簡易檢索 / 詳目顯示

研究生: 洪辰宗
Hong, Chen-Tzung
論文名稱: 以酒石酸鹽法合成鋇鐵氧磁體(M=BaFe12O19)粉末過程中之幾個重要問題探討
The study of barium ferrites(M=BaFe12O19) synthesis during tartrates process
指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 47
中文關鍵詞: 鋇鐵氧磁體酒石酸鹽法pH值次微米
外文關鍵詞: barium ferrites, metal-tartrates method, pH value, submicrometer
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以酒石酸加入Ba2+、Fe3+離子水溶液中,獲得鋇鐵酒石酸鹽,經煆燒處理可製備微粒(<1μm)之鋇鐵氧磁體(M=BaFe12O19)粉末。本研究對1) 酒石酸與陽離子莫耳比例,2) 鋇鐵酒石酸鹽沈澱之生成溶液的pH值,二項變因對BaM相合成之影響作一探討。重要結果分列如下:
    1. BaFe12O19相的生成︰
    a) 選擇酒石酸/陽離子莫耳比例~1,產出之鋇鐵酒石酸鹽可於250℃分解形成微晶或非晶質鋇化合物與γ-Fe2O3的混合物。此混合物於 700℃反應生成BaFe12O19相,且不需經過BaFe2O4中間相。
    b) BaFe12O19相的生成應與γ-→α-Fe2O3相轉換過程有關。其反應生成溫度可低至400℃ (pH=7以及T/C=1.3系統)。生成途徑可由下式表示:
    Metal-tartrates γ-Fe2O3+鋇化合物 BaFe12O19。
    2. BaFe2O4相的生成︰
    生成機制是藉由BaCO3結晶相分別在450~550℃以及~600℃發生二階段分解後,再分別與γ-以及α-Fe2O3反應合成BaFe2O4,此相可殘留至高溫(T/C=1.3系統)。
    3. 單相BaFe12O19微粉的合成︰
    選擇酒石酸/陽離子莫耳比例~1,獲得鋇鐵酒石酸鹽並使其於250℃分解形成微晶或非晶質鋇化合物與γ-Fe2O3,則可於700℃,直接合成接近單相且微粒(<1μm)之BaM粉末。

    This study utilized the metal-tartrate method to synthesize submicrometered (<1μm) barium ferrite (M=BaFe12O19) powders. Two experimental factors that influence the ferrite formation: (1) the molar ratio of tartaric acid/ cation and (2) the pH value of solutions were examined. It is found that:
    1. BaFe12O19 formation: The Ba-Fe-tartrates obtained at molar ratio of tartaric acid/ cation (T/C) ~1 would transfer to a mixture of Ba-compound (unidentified amorphous or microcrystalline phases) + g-Fe2O3 at 250oC. The mixture then reacted to form BaFe12O19 at temperature >700℃. The BaFe2O4 phase as generally observed during synthesis of the ferrite using solid-state reaction did not occur.
    Formation of BaFe12O19 may relevant to g- to a- phase transformation of Fe2O3. The ferrite phase can be formed at temperature as low as 400℃ (selecting pH=7 and T/C=1.3 systems). The formation mechanism for BaFe12O19 formation is:
    Metal-tartrates g-Fe2O3 + Ba-compound BaFe12O19.
    2. BaFe2O4 formation: The decomposition of barium carbonate (BaCO3, witherite) that occurred at two temperature intervals 450~550oC and ~600oC, respectively can be the controlling factor for BaFe2O4 formation. The Ba2+ cation then reacted with Fe2O3 to form BaFe2O4 that behaved stably, persisting to higher temperatures.
    3.The synthesis of mono-phased BaFe12O19 powders then can be obtained using the organo-metallic system of T/C molar ratio ~ 1. Transferring the precipitate to a mixture of Ba-compounds and g-Fe2O3 at 250oC then a direct formation of BaFe12O19 powders can be obtained by calcinations of the mixture at ~700oC.

