簡易檢索 / 詳目顯示

研究生: 陳景欣
Chen, Gin-Shin
論文名稱: 體型加工微機械感測器之設計與類LIGA製程技術之研發
Design of Bulk-Micromachined Mechanical Sensors and Investigation of LIGA-Like Technology
指導教授: 方炎坤
Fang, Yean-Kuen
朱銘祥
Ju, Ming-Shaung
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 154
中文關鍵詞: 微機電系統體型加工X-ducer微壓力感測器單晶矽微剪應力感測器類LIGA製程金屬薄膜正反相脈衝式電流電鍍
外文關鍵詞: contact type shear-stress sensor, pulse-reverse-current electroplating, UV-LIGA process, monolithic silicon, bulk-micromachined piezoresistive pressure senso, MEMS, metallic thin film
相關次數: 點閱:97下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以微機電系統(MEMS)製程技術開發而成的微機械感測器已廣泛地發展於汽車工業、航太領域與生醫應用,例如微壓力感測器與微剪應力感測器。為了使微機電系統產品的工作性能提高、成本降低以及因應不同應用的要求,微結構的最佳設計與相關製程的改善是迫切需要的。在微結構的設計方面,結構材料的機械性質、熱效應、製程技術上的限制以及工作性能的要求皆是重要的設計因素。在本研究中,非等向性機械性質的單晶矽若假設為等向性材料來進行微結構設計,是否會對設計出的元件性能有巨大影響被提出,並用有限元素法來檢驗。結果顯示對於壓阻式與電容式壓力感測器而言,將單晶矽假設為等向性材料將會造成設計出的元件靈敏度與真實性能間存在誤差。再者,二氧化矽絕緣層與單晶矽平膜間的熱應力用有限元素軟體來模擬與分析,分析結果顯示熱應力大小與絕緣層厚度有關。當絕緣層厚度等於平膜厚度一半時,熱應力為最小,其次,絕緣層厚度若小於平膜厚度十分之一,則熱應力將趨於定值,最後,絕緣層厚度若大於平膜厚度,則熱應力會劇烈增加。在考量壓力靈敏度、靈敏度溫度係數、偏差溫度係數與製程上限制的前提之下,本文建立X-ducer微壓力感測器的設計方法並實現在膝上義肢用的微壓力感測器上。此微壓力感測器的原型已製造與測試,工作性能令人滿意。另一方面,利用自行發展的解析法來完成漂浮元素微剪應力感測器的最佳設計並以有限元素模擬結果加以佐證。由解析法設計的微剪應力感測器靈敏度遠優於文獻上發表的微剪應力感測器靈敏度。
    本文並發展新型接觸式微剪應力感測器,此感測器的設計重點在於避開受外界壓力的干擾以及X-ducer的方位。此微剪應力感測器原型的測試結果為壓力干擾小於12%(0~320 kPa),靈敏度為0.13 mV/mA-MPa及遲滯誤差3.5%。
    在類LIGA製程研發方面,首先以理論分析來對近紫外光與KrF準分子雷射作特性的比較。高能量、短脈衝的KrF準分子雷射能製作出尺寸較小與深寬比較高的微結構物,但是成本較昂貴。在電鍍種子層方面,研究了銅、金、鋁、鎳、鉻與鈦薄膜。由於鈦薄膜與玻璃基材及鎳沈積物有好的附著力、抗腐蝕、對鎳有高的蝕刻選擇性以及低內應力的特性,所以鈦薄膜被選為種子層。用四點探針與表面輪廓儀來對鈦薄膜進行測試,測試結果顯示鈦薄膜的組織性質與電特性皆不錯。另外對所有金屬薄膜而言,電阻率會隨著膜厚變小而變大,而且在膜厚大於某臨界值後電阻率趨於定值。基於低電阻與低殘留應力為考量而決定鈦薄膜的厚度。在電鍍用微模方面,建議四種厚膜光阻,其名稱或商品名稱分別為PMMA、SU-8、Polyimide及AZ 4000。此四種光阻皆可與製程相容,且具有化學與熱穩定的特性及高絕緣強度,故可作為微模材料。製作後的微模利用顯微鏡與CCD照相機以及表面輪廓儀來檢視。接著發展正反相脈衝式電流電鍍的技術。分析與設計正反相脈衝式電流的參數,以進行電鍍物表面粗糙度、內應力、孔隙與組織型態的研究。在電鍍微結構之表面粗糙度、孔隙與組織型態的考量下,建立正反相脈衝式電流參數的設計方法,並且以近紫外光LIGA製程來實現此設計方法。實驗結果顯示,正反相脈衝式電流電鍍微結構的表面粗糙度(8.0%)比直流電鍍的結果(42.6%)還要平滑,而且在微膜邊緣沒有過渡電鍍的現象,而直流電鍍的結果則有過度電鍍的現象。再者,正反相脈衝式電流電鍍微結構比直流電鍍具有較少的孔隙。利用電子掃瞄顯微鏡(SEM)驗證出正反相脈衝式電流電鍍微結構具有較緊密的沈積物與較精細的晶粒。綜合以上結果得知,本研究發展的正反相脈衝式電流電鍍的設計方法可提供MEMS領域中的工程師獲得具有良好性質的電鍍微結構。

