001.
    [18]K. Kobayashi, I. Takahashi, M. Shiono, M. Dokiya “ Supported Zr(Sc)O2 SOFCs for reduced temperature prepared by electrophoretic deposition.”, Solid State Ion. pp,152-153, pp,591-596, 2002.
    [19]K. Kordesch and G. Simader, in:Fuel cells and their applications. pp51-166 .
    [20]S.C. Singhal, “Status of Solid Oxide Fuel Cell Technology,”
    [21]D.H Archer, J.J. Alles, W.A. English, L. EliKan, E.F. Sverdrup, R.L.Zahradnik, in:Westinghouse Solid-Electrolyte Fuel Cell, Fuel Cell Systems, pp332-342.
    [22]張有義,郭蘭生編著Duncan J. Shaw原著, ”膠體介面化學入門(Introduction to colloid and surface chemistry)”, 高立圖書有限公司。
    [23]D. Myers, Surfaces, Interfaces, and Colloids : Principles and Applications , 2nd ed., Wiley-VCH, New York, p. 47, 92, 232, 1999.
    [24]萬其超 編譯, ”電化學之原理與應用“, 徐式基金會出版。
    [25]O. O. Van der Biest and L.J. Vandeperre, “Electrophoretic deposition of materials”, Annu. Rev. Mater. Sci., 29, p. 327, 1999.
    [26]S.N. Heavens, Electrophoretic deposition as a processing route forceramics, in Advanced Ceramic Process and Technology, Ed. By J.G.P.Binner, Vol. 1, Noyes Publications, p. 255, 1990.
    [27]E. du Bois-Reymond, H. von Helmholtz, Gedächtnissrede Leipzig, 1897.
    [28]R.W. Powers, “The Electrphoretic Forming of Beta-Alumina Ceramic,” J. Electrochem. Soc., 122, p.490, 1975.
    [29]L. L. Schramm, Suspensions: Fundamentals and Applications in the Petroleum Industry, Am. Chem. Soc., Washington, 251, p. 3, 1996.
    [30]M. N. Rahaman, Science of Colloidal Processing, in Ceramic Processing and Sintering, Ed. by M. N. Rahaman, Marcel Dekker, New York, p. 146, 1995.
    [31]陳正德,”碳化矽的電泳沉積現象探討”,國立中央大學機械工程系碩士論文,p. 19 (2002)。
    [32]P. Sarkar and P. S. Nicholson, “Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics”, J. Am. Ceram. Soc., 79, p1987, 1996.
    [33]王元聰,”氧化鋁模板輔助氧化鋅奈米陣列成長特性”,國立成功大學材料工程系博士論文, 2004。
    [34]翁鋕榮,” 電泳沉積法在釔安定氧化鋯薄膜化之研究”, 國立成功大學材料工程系碩士論文, 2003。
    [35] S. Okumura, , T. Tsukamoto, and N. Koura, J. Appl. Phys., p.4182 1993.
    [36]R.J. HUNTER, “ZETA POTENTIAL IN COLLOID SCIENCE, ” pp,30-33, 1981.
    [37]Z. Zhang, Y. Huang, and Z. Jiang, Electrophoretic Deposition Forming of SiC-TZP Composites in nonaqueous Sol Media, J. Am. Ceram. Soc., 77 pp,1946-1949, 1994
    [38]P. Sarkar and P. S. Nicholson, Comment Electrophoretic Deposition Forming of SiC-TZP Composites in nonaqueous Sol Media, J. Am. Ceram. Soc., 78 pp,3165-3166, 1995
    [39]I. Zhitomirsky, Cathodic electrodepostion of ceramic and organoceramic materials. Fundamental aspects, Advances in Colloid and Interface Science, 97 pp279-317, 2002.
    [40]P.M. Biesheuvel, H. Verweij, J. Am. Ceram. Soc. 82 p1451, 1999.

    下載圖示 校內:2007-06-26公開
    校外:2009-06-26公開
    QR CODE