    摘要…………… …………………………………………………………………Ⅰ Abstract……… ……………………………………………………………Ⅱ 致謝……………… …………………………………………………….Ⅲ 表目錄……… ………………………………………………………………….Ⅶ 圖目錄…………….. …………………………………………………….Ⅷ 附錄……………... ……………………………………………………..Ⅹ 第一章 緒論…………………….……………………………………….1 1.1. 前言…………………………………… ……………………………….1 1.2. 研究目的…………………………….. ………………………………..3 第二章 理論基礎與前人研究…………………… ……………….4 2.1. 六方鐵氧磁體(Hexaferrites)之分類與構造………. ……………4 2.2. γ-→α-Fe2O3相轉換……………………………… ………………...7 2.2-1. 陽離子穩定γ-Fe2O3結構延遲相轉換溫度……….. ……….7 2.2-2. 臨界晶徑(Critical size)控制相轉換………....… ………………7 2.3. 鋇鐵氧磁體的合成方法與其生成機制……… …………………7 2.3-1. 固態反應法…………………………… ………………………….....7 2.3-2. 化學共沈法……………………… ………………………………...8 2.3-3. 其他合成法……………………… ………………………………...9 2.4. 有機金屬鹽法……………………... ………………………………….9 2.4-1. 酒石酸(Tartaric acid, C4H6O6) …… ……………………….12 2.4-2. 酒石酸與金屬陽離子之配位模式………………. ……………..12 第三章 實驗設計與方法………………………… ………………15 3.1. 實驗設計………………………………………. ……………….15 3.2. 實驗方法…………………………. ………………………………..15 3.2-1. 起始原料………………………………. ……………………15 3.2-2. 實驗步驟…………………………… ………………………….....15 3.2-3. 製備鋇鐵酒石酸鹽共沈粉末………………… ……………….15 3.2-4. 熱處理條件………………………….. …………………….17 3.3. 特性分析……………… ……………………………………………....17 3.3-1. 熱差質差分析儀(Differential Thermal Analysis/ Thermogravimetric Analysis)………………… ………………………...............17 3.3-2. X-ray繞射分析(X-ray Diffractometer)………… …………17 3.3-3. 高解析掃描電子顯微鏡(High Resolution Scanning Electron Microscope) & 穿透式電子顯微鏡(Transmission Electron Microscope)……………………..18 第四章 結果與討論…………… ………………………………….20 4.1. 酒石酸/陽離子莫耳比=1系統之現象觀察…………… …………..20 4.2. 酒石酸/陽離子莫耳比=1.3系統之現象觀察…… ……………….27 4.3. 調整pH值(pH=7)系統之現象觀察………………… ……………....30 4.4. 綜合討論……………………………………… ……………….34 4.4.1. 三系統共同現象之觀察……………… …………………………....34 4.4.1-1. 熱行為(DTA/TG)之觀察………… …………………………..34 4.3.1-2. 相成份(XRD)之觀察…………………… …………………....35 4.4.2. 改變酒石酸/陽離子莫耳比例系統之重要特徵……… ………....35 4.4.2-1. BaM相之合成過程不需經過BaFe2O4中間相……… ……....35 4.4.2-2. BaFe2O4相之生成與BaCO3結晶相的關係………… …….....35 4.4.3. 調整pH值系統之重要特徵………………… ………………….36 4.4.3-1. α-Fe2O3相的提早生成……………… ……………………...36 4.4.3-2. BaM相生成溫度之降低…………………… ………………....36 4.4.4. BaM相生成過程之重點觀察………………… ………………….36 第五章 結論……………………………………… …………………………38 參考文獻………………………………………………… …………………….39 附錄……………………………………………………… …………………….45

    1. H. Hibst, “Hexagonal ferrites from melts and aqueous solutions, magnetic recording materials”, Angew. Chem. Int. Ed. Engl., 21, 270-282, 1982.
    2. P. Campbell, Permanent Magnet Materials and Their Application, Cambridge University Press, Cambridge, 1994.
    3. S. Chikazumi and C. D. Graham, Jr., Physics of Ferromagnetism, 2nd ed., Oxford University Press Inc., New York, 1997.
    4. E. P. Wohlfarth, Ferromagnetic Materials: A Handbook on The Properties of Magnetically Ordered Substances, North-Holland Pub. Co., Amsterdam.New York.Oxford, 1982.
    5. Z. Haijun, L. Zhichao, M. Chengliang, Y. Xi, Z. Liangying, and W. Mingzhong, “Complex permittivity, permeability, and microwave absorption of Zn- and Ti- substituted barium ferrite by citrate sol-gel process”, Mater. Sci. Eng., B96, 289 -295, 2002.
    6. J. C. Corral-Huacuz and G. Mendoza-Suárez, “Preparation and magnetic properties of Ir-Co and La-Zn substituted barium ferrite powders obtained by sol- gel”, J. Magn. Magn. Mater., 242-245, 430-433, 2002.
    7. K. Haneda and H. Kojima, “Effect of milling on the intrinsic coercivity of barium ferrite powders”, J. Am. Ceram. Soc., 57 [2] 68-71, 1974.