    MEMS-based mechanical sensors such as pressure sensor and shear-stress sensor have been widely developed for the automotive industry, aerospace fields and biomedical applications. The design of microstructures and the improvement of the manufacturing technology become more and more important for products with better performance and reduced cost and for satisfying more applications. For the design of microstructures, mechanical properties of the substrate material such as pure silicon, thermal effects, manufacturing limits, and performance requirements are important issues. In this research, the validity of postulating monolithic silicon as isotropic material on evaluating the performance of wet bulk-micromachined piezoresistive and capacitive pressure sensors was examined by means of finite-element analyses. It was evident that the design of microstructures was unacceptable if the single-crystal silicon was treated as an isotropic material. Moreover, the thermal stress, which resulted from differences in the TECs between the SiO2 dielectric film and the Si diaphragm for a micro pressure sensor was studied through finite element analyses. The results revealed that the minimum thermal stress occurred when the SiO2 dielectric film to Si diaphragm thickness ratio was 0.5. The design procedures of X-ducer pressure sensors considering pressure sensitivity, temperature coefficient of sensitivity, temperature coefficient offset, and manufacturing limits were established and realized in a biomedical pressure sensor. Satisfactory performances of a prototype micro-pressure sensor were obtained. On the other hand, the optimum design for a typical micro floating-element shear-stress sensor based on the sensitivity analysis was carried out by means of a quasi-analytic method. It showed that the design by this method was approximate to the FE design and the sensitivities calculated from the quasi-analytic method were much higher than those of developed sensors in the literatures.

    A new contact type shear-stress sensor insensitive to the external pressure was innovated from the inspiration of an X-ducer pressure sensor. The flange on the diaphragm was a primary mechanism loaded by the external shear stress and the location of X-ducers was an important factor for sensing decomposed shear stresses. The measured cross-talk percentage due to pressure was less than 12% in the pressure range of 0 to 320 kPa for a prototype of the contact type shear-stress sensor. The sensitivity and overall mean hysteresis error were tested and calculated to be 0.13 mV/mA-MPa and 3.5%.

