簡易檢索 / 詳目顯示

研究生: 李柏翰
Li, Po-Han
論文名稱: 高分子共熔鹽複合電解質
Polymer-Eutectic Salt Composite Electrolytes
指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: Eutectic saltPNVFPVDF-HFPAcetamideEutectogelN-MethylacetamideLiTFSIGel ElectrolyteLi-Ion Batteries
外文關鍵詞: Eutectic salt, PNVF, PVDF-HFP, Acetamide, Eutectogel, N-Methylacetamide, LiTFSI, Gel Electrolyte, Li-Ion Batteries
相關次數: 點閱:50下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩部分,第一部份利用聚(N-乙烯甲醯胺)(PNVF)作為固化劑,摻入LiTFSI/Acetamide共熔鹽(莫耳比1/2),製成高分子共熔鹽膠態電解質;高分子含量的提高,雖然能有效提升機械性質,卻會降低電解質的導離子度,經實驗結果發現物性與導離子度在本系統中無法同時兼顧,因此引入PVDF濾膜作為骨架,使物性與導離子度能達到平衡,使得充放電可以順利進行。我們探討了不同莫耳比例的共熔鹽與不同含量的高分子對於物性與電性表現的影響,其中表現最穩定的比例為:LiTFSI/Acetamide共熔鹽(莫耳比1/2)摻10 wt%的PNVF含進PVDF濾膜中成膜,其室溫導離子度為5.1 x 10-5 S/cm;電化學穩定窗口接近4 V vs Li/Li+;0.05C-rate 慢速充放電電容量達120 mAh/g,十圈後電容量衰退將近20%,導離子度不足導致0.1C-rate充放電僅能達到40 mAh/g。由實驗結果推測電容量衰退的原因有二,一是用水作為溶劑會被高分子網絡困住無法被製程去除乾淨,留在電解質中持續於充放電過程發生反應;二是Acetamide作為電解質在充放電過程中持續與電極材料發生副反應。

    第二部分使用PVDF-HFP作為固化劑取代PNVF,並使用丙酮作為溶劑,改良第一階段用水作為溶劑而無法去除乾淨的隱憂,並使用N-methylacetamide(MAc)取代Acetamide作為共熔鹽,改良Acetamide會與電極發生副反應的影響;此高分子共熔鹽電解質依舊有物性不佳的缺陷,因此亦引入PVDF濾膜作為骨架以穩定電性表現。我們以LiTFSI/MAc共熔鹽(莫耳比1/4)摻入20 wt%的PVDF-HFP獨立成膜製成電解質,其室溫離子傳導度為2.9 x 10-4 S/cm,摻入濾膜後降至1.3 x 10-4 S/cm;電化學穩定窗口不論有無濾膜都接近5 V vs Li/Li+,顯濾膜在本本系統中為惰性,不參與電化學反應;充放電速率能力測試,獨立成膜的電解質於0.3C第一圈放電達100 mAh/g,含濾膜的電解質0.5C第一圈放電達80mAh/g;循環壽命測試,獨立成膜的電解質由於機械性質不佳,使用0.1C充放電第一圈放電量150 mAh/g,三十圈後放電量僅有60 mAh/g,電容量僅保留40 %,摻入濾膜後的循環壽命測試,0.1C充放電第一圈放電量160 mAh/g,五十圈後放電量仍為160 mAh/g,庫倫效率保持100 %,此結果顯示摻入濾膜作為骨架,不僅提升電解質的機械性質,更驗證了電解質的機械性質對於電池的循環壽命有極大的影響。

    We introduce deep eutectic solvent (DES)-polymer composites as a promising candidate for solid composite electrolytes. The first part of this study is the use of poly(N-vinyl formamide) as hardener for polymer-eutectic salt composite electrolytes for lithium ion batteries. We use eutectic salt which is composed of lithium bis(trifluoromethane sulfone)imide (LiTFSI) and acetamide at a molar ratio of 1:2 (LiTFSI:Acetamide, L1A2), and the composition of electrolyte is L1A2/PNVF (90/10 wt%). The DES-based gel electrolytes are characterized by high ionic conductivity (0.2 mS/cm, @RT), and electrochemical stability (3.9 V vs Li/Li+). A Li/LiFePO4 test cell was constructed using the above mentioned composite electrolytes, and shows capacities of 120 mAh/g at 0.05C at first discharge.
    The second part of this study is the use of Poly(vinylidene fluoride-co-hexafluoropropylene) as hargener for polymer-eutectic salt composite electrolytes. We use eutectic salt which is composed of LiTFSI and N-Methylacetamide at a molar ratio of 1:4 (LiTFSI: N-Methylacetamide, L1M4), and the composition of electrolyte is L1M4/PVDF-HFP (90/10 wt%). The DES-based gel electrolytes are characterized by high ionic conductivity (0.3 mS/cm, @RT), and electrochemical stability (4.9 V vs Li/Li+). A Li/LiFePO4 test cell was constructed using the above mentioned composite electrolytes, and shows capacities of 160 mAh/g at first discharge, and can also perform stable cycling of over 50 cycles at 0.1C.