    8. X. Liu, J. Wang, L. M. Gan, and S. C. Ng, “Improving the magnetic properties of hydrothermally synthesized barium ferrite”, J. Magn. Magn. Mater., 195, 452-459, 1999.
    9. L. Rezlescu, E. Rezlescu, P. D. Popa, and N. Rezlescu, “Fine barium hexaferrite powder prepared by the crystallization of glass”, J. Magn. Magn. Mater., 193, 288-290, 1999.
    10. H. Sakai, K. Hanawa, and K. Aoyagi, “Preparation and magnetic properties of barium ferrite fine particles by the coprecipitation salt-catalysis method”, IEEE Trans. Magn., 28 [6] 3355-3362, 1992.
    11. K. Higuchi, S. Takahashi, H. Itoh, and S. Naka, “Synthesis of barium hexaferrite for magnetic recording media using the KCl flux system”, J. Mater. Sci., 23, 588-592, 1988.
    12. K. Haneda, C. Miyakawa, and H. Kojima, “Preparation of high coercivity BaFe12O19”, J. Am. Ceram. Soc., 57 [8] 354-357, 1974.
    13. W. Roos, “Formation of chemically coprecipitated barium ferrite”, J. Am. Ceram. Soc., 63 [11-12] 601-603, 1980.
    14. S.R. Janasi, M. Emura, F.J.G. Landgraf, and D. Rodrigues, “The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders”, J. Magn. Magn. Mater., 238, 168-172, 2002.
    15. S. E. Jacobo, C. Domingo-Pascual, R. Rodriguez-Clemente, and M. A. Blesa, “Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation”, J. Mater. Sci., 32, 1025-1028, 1997.
    16. S. R. Janasi, D. Rodrigues, F. J. G. Landgraf, and M. Emura, “Magnetic properties of coprecipitation barium ferrite powders as a function of synthesis conditions”, IEEE Trans. Magn., 36 [5] 3327-3329, 2000.
    17. R. C. Pullar and A. K. Bhattacharya, “Crystallization of hexagonal M ferrites from a stoichiometric sol-gel precusor, without formation of the α-BaFe2O4 intermediate phase”, Mater. Letters, 57, 537-542, 2002.
    18. J. Huang, H. Zhuang, and W. Li, “Synthesis and characterization of nano cry- stalline BaFe12O19 powders by low temperature combustion”, Mater. Res. Bull., 38, 149-159, 2003.
    19. J. Huang, H. Zhuang, and W. Li, “Optimization of the microstructure of low-temperature combustion-synthesized barium ferrite powder”, J. Magn. Magn. Mater., 256, 390-395, 2003.
    20. S. Castro, M. Gayoso, J. Rivas, J. M. Greneche, J. Mira, and C. Rodríguez, “Structure and magnetic properties of barium hexaferrite nanostructured particles prepared by the combustion method”, J. Magn. Magn. Mater., 152, 61-69, 1996.
    21. T. Ogasawara and M.A.S. Oliveira, “Microstructure and hysteresis curves of the barium hexaferrite from coprecipitation by organic agent”, J. Magn. Magn. Mater., 217, 147-154, 2000.
    22. V.K. Sankaranarayanan, Q.A. Pankhurst, D.P.E. Dickson and C.E. Johnson, “Ultrafine particles of barium ferrite from a citrate precusor”, J. Magn. Magn. Mater., 120, 73-75, 1993.
    23. V.K. Sankaranarayanan, Q.A. Pankhurst, D.P.E. Dickson and C.E. Johnson, “An investigation of particle size effects in ultrafine barium ferrite”, J. Magn. Magn. Mater., 125, 199-208, 1993.
    24. A. Srivastava, P. Singh, V.G. Gunjikar and A.P.B. Sinha, “Study of the thermal decomposition of iron and barium citrates”, Thermochimica Acta, 86, 77-84, 1985.
    25. F. Licci and T. Bessagni, “Organic resin method for highly reactive and homogeneous hexaferrite powders”, IEEE Trans. Magn., 20 [5] 1639-1641, 1984.
    26. W. Zhong, W. Ding, Y. Jiang, N. Zhang, J. Zhang, Y. Du, and Q. Yan, “Preparation and magnetic properties of barium hexaferrite nanoparticles produced by the citrate process”, J. Am. Ceram. Soc., 80 [12] 3258-3262, 1997.
    27. W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan, and Y. Du, “Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique”, J. Magn. Magn. Mater., 168, 196-202, 1997.
