| 研究生: |
余必裕 Yu, Bi-Yu |
|---|---|
| 論文名稱: |
工業電鍍廢水有害離子的化學處理評估 Evaluation of Chemical Treatments on Toxic Ions from Industrial Electroplating Wastewater |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 工業電鍍廢水化學處理法 、鋅離子 、鎳離子 、鎘離子 、硼離子 |
| 外文關鍵詞: | Chemical treatments on industrial electroplating wastewater, zinc ion, nickel ion, cadmium ion, boron ion |
| 相關次數: | 點閱:121 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
工業上針對鹼性含鋅鎳離子電鍍廢水一般所使用的方法為:磷酸銨鎂共沉澱法、折點加氯法、化學沉澱法、重捕劑螯合沉澱法,本研究針對上述方法中的磷酸銨鎂共沉澱法、折點加氯法與重捕劑螯合沉澱法進行優化。磷酸銨鎂共沉澱法優化磷酸鈉跟氯化鎂的加藥量,並調整pH值和額外添加硫化鈉來幫助鋅鎳離子沉澱,在優化過程中磷酸鈉與氯化鎂加藥量過大跟產生汙泥過多的問題使這個方法並不適合實際應用在工業處理上。折點加氯法以次氯酸鈉加藥量做優化並額外添加硫化鈉幫助鋅鎳離子沉澱,然而此方法在優化過程中存在次氯酸鈉加藥量過多的問題,並且在處理的過程中會產生氣體,因此在實際應用上會面臨昂貴的加藥成本與氣體產生導致廢水噴濺的問題。重捕劑螯合沉澱法優化則選用二甲基二硫代氨基甲酸鈉(DTC)作為重補劑搭配硫化鈉幫助鋅鎳離子沉澱,並同時調整pH值,發現對於500毫升鹼性含鋅鎳離子電鍍廢水以二甲基二硫代氨基甲酸鈉(DTC)沉澱法處理的最佳條件為二甲基二硫代氨基甲酸鈉(DTC)和硫化鈉混合配置藥劑#2添加18毫升,並在pH值中性條件下能將廢水鎳離子89 ppm與鋅離子390 ppm降至鎳離子0.00603 ppm與鋅離子1.00 ppm,符合鎳離子1 ppm以下、鋅離子5 ppm以下的排放標準。
工業上針對含鎘離子廢水一般所使用的方法為:化學沉澱法、吸附法、重捕劑螯合法,本研究針對含鎘離子廢水優化氫氧化鎂吸附法與重捕劑螯合法。氫氧化鎂吸附法優化氫氧化鈉、氫氧化鎂、氫氧化鋁的加藥量,在優化過程中發現開發的藥劑除了加藥量大之外並不能配置成液體的藥水,增加實際操作上加藥成本與困難性。重捕劑螯合沉澱法優化則選用二甲基二硫代氨基甲酸鈉(DTC)作為重補劑搭配硫化鈉幫助鎘離子沉澱,並同時調整pH值,發現對於500毫升含鎘廢水以二甲基二硫代氨基甲酸鈉(DTC)沉澱法處理最佳條件為二甲基二硫代氨基甲酸鈉(DTC)和硫化鈉混合配置藥劑10毫升以兩階段處理,並調整pH值至12以上,能將廢水鎘離子0.0867 ppm降至未檢出,符合鎘離子0.03 ppm 以下的排放標準。
工業上並未有含硼廢水有效的處理方法,本研究針對含硼離子廢水開發優化鈣礬石沉澱法,優化氯化鈣與硫酸鋁的加藥量並調整pH值,發現對於500毫升含硼廢水以鈣礬石沉澱法處理最佳條件為氯化鈣與硫酸鋁配置的藥劑AB各添加15毫升,並調整pH值至11.5以上,能將廢水硼離子109 ppm降至1.72 ppm,符合硼離子15 ppm 以下的排放標準。
關鍵字:工業電鍍廢水化學處理法;鋅離子;鎳離子;鎘離子;硼離子
SUMMARY
The industrial electroplating wastewater will have a very serious impact on environment if it is directly discharged into the water sewer. Therefore, the treatment of industrial electroplating wastewater is a problem that is needed to be urgently solved. This experiment developed effective chemical treatment methods to remove zinc ions, nickel ions, cadmium ions, and boron ions from the electroplating wastewater, and evaluated whether the developed methods met the official industrial treatment requirements.
Three methods are developed to treat the electroplating wastewater containing zinc and nickle ions: i). magnesium ammonium phosphate deposition method, ii). breakpoint chlorination method, and iii). dimethyldithiocarbamate deposition method. Two methods are developed for electroplating wastewater containing cadmium ion: i). magnesium hydroxide adsorption method, ii). dimethyldithiocarbamate deposition method. One method is developed for electroplating wastewater containing boron ion: ettringite deposition method. All methods mentioned above can successfully deal with the harmful ions in the electroplating wastewater.