    第1章 緒論 1 1-1 引言 1 1-2 鋰電池介紹 2 1-3 鋰電池工作原理 4 1-4 電極材料 5 1-4-1 正極活物 6 1-4-2 負極活物 9 1-5 電解質 11 1-5-1 液態電解質 12 1-5-2 膠態電解質 13 1-5-3 固態電解質 13 1-6 電池的弛化 16 第2章 聚(N-乙烯甲醯胺)/共熔鹽膠態電解質 17 2-1 文獻回顧 17 2-1-1 共熔鹽(Deep Eutectic Salts,DESs) 17 2-1-2 共熔鹽作為鋰離子電池液態電解質 20 2-1-3 共熔鹽應用於膠態或固態電解質 24 2-2 研究動機 27 2-3 實驗原理與方法 28 2-3-1 製備鋰離子電池之電極 29 2-3-2 鋰離子鈕扣型電池組裝 30 2-3-3 製備水溶液膠態電解質 32 2-3-4 掃描式電子顯微鏡(SEM) 34 2-3-5 電池充放電測試(Charge and discharge test) 34 2-3-6 電化學阻抗分析法實驗與原理(Electrochemical impedance spectroscopy, EIS) 2, 10-11 35 2-3-7 線性掃描伏安法 (Linear sweep voltammetry)與循環伏安法(Cyclic voltammetry) 41 2-3-8 離子傳導度(Ionic conductivity) 44 2-4 結果與討論 45 2-4-1 尋找共熔鹽的最適比例 46 2-4-2 高分子含量對膠態電解質的影響 51 2-4-3 為何需要濾膜作為骨架? 58 2-4-4 導離子度測試(Ion conductivity test) 61 2-4-5 線性掃描伏安法(Linear sweep voltammetry) 63 2-4-6 充放電測試(Charge and discharge test) 65 2-4-7 循環伏安法(Cyclic voltammetry) 69 2-5 結論 71 第3章 PVDF-HFP/共熔鹽複合電解質 72 3-1 研究動機 72 3-2 實驗方法 73 3-2-1 製備固態電解質,擬固態電解質 74 3-3 結果與討論 77 3-3-1 離子傳導度(Ion conductivity) 77 3-3-2 掃描式電子顯微鏡(SEM)–電解質於濾膜內的形貌 81 3-3-3 線性掃描伏安法(Linear sweep voltammetry) 84 3-3-4 電池充放電測試(Charge and discharge test) 86 3-3-5 電池循環壽命測試(Cycle life test) 93 3-3-6 電化學阻抗分析法(Electrochemical impedance spectroscopy, EIS) 96 3-3-7 循環伏安法(Cyclic voltammetry) 100 3-4 結論 103 第4章 參考文獻 105