    For MEMS technologies, the wet bulk micromachining had lots of limits such as the simple structural geometry, low aspect ratio, and narrow choices of materials as compared with the LIGA-like process. Therefore, in this dissertation the seed layer, micro molds, and the electroplating of a UV-LIGA process were investigated for optimal process parameters and to yield microstructures with good qualities. Various metallic thin films were fabricated and studied for the seed layer. Deposition qualities of the metallic thin film were checked and the thin-film thickness was determined based on low resistance and low internal stress. Several thick photoresists compatible with the UV-LIGA process were presented for micro molds. The parameters of pulse-reverse-current (PRC) plating were analyzed to study their effects on surface roughness, pits, and morphology of plated microstructures. An available method for determining PRC parameters was developed. The results revealed that a titanium thin film was a good choice of seed layer due to its good adhesion to substrate and to plated deposits, low internal stress and low resistance, high corrosion resistance, and better etching selectivity against nickel. Depending upon the available manufacturing facilities, application requirements, and the cost, polyimide was chosen as the plating mold in the experiment. The microstructure with better surface roughness, fewer pits, and finer morphology was obtained by using the PRC plating as compared with those using the DC plating. One can extend the approach in this dissertation to other LIGA-like processes for making products with good performance and low cost.

    TABLE OF CONTENTS Abstract v 中文摘要 vii 誌謝 ix Table of contents x List of tables xiii Caption of figures xiv Nomenclatures xvii Chapter 1 Introduction 1 1.1. MEMS and Micro Mechanical Sensors 1 1.2. Wet Bulk-Micromachining and LIGA Process 3 1.3. Literature Reviews 5 1.3.1. Wet Bulk-Micromachined Pressure Sensors 5 1.3.2. Micro Shear-Stress Sensors 13 1.3.3. Electroplating in LIGA Process 17 1.4. Overview 19 Chapter 2 Design of Bulk-Micromachined Pressure Sensors 23 2.1. Piezoresistive Type and Capacitive Type Pressure Sensors 23 2.1.1. Piezoresistive (PR) pressure sensor 23 2.1.2. Capacitive (CP) pressure sensor 29 2.2. Effects of Pure Silicon Postulated as Isotropic Material on Design 32 2.2.1. Material Properties of Pure Silicon 32 2.2.2. Design Examples and Finite Element Model 33 2.2.3. Results and Discussions 38 2.3. Design Procedures and Simulations 42 2.4. Example of Biomedical Pressure Sensor 49 2.4.1. Pressure Sensors for Above-Knee Prostheses 49 2.4.2. Design, Fabrication, and Measurements 51 2.4.3. Results and Discussions 59 Chapter 3 Design of Micro Shear-Stress Sensors 71 3.1. Floating-Element Type Shear-Stress Sensor 71 3.1.1. Structure and Principle 71 3.1.2. Optimum Design Based on Sensitivity Analysis 73 3.1.3. Results and Discussions 77 3.2. A Novel Contact Type Shear-Stress Sensor 82 3.2.1. Structure and Principle 82 3.2.2. Design Procedures and Simulations 84 3.2.3. Biomedical Application 88 3.2.4. Results and Discussions 90 Chapter 4 LIGA-Like Process 99 4.1. Introduction 99 4.2. Near UV Light and Excimer Laser 102 4.3. Seed Layer and Micro Mold 106 4.3.1. Metallic Thin Film for Seed Layer 106 4.3.2. Thick Photoresists for Electroplating Micro Mold 109 4.3.3. Results and Discussions 110 4.4. Pulse-Reverse-Current Electroplating 119 4.4.1. Principle and Analysis 119 4.4.2. Design Guidelines 127 4.4.3. Experimental Procedures 130 4.4.4. Results and Discussions 135 Chapter 5 Conclusions and Suggestions 139 5.1. Summary 139 5.2. Conclusions 143 5.3. Contributions 144 5.4. Suggestions 145 References 146 Vita 154

    REFERENCES

    1. H. K. Trieu, L. Ewe, W. Mokwa, M. Schwarz, and B. J. Hosticka, “Flexible silicon structures for a retina implant,” IEEE MEMS’ 98, 1998, pp. 515-519.
    2. T. Yagi, Y. Ito, H. Kanda, S. Tanaka, M. Watanabe, and Y. Uchikawa, “Hybrid retinal implant: fusion of engineering and neuroscience,” IEEE SMC '99 Conference Proceedings, vol. 4, 1999, pp. 382-385.