The most suitable industrial treatment method for each electroplating wastewater is evaluated by requirement such as the cost of chemical agent. Dimethyldithiocarbamate deposition method is the most suitable for the wastewater containing zinc, nickle, cadmium ions and ettringite deposition method is the most suitable for the wastewater containing boron ion.
Using the above methods, under neutral pH we can reduce the concentration of Nickle and Zinc ions from 89 ppm and 390 ppm to 0.00603 ppm and 1.00 ppm, respectively. Under pH value over 12, we can reduce the concentration of Cadmium ion from 0.0867 ppm to undetectable level. Under pH value over 11.5, we can reduce the concentration of boron ion from 109 ppm to 1.72 ppm. All of the ion concentration treated with the methods developed in this study are legal to be discharged.
Key word:Chemical treatments on industrial electroplating wastewater;zinc ion;nickel ion;cadmium ion;boron ion
1.屠振密, 电镀锌与锌合金的特性应用及发展. 材料保護 2000, 33 (1), 37-42.
2.Sizelove, R., Developments in alkaline zinc-nickel alloy plating. Plating and surface finishing 1991, 78 (3), 26-30.
3.YASUDA, Y.; WADA, N.; SUZUKI, Y., Zincate type zinc alloy electro plating bath: US, 4983263.
4.Yanagawa, M.; Ishida, S.; Ogura, K.; Saito, Y., Zinc-nickel alloy plating solution. Google Patents: 1989.
5.黄骏; 陈建中. 氨氮废水处理技术研究进展. 2002.
6.金彪; 李广贺; 张旭. 吹脱技术净化石油污染地下水实验. 中国科学院生态环境研究中心, 2000.
7.Emerson, K.; Russo, R. C.; Lund, R. E.; Thurston, R. V., Aqueous ammonia equilibrium calculations: effect of pH and temperature. Journal of the Fisheries Board of Canada 1975, 32 (12), 2379-2383.
8.汪大晕; 徐新华; 宋爽, 工业废水中专项污染物处理手册. 北京: 化学工业出版社: 2000.
9.Jeong, G.; Jung, J.-H.; Lim, J.-H.; Won, Y. S.; Lee, J.-K., A computational mechanistic study of breakpoint chlorination for the removal of ammonia nitrogen from water. Journal of Chemical Engineering of Japan 2014, 47 (3), 225-229.
10.张希衡, 水污染控制工程. 修订版. 北京: 冶金工业出版社 1993, 10.
11.Harland, C. E., Ion exchange: theory and practice. Royal society of Chemistry: 1994; Vol. 6.
12.Milan, Z.; Sanchez, E.; Weiland, P.; de Las Pozas, C.; Borja, R.; Mayari, R.; Rovirosa, N., Ammonia removal from anaerobically treated piggery manure by ion exchange in columns packed with homoionic zeolite. Chemical Engineering Journal 1997, 66 (1), 65-71.
13.钱易, 环境保护与可持续发展. 2012 年可持续发展 20 年学术研讨会 2013, 307-313.
14.Kitagawa, T.; Nishikawa, Y.; Frankenfeld, J.; Li, N., Wastewater treatment by liquid membrane process. Environmental Science & Technology 1977, 11 (6), 602-605.
15.李可彬; 金士道. 液膜法去除废水中的氨氮污染. 1996.
16.Ippersiel, D.; Mondor, M.; Lamarche, F.; Tremblay, F.; Dubreuil, J.; Masse, L., Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping. Journal of environmental management 2012, 95, S165-S169.
17.陳煜斌, 以倒極/電透析法去除水中氯化銨鹽之可行性研究. 嘉南學報 (科技類) 2013, (39), 107-116.
18.祥和; 环境科学; 国飞, 重金属废水处理. 化学工业出版社: 2000.
19.Payraudeau, M.; Paffoni, C.; Gousailles, M., Tertiary nitrification in an up flow biofilter on floating media: influence of temperature and COD load. Water Science and Technology 2000, 41 (4-5), 21-27.
20.Sonmez, H. B.; Senkal, B. F.; Bicak, N., Poly (acrylamide) grafts on spherical bead polymers for extremely selective removal of mercuric ions from aqueous solutions. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40 (17), 3068-3078.
21.Li, Y. J.; Xiang, B.; Ni, Y. M., Removal of Cu (II) from aqueous solutions by chelating starch derivatives. Journal of applied polymer science 2004, 92 (6), 3881-3885.
22.张去非. 絮凝剂对金岭铁矿选矿厂尾矿絮凝沉降速度影响的研究. 2004.
23.严瑞喧, 陈振兴. 水溶性聚合物. 北京: 化学工业出版杜 1988.
24.邹龙生; 王国庆. 有机絮凝剂的现状和未来. 2002.
25.邱廷省; 成先雄; 郝志伟; 罗仙平, 含镉废水处理技术现状及发展. 四川有色金属 2002, 4, 38-41.
26.Kaji, M., Role of experts and public participation in pollution control: the case of Itai-itai disease in Japan1. Ethics in science and environmental politics 2012, 12 (2), 99-111.