    1. BOBBY History Of Batteries: A Timeline. https://www.upsbatterycenter.com/blog/history-batteries-timeline/.
    2. Park, J.-K., Principles and Applications of Lithium Secondary Batteries. Wiley-VCH, Weinheim: Germany, 2012.
    3. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144 (4), 1188-1194.
    4. Hu, Y., Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries. Electrochemistry Communications 2003, 6 (1), 28-32.
    5. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials Today 2015, 18 (5), 252-264.
    6. Birkl, C. R.; Roberts, M. R.; McTurk, E.; Bruce, P. G.; Howey, D. A., Degradation diagnostics for lithium ion cells. Journal of Power Sources 2017, 341, 373-386.
    7. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359.
    8. Chen, R.; Wu, F.; Liang, H.; Li, L.; Xu, B., Novel binary room-temperature complex electrolytes based on LiTFSI and organic compounds with acylamino group. Journal of The Electrochemical Society 2005, 152 (10), A1979-A1984.
    9. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7 (12), 3857-3886.
    10. Bard, A. J.; Faulkner, L. R., ELECTROCHEMICAL METHODS Fundamentals and Applications. 2001.
    11. Andre, D.; Meiler, M.; Steiner, K.; Wimmer, C.; Soczka-Guth, T.; Sauer, D. U., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. Journal of Power Sources 2011, 196 (12), 5334-5341.
    12. Boisset, A.; Jacquemin, J.; Anouti, M., Physical properties of a new Deep Eutectic Solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochimica Acta 2013, 102, 120-126.
    13. Joos, B.; Vranken, T.; Marchal, W.; Safari, M.; Van Bael, M. K.; Hardy, A. T., Eutectogels: A New Class of Solid Composite Electrolytes for Li/Li-Ion Batteries. Chemistry of Materials 2018, 30 (3), 655-662.
    14. Tang, B.; Zhang, H.; Row, K. H., Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci 2015, 38 (6), 1053-64.
    15. Ozawa, K., Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 1994, 69 (3), 212-221.
    16. Scrosati, B., History of lithium batteries. Journal of Solid State Electrochemistry 2011, 15 (7-8), 1623-1630.
    17. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology 2017, 12, 194.
    18. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334 (6058), 928-935.
    19. 韓虹羽, 鋰離子電池正極材料進展. Chemical Production and Technology 2012, 19 (4), 24-33.
    20. Ueda, T. O. a. A., Solid‐State Redox Reactions of LiCoO2 (R3̅m) for 4 Volt Secondary Lithium Cells. J. Electrochem. Soc 1994, 141 (11), 2972-2977.
    21. Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B., Lithium mobility in the layered oxide Li1−xCoO2. Solid State Ionics 1985, 17 (1), 13-19.
    22. Scrosati, W. A. v. S. a. B., Advances in Lithium-Ion Batteries. Springer Science & Business Media: New York,USA, 2002.
    23. Manuel Stephan, A., Review on gel polymer electrolytes for lithium batteries. European Polymer Journal 2006, 42 (1), 21-42.
    24. M. Yoshio, R. J. B., and A. Kozawa, Lithium-Ion Batteries. Springer: New York, USA, 2009.
    25. Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F., The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons 2016, 3 (6), 487-516.
    26. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4), 16030.
    27. Zheng, J.; Hu, Y.-Y., New insights into the compositional dependence of Li-Ion transport in polymer–ceramic composite electrolytes. ACS applied materials & interfaces 2018, 10 (4), 4113-4120.
    28. Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A., Ageing mechanisms in lithium-ion batteries. Journal of Power Sources 2005, 147 (1-2), 269-281.
    29. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures. Chemical Communications 2003, (1), 70-71.
    30. Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F., Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 2012, 41 (21), 7108-46.
    31. Chowdhury, S. A.; Vijayaraghavan, R.; MacFarlane, D., Distillable ionic liquid extraction of tannins from plant materials. Green Chemistry 2010, 12 (6), 1023-1028.
    32. Chakrabarti, M. H.; Mjalli, F. S.; AlNashef, I. M.; Hashim, M. A.; Hussain, M. A.; Bahadori, L.; Low, C. T. J., Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries. Renewable and Sustainable Energy Reviews 2014, 30, 254-270.
    33. Fung, Y.; Zhou, R., Room temperature molten salt as medium for lithium battery. Journal of power sources 1999, 81, 891-895.
    34. Liang, H.; Li, H.; Wang, Z.; Wu, F.; Chen, L.; Huang, X., New binary room-temperature molten salt electrolyte based on urea and LiTFSI. The Journal of Physical Chemistry B 2001, 105 (41), 9966-9969.
    35. Garcia, B.; Lavallée, S.; Perron, G.; Michot, C.; Armand, M., Room temperature molten salts as lithium battery electrolyte. Electrochimica Acta 2004, 49 (26), 4583-4588.
    36. Hu, Y.; Wang, Z.; Li, H.; Huang, X.; Chen, L., Spectroscopic and DFT studies to understand the liquid formation mechanism in the LiTFSI/acetamide complex system. Spectrochim Acta A Mol Biomol Spectrosc 2005, 61 (9), 2009-15.
    37. Yang, C.-C.; Hsu, H.-Y.; Hsu, C.-R., Transport Properties of LiTFSI-Acetamide Room Temperature Molten Salt Electrolytes Applied in an Li-Ion Battery. Zeitschrift für Naturforschung A 2007, 62 (10-11), 639-646.
    38. Li, S.; Cao, Z.; Peng, Y.; Liu, L.; Wang, Y.; Wang, S.; Wang, J.-Q.; Yan, T.; Gao, X.-P.; Song, D.-Y., Molecular dynamics simulation of LiTFSI− acetamide electrolytes: structural properties. The Journal of Physical Chemistry B 2008, 112 (20), 6398-6410.
    39. Jiang, X.; Tan, B.; Zhang, X.; Ye, D.; Dai, H.; Zhang, X., Studies on the properties of poly(vinyl alcohol) film plasticized by urea/ethanolamine mixture. Journal of Applied Polymer Science 2012, 125 (1), 697-703.
    40. Zhang, H.; Xuan, X.; Wang, J.; Wang, H., Vibrational Spectroscopic Studies on Interactions in PEO−NaSCN−Urea Composites. The Journal of Physical Chemistry B 2004, 108 (5), 1563-1569.
    41. Wang, S.; Peng, X.; Zhong, L.; Jing, S.; Cao, X.; Lu, F.; Sun, R., Choline chloride/urea as an effective plasticizer for production of cellulose films. Carbohydr Polym 2015, 117, 133-9.
    42. Nakagawa, H.; Izuchi, S.; Kuwana, K.; Nukuda, T.; Aihara, Y., Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. Journal of the Electrochemical Society 2003, 150 (6), A695-A700.
    43. Sim, L. N.; Yahya, R.; Arof, A. K., Infrared studies of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis(trifluoromethane)sulfonimide and urea as deep eutectic solvent. Optical Materials 2016, 56, 140-144.
    44. Boisset, A.; Menne, S.; Jacquemin, J.; Balducci, A.; Anouti, M., Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Physical Chemistry Chemical Physics 2013, 15 (46), 20054.

    下載圖示 校內:2024-08-19公開
    校外:2024-08-19公開
    QR CODE