    3. G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,”Proceedings of the IEEE, vol. 86, 1998, pp. 1536-1551.
    4. J. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol. 86, 1998, pp. 1552-1574.
    5. L. O’Connor, “MEMS: microelectromechanical systems,” Mechanical Engineering, vol. 114, 1992, pp. 40-47.
    6. M. Madou, Fundamentals of microfabrication, CRC, New York, 1998.
    7. Y. Konaka and M. G. Allen, “Single- and multi-layer electroplated microaccelerometers,” IEEE MEMS’ 96, pp. 168-173.
    8. T. Fujita, K. Maenaka and M. Maeda, “Design of two-dimensional micromachined gyroscope by using nickel electroplating,” Sensors and Actuators A 66, 1998, pp. 173-177.
    9. C. S. Smith, “Piezoresistance effect in germanium and silicon,” Physics Review, vol. 94, 1954, pp. 42-49.
    10. Y. Kanda, “Piezoresistance effect of silicon,” Sensors and Actuators A 28, 1991, pp. 83-91.
    11. S. M. Sze, Semiconductor Sensors, John Wiley & Sons, New York, 1994.
    12. S. K. Clark, and K. D. Wise, “Pressure sensitivity in anisotropically etched thin diaphragm pressure sensors,” IEEE Transactions on Electron Devices, ED-26, 1979, pp. 1887-1896.
    13. S. C. Kim, and K. D. Wise, “Temperature sensitivity in silicon piezoresistive pressure transducers,” IEEE Transactions on Electron Devices, ED-30, 1983, pp. 802-810.
    14. A. Boukabache, P. Pons, G. Blasquez, and Z. Dibi, “Characterisation and modeling of the mismatch of TCRs and their effects on the drift of the offset voltage of piezoresistive pressure sensors,” Sensors and Actuators A 84, 2000, pp. 292-296.
    15. J. T. Lenkkeri, “Nonlinear effects in the piezoresistivity of p-type silicon,” Physics Status Solidi (b), vol. 136, 1986, pp. 373-385.
    16. V. A. Kolchuzhin, “Numerical simulation of the non-linearity of the piezoresistive effect in the p-type silicon,” IEEE 1st Siberian Russian Student Workshop on Electron Devices and Materials EDM’2000, pp. 103-110.
    17. X. Ding, and W. H. Ko, “Buckling behavior of boron doped p+ silicon diaphragms,” Transducers ’91, San Francisco, USA, June 1991, pp. 93-96.
    18. E. H. Yang, and S. S. Yang, “The quantitative determination of the residual stress profile in oxidized p+ silicon films,” Sensors and Actuators A 54, 1996, pp. 684-689.
    19. S. V. Spoutai, A. S. Berdinsky, H. G. Chun, and J. H. Lee, “Effect of electrostatic bonding on the characteristics of silicon diaphragm pressure transducer,” IEEE Korus’99 on Electronics, 1999, pp. 653-656.
    20. C. Malhaire, M. L. Berre, D. Febvre, D. Barbier, and P. Pinard, “Effect of clamping conditions and built-in stresses on the thermopneumatic deflection of SiO2/Si membranes with various geometries,” Sensors and Actuators A 74, 1999, pp. 174-177.
    21. Y. C. Lin, P. J. Hesketh, and J. P. Schuster, “Finite-element analysis of thermal stresses in a silicon pressure sensor for various die-mount materials,” Sensors and Actuators A 44, 1994, pp. 145-149.
    22. Y. T. Lee, H. D. Seo, A. Kawamura, T. Yamada, Y. Matsumoto, M. Ishida, and T. Nakamura, “Compensation method of offset and its temperature drift in silicon piezoresistive pressure sensor using double Wheatstone-bridge configuration,” Transducers ’95, Stockholm, Sweden, June 1995, pp. 570-573.
    23. Y. Sun, X. Sun, B. Sun, and Q. Meng, “Electric drift of the bridge offset for pressure sensors and its utilization,” Sensors and Actuators A 58, 1997, pp. 249-256.