27.Hoffman, D. J.; Niyogi, S. K., Metal mutagens and carcinogens affect RNA synthesis rates in a distinct manner. Science 1977, 198 (4316), 513-514.
28.张玉梅. 含镉废水处理的试验研究. 1995.
29.姜述芹; 周保学; 于秀娟; 刘军深; 蔡伟民; 周定. 氢氧化镁处理含镉废水的研究. 2003.
30.杨莉丽; 康海彦; 李娜; 张德强. 离子交换树脂吸附镉的动力学研究. 2004.
31.张德强; 康海彦; 杨莉丽; 李娜; 高丽荣, 离子交换树脂吸附 Cd (Ⅱ) 和 Pb (Ⅱ) 的研究. 环境科学与技术 2003, 1.
32.Gu, X.; Evans, L. J., Modelling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II), and Zn (II) onto fithian illite. Journal of colloid and interface science 2007, 307 (2), 317-325.
33.Coles, C. A.; Yong, R. N., Aspects of kaolinite characterization and retention of Pb and Cd. Applied Clay Science 2002, 22 (1-2), 39-45.
34.孙英; 杨建男; 方云如, 铁氧体法处理含铬和镉废水及其含量测定. 实验技术与管理 2000, 17 (4), 75-79.
35.Kefeni, K. K.; Mamba, B. B.; Msagati, T. A., Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Separation and Purification Technology 2017, 188, 399-422.
36.Jakobsen, M. R.; Fritt-Rasmussen, J.; Nielsen, S.; Ottosen, L. M., Electrodialytic removal of cadmium from wastewater sludge. Journal of Hazardous Materials 2004, 106 (2-3), 127-132.
37.马哲朗, 硼酸在光亮镍中的作用浅探. 上海电镀 1995, (3), 6-6.
38.Schubert, D., Boron oxides, boric acid, and borates. Kirk‐Othmer Encyclopedia of Chemical Technology 2000, 1-68.
39.Xu, Y.; Jiang, J.-Q., Technologies for boron removal. Industrial & Engineering Chemistry Research 2008, 47 (1), 16-24.
40.张兴儒; 王彬; 张煜发; 张玉霞; 邓敏华. 用石灰乳从硼酸母液中沉淀硼影响因素研究. 2005.
41.Kabay, N.; Sarp, S.; Yuksel, M.; Kitis, M.; Koseoğlu, H.; Arar, Ö.; Bryjak, M.; Semiat, R., Removal of boron from SWRO permeate by boron selective ion exchange resins containing N-methyl glucamine groups. Desalination 2008, 223 (1-3), 49-56.
42.Öztürk, N.; Köse, T. E., Boron removal from aqueous solutions by ion-exchange resin: Batch studies. Desalination 2008, 227 (1-3), 233-240.
43.Kabay, N.; Sarp, S.; Yuksel, M.; Arar, Ö.; Bryjak, M., Removal of boron from seawater by selective ion exchange resins. Reactive and Functional Polymers 2007, 67 (12), 1643-1650.
44.Köse, T. E.; Öztürk, N., Boron removal from aqueous solutions by ion-exchange resin: column sorption–elution studies. Journal of hazardous materials 2008, 152 (2), 744-749.
45.Çelik, Z. C.; Can, B.; Kocakerim, M. M., Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid. Journal of hazardous materials 2008, 152 (1), 415-422.
46.王路明. Mg (OH) 2 对海水中硼的吸附效果. 2003.
47.Ferreira, O. P.; De Moraes, S. G.; Duran, N.; Cornejo, L.; Alves, O. L., Evaluation of boron removal from water by hydrotalcite-like compounds. Chemosphere 2006, 62 (1), 80-88.
48.Jiang, J.-Q.; Xu, Y.; Quill, K.; Simon, J.; Shettle, K., Laboratory study of boron removal by Mg/Al double-layered hydroxides. Industrial & engineering chemistry research 2007, 46 (13), 4577-4583.
49.Gougar, M.; Scheetz, B.; Roy, D., Ettringite and C S H Portland cement phases for waste ion immobilization: A review. Waste management 1996, 16 (4), 295-303.
50.Álvarez-Ayuso, E.; Nugteren, H., Synthesis of ettringite: a way to deal with the acid wastewaters of aluminium anodising industry. Water research 2005, 39 (1), 65-72.
51.李二平; 闵小波; 舒余德; 王云燕; 柴立元, Zn^ 2+-S^ 2--H2O 系热力学平衡研究. 环境科学与技术 2010, 33 (3), 1-3.
52.杜倩. 植物对锰, 铜, 锌, 镍的固着作用研究. 天津理工大学, 2014.
53.Tsunashima, Y.; Iizuka, A.; Akimoto, J.; Hongo, T.; Yamasaki, A., Preparation of sorbents containing ettringite phase from concrete sludge and their performance in removing borate and fluoride ions from waste water. Chemical engineering journal 2012, 200, 338-343.