    28. C. Sürig, K. A. Hempel, and D. Bonnenberg, “Formation and microwave ad- sorption of barium and strontium ferrite prepared by Sol-gel technique”, Appl. Phys. Lett., 63 [20] 2836-2838, 1993.
    29. C. Sürig, K. A. Hempel, and Ch. Sauer, “Influence of stoichiometry on hexaferrite structure”, J. Magn. Magn. Mater., 157&158, 268-269, 1996.
    30. M. Medarde, J. Rodríguez, M. Vallet, M. Pernet, X. Obradors and J. Pannetier, “Synthesis of BaFe12O19 small particles: a neutron thermodiffractometry study”, Physica B, 156&157, 36-39, 1989.
    31. R. Ardiaca, R. Ramos, A. Isalgué, J. Rodriguez, X. Obradors, M. Pernet, and M. Vallet, “Hexagonal ferrite particles for perpendicular recording prepared by the precursor method”, IEEE Trans. Magn., 23 [1] 22-24, 1987.
    32. 高小娟,反應後溶液pH調整對酒石酸鹽法合成Li-Ferrite之熱反應特性分析,國立成功大學資源工程研究所碩士論文,2001。
    33. 陳威倩,以γ-→α-Fe2O3相變機制製作微粒α-Fe2O3,國立成功大學資源工程研究所碩士論文,2001。
    34. J. Smit and H. P. J. Wijn, Ferrites, 1st ed., John-Wiley & Son, New York, 1959.
    35. 剛本祥一、近桂一郎,磁性陶瓷(Magnetic Materials Ceramics),復漢出版社,1998。
    36. 楊建民,以酒石酸鹽法低溫合成超微粒鋅鐵氧磁體粉末之反應生成機構研究,國立成功大學資源工程研究所博士論文,2001。
    37. R. M. Cornell and U. Schwertmann, The Iron Oxides, Structure, Properties, Reactions, Occurrence and Uses, VCH, Weinheim, 1996.
    38. Y. Nakatani and M. Matsuoka, “Some electrical properties of γ-Fe2O3 ceramics”, Jpn. J. Appl. Phys., 22 [2] 233-239, 1983.
    39. C. Barriga, V. Barron, R. Gancedo, M. Gracia, J. Morales, J. L. Tirado, and J. Torrent, “Lithium ferrite formation by precipitation from Fe(Ⅲ) solutions”, J. Solid State Chem., 77, 132-140, 1988.
    40. P. Ayyub, M. Multani, M. Barma, V R Palkar, and R Vijayaraghavan, “Size- induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3”, J. Phys. C: Solid State Phys., 21, 2229-2245, 1988.
    41. M. S. Multani and P. Ayyub, “Size and pressure driven phase transitions”, Conden. Matt. News, 1 [1] 25-27, 1991.
    42. H. P. Steier, J. Requena, and J. S. Moya, “Transmission electron microscopy study of barium hexaferrite formation from carbonate and hematite”, J. Mater. Res., 14 [9] 3647-3652, 1999.
    43. A. G. Sadler, “The formation of barium iron oxide BaFe12O19”, J. Can. Ceram. Soc., 34, 155-162, 1965.
    44. G. Benito, M. P. Morales, J. Requena, V. Raposo, M. Vázquez, and J. S. Moya, “Barium hexaferrite monodispersed nanoparticles prepared by the ceramic method”, J. Magn. Magn. Mater., 234, 65-72, 2001.
    45. David W. Johnson, Jr., “Nonconventional powder preparation techniques”, Ceram. Bull., 60 [2] 221-225, 1981.
    46. J. D. P. Jesus, Comprehensive Coordination Chemistry: The synthesis, Reactions, Properties & Applications of Coordination Compounds, Pergamon Press, New York, 1987, p. 461.
    47. 許鐘榮,中國大百科全書-化學(Ⅰ),錦繡出版,台灣台北,585,1994。
    48. E. P. Tapscott, R. L. Belford and I. C. Paul, “Stereochemistry of tartrato(4-)-bridged binuclear complexes”, Coord. Chem. Rev., 4, 323-359, 1969.
    49. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Publishing Co. Inc., London, 1978.
    50. Qiwu Zhang and Fumio Saito, “Mechanochemical synthesis of lanthanum alu- minate by grinding lanthanum oxide with transition alumina”, J. Am. Ceram. Soc., 83 [2] 439-441, 2000.
    51. 卓宛君,以酒石酸鹽法合成奈米微粒Li-Ferrite之機制探討,國立成功大學資源工程研究所碩士論文,2000。

    下載圖示 校內:2004-08-18公開
    校外:2004-08-18公開
    QR CODE