    24. R. Steinmann, H. Friemann, C. Prescher, and R. Schellin, “Mechanical behaviour of micromachined sensor membranes under uniform external pressure affected by in-plane stresses using a Ritz method and Hermite polynomials,” Sensors and Actuators A 48, 1995, pp. 37-46.
    25. V. A. Gridchin, and A. V. Shaporin, “Calculation of deflection and mechanical stresses in plates of the rectangular form by variational and numerical methods,” IEEE 1st Siberian Russian Student Workshop on Electron Devices and Materials EDM’2000, pp. 111-118.
    26. H. E. Elgamel, “Closed-form expressions for the relationships between stress, diaphragm deflection, and resistance change with pressure in silicon piezoresistive pressure sensors,” Sensors and Actuators A 50, 1995, pp. 17-22.
    27. G. Bistuè, J. G. Elizalde, S. G. Alonso, E. Castaño, F. J. Gracia, and A. G. Alonso, “A design tool for pressure microsensors based on FEM simulations,” Sensors and Actuators A 62, 1997, pp. 591-594.
    28. Y. Kanda, “Hall-effect devices as strain and pressure sensors,” Sensors and Actuators, 2, 1982, pp. 283-296.
    29. Y. Kanda, “Optimum design considerations for silicon pressure sensors using a four-terminal gauge,” Sensors and Actuators, 4, 1983, pp. 199-206.
    30. M. H. Bao, and Y. Wang, “The effect of shear stress on the piezoresistance of silicon,” Sensors and Actuators, 18, 1989, pp. 221-231.
    31. J. E. Gragg, W. E. McCulley, W. B. Newton, and C. E. Derrington, “Compensation and calibration of a monolithic four terminal silicon pressure transducer,” Technical Digest, IEEE Solid-State Sensor Workshop, Hilton Head island, SC, June 1984, pp. 21-27.
    32. K. Mochizuki, T. Masuda, and K. Watanabe, “An interface circuit for high-accuracy signal processing of differential-capacitance transducers,” IEEE Transactions on Instrumentation and Measurement, vol. 47, 1998, pp. 823-827.
    33. J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “A sensitive differential capacitance to voltage converter for sensor applications,” IEEE Transactions on Instrumentation and Measurement, vol. 48, 1999, pp. 89-96.
    34. S. Ranganathan, M. Inerfield, S. Roy, and S. L. Garverick, “Sub-femtofarad capacitive sensing for microfabricated transducers using correlated double sampling and delta modulation,” IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, vol. 47, 2000, pp. 1170-1176.
    35. H. Kim, Y. G. Jeong, and K. Chun, “Improvement of the linearity of a capacitive pressure sensor using an interdigiated electrode structure,” Sensors and Actuators A 62, 1997, pp. 586-590.
    36. A. Ettouhami, A. Essaid, N. Quakrim, L. Michel, and M. Limouri, “Thermal buckling of silicon capacitive pressure sensor,” Sensors and Actuators A 57, 1996, pp. 167-171.
    37. R. Puers, and D. Lapadatu, “Electrostatic forces and their effects on capacitive mechanical sensors,” Sensors and Actuators A 56, 1996, pp. 203-210.
    38. Q. Wang, and W. H. Ko, “Modeling of touch mode capacitive sensors and diaphragms,” Sensors and Actuators A 75, 1999, pp. 230-241.
    39. W. H. Ko, and Q. Wang, “Touch mode capacitive pressure sensors,” Sensors and Actuators A 75, 1999, pp. 242-251.
    40. J. Shajii, K. Y. Ng, and M. A. Schmidt,“A microfabricated floating-element shear-stress sensor using wafer-bonding technology,”IEEE J. Microelectromech. Syst., vol. 1, no. 2, 1992, pp. 89-94.
    41. L. Wang and D. J. Beebe, “A silicon-based shear force sensor: development and characterization,” Sensors and Actuators A 84, 2000, pp. 33-44.
    42. D. Roche, C. Richard, L. Eyraud, and C. Audoly,“Piezoelectric bimorph bending sensor for shear-stress measurement in fluid flow,” Sensors and Actuators A55, 1996, pp. 157-162.
    43. A. Padmanabhan, M. Sheplak, K. S. Breuer and M. A. Schmidt,“Micromachined sensors for static and dynamic shear-stress measurements in aerodynamic flows,”IEEE Transducers '97, 1997, pp. 137-140.
    44. T. Pan, D. Hyman, M. Mehregany, E. Reshotko and S. Garverick,“Microfabricated shear stress sensors, part 1: design and fabrication,”AIAA Journal, vol. 37, no. 1, 1999, pp. 66-72.
    45. C. Liu, J. B. Huang, Z. (Alex) Zhu, F. Jiang, S. Tung, Y. C. Tai, and C. M. Ho,“A micromachined flow shear-stress sensor based on thermal transfer principles,”IEEE J. Microelectromech. Syst., vol. 8, no. 1, 1999, pp. 90-99.
    46. F. Jiang, Y. C. Tai, K. Walsh, T. Tsao, G. B. Lee, and C. M. Ho, “A flexible MEMS technology and its first application to shear stress sensor skin,” IEEE MEMS’97 Workshop, Japan, 1997.
    47. A. B. Frazier and M. G. Allen, “Metallic microstructures fabricated using photosensitive polyimide electroplating molds,” IEEE Journal of Microelectromechanical Systems, vol. 2, no. 2, 1993, pp. 87-94.
    48. W. Qu, “3D UV-microforming: principles and applications,” Engineering Science and Education Journal, 1999, pp. 13-19.
    49. L. W. Pan and L. Lin, “Batch transfer of LIGA microstructures by selective electroplating and bonding,” IEEE MEMS 2000, pp. 259-264.
    50. T. P. Sun, C. C. Wan and Y. M. Shy, Metal Finishing, vol. 77, 1979, pp. 33-.
    51. N. S. Qu, K. C. Chan and D. Zhu, “Surface roughening in pulse current and pulse reverse current electroforming of nickel,” Surface and Coating Technology 91, 1997, pp. 220-224.
    52. H. Yang and S. W. Kang, “Improvement of thickness uniformity in nickel electroforming for the LIGA process,” International Journal of Machine Tools & Manufacture 40, 2000, pp. 1065-1072.
    53. K. C. Chan, N. S. Qu and D. Zhu, “Effect of reverse pulse current on the internal stress of electroformed nickel,” Journal of Materials Processing Technology 63, 1997, pp. 819-822.
    54. S. E. Hadian and D. R. Gabe, “Residual stresses in electrodeposits of nickel and nickel-iron alloys,“ Surface and Coatings Technology 122, 1999, pp. 118-135.
    55. A. M. El-Sherik, U. Erb and J. Page, “Microstructural evolution in pulse plating nickel electrodeposits,” Surface and Coatings Technology 88, 1996, pp. 70-78.
    56. K. C. Chan, N. S. Qu and D. Zhu, “Quantitative texture analysis in pulse reverse current electroforming of nickel,” Surface and Coatings Technology 99, 1998, pp. 69-73.
    57. F. Ebrahimi, G. R. Bourne, M. S. Kelly and T. E. Matthews, “Mechanical properties of nanocrystalline nickel produced by electrodeposition,” NanoStructured Materials, vol. 11, no. 3, 1999, pp. 343-350.
    58. D. H. Jeong, F. Gonzalez, G. Palumbo, K. T. Aust and U. Erb, “The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings,” Scripta Materialia 44, 2001, pp. 493-499.
    59. P. T. Tang, “Pulse reverse plating of nickel and nickel alloys for microgalvanics,” Electrochimica Acta 47, 2001, pp. 61-66.
    60. M. Fohse, T. Kohlmeier and H. H. Gatzen, “Thinfilm technologies to fabricate a linear microactuator,” Sensors and Actuators A 91, 2001, pp. 145-149.
    61. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw Hill, New York, 1959.
    62. J. C. Greenwood, “Silicon in mechanical sensors,” J. Phys. E, Sci. Instrum., vol. 21, 1988, pp. 1114-1128.
    63. S. P. Nikanorov, Yu. A. Burenkov and A. V. Stepanov, “Elastic Properties of Silicon,” Sov. Phys.-Solid State, vol. 13, 1972, pp. 2516-2518.
    64. W. A. Brantley, “Calculated elastic constant for stress problems associated with semiconductor devices,” J. Appl. Phys., vol. 44, 1973, pp. 534-535.
    65. Y. S. Lee and K. D. Wise, “A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity,” IEEE Transactions on Electron Devices, D-29, 1982, pp. 42-48.
    66. E. Mazza, and J. Dual, “Mechanical behavior of a μm-sized single crystal silicon structure with sharp notches,” PERGAMON Journal of the Mechanics and Physics of Solids, vol. 47, 1999, pp. 1795-1821.
    67. J. J. Ho, Y. K. Fang, M. C. Hsieh, S.F. Ting, G. S. Chen, M. S. Ju, Terry Y. Chen, C. R. Huang, and C. Y. Chen, “Development of a micro-electro-mechanical system pressure sensor for rehabilitation engineering applications,” International Journal of Electronics, vol. 87, no. 6, 2000, pp. 757-767.
    68. M. C. Hsieh, Y. K. Fang, M. S. Ju, G. S. Chen, J. J. Ho, C. H. Yang, P. M. Wu, G. S. Wu, and Terry Yuan-Fang Chen, “A contact-type piezoresistive micro-shear stress sensor for above-knee prosthesis application,” IEEE Journal of Microelectromechanical Systems, vol. 10, no. 1, March 2001, pp. 121-127.
    69. C. H. Yang, The Study and Fabrication of Advanced Piezoresistive Pressure and Shear-Stress Sensors by Micro-Electro-Mechanical System (MEMS) Technologies, Master Thesis (in Chinese), Department of Electrical Engineering, National Cheng Kung University, June 2000.
    70. G. S. Wu, Testing of Micro Sensors and Micro Structures, Master Thesis (in Chinese), Department of Mechanical Engineering, National Cheng Kung University, June 2000.
    71. A. Padmanabhan, H. D. Goldberg, K. S. Breuer and M. A. Schmidt,“A silicon Micromachined floating-element shear-stress sensor with optical position sensing by photodiodes,”IEEE Transducers '95, 1995, pp. 436-439.
    72. S. M. Sze, Semiconductor Devices: Physics and Technology, John Wiley & Sons, 1985.
    73. J. Brannon, Excmer Laser Ablation and Etching, American Vacuum Society, New York, 1993.
    74. R. C. Crafer, and P. J. Oakley, Laser Processing in Manufacturing, Chapman & Hall, New York, 1993.
    75. S. C. Chang, M. W. Putty, and D. B. Hicks,“The formation of electroplating molds by reactive ion etching,”IEEE Transducers '95, 1995, pp. 577-580.
    76. J. J. Kim, and S. K. Kim, “Optimized surface pretreatment for copper electroplating,” Applied Surface Science 183, 2001, pp.311-318.
    77. D. C. Jr, Materials Science and Engineering: An Introduction, John Wiley & Sons, New York, 1991, Chap. 19.
    78. J. O’M. Bockris, and A. K. N. Reddy, Modern Electrochemistry, vols. 1 and 2, Plenum, New York, 1970.
    79. J. CI. Puippe, Theory and Practice of Pulse Plating, AESF, Orlando, 1986, pp. 73-92.
    80. N. IBL, “Some theoretical aspects of pulse electrolysis,” Surface Technology 10, 1980, pp. 81-104.
    81. S. Roy and D. L. Dolt, “Determination of the practical range of parameters during reverse-pulse current plating,” Journal of Applied Electrochemistry 27, 1997, pp. 299-307.

    下載圖示 校內:2003-07-09公開
    校外:2003-07-09公開
    QR CODE