簡易檢索 / 詳目顯示

研究生: 何杰穎
Ho, Chieh-Ying
論文名稱: 多目標基因演算法與強化學習於石化工業熔融指數生產排程
Multi-objective Genetic Algorithm and Reinforcement Learning for Petrochemical MFI-Production Scheduling
指導教授: 李家岩
Lee, Chia-Yen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 77
中文關鍵詞: 生產排程多目標基因演算法石化工業強化學習基因演算法內嵌強化學習
外文關鍵詞: Production Scheduling, Multi-objective Genetic Algorithm, Petrochemical Industry, Reinforcement Learning, Genetic Algorithm embedded with Reinforcement Learning
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石油化學工業,以下簡稱石化工業(petrochemical industry),是一種連續的生產模式。在化工業中,有許多特殊的化學性質以及特殊的生產限制會顯著地影響生產排程的表現以及生產排程的可行性。在實務上,現場人員透過經驗法則以及簡單的派工法則進行排程,但排程績效通常會略差(例如:較長的完工時間或較多的過渡產品),而且經驗法則只有少數人知道,無法有效地進行知識管理,因此,對於石化工業來說,如何開發一個有效率且能進行知識管理的生產排程是急迫且需要的。
    本研究根據石化產業中的生產目標及需求,提出了一張工程經驗參考表來記錄石化工廠的生產特性與限制,以及一個基於該參考表發展的啟發式演算法以產生可行的化工廠生產排程。本研究考慮了多個目標以及限制,其中主要圍繞著三個關鍵生產議題 – 減少產能損失(減少過渡產品的產生),增加生產良率(與換線換模次數有關),滿足客戶交期需求。接著提出一項多目標基因演算法內嵌強化學習的技術來解決石化工業的排程問題,定義多目標基因演算法在強化學習中每一次的狀態、動作以及獎勵,藉此得出最佳策略,並運用最佳策略調整基因演算法中每一次迭代的交配率以及突變率,或是選擇不同的交配機制和突變機制,藉此來提升多目標基因演算法的表現。實證研究以台灣石化工業為例,探討其生產排程以驗證所提出的演算法。實證結果顯示所提出的演算法將有效地改善排成程績效,關鍵績效指標(KPI)皆有顯著提升。

    Petrochemical industry refers to the industry that uses petroleum or natural gas as the main raw materials, chemical reaction, processing and production to produce various chemical products. In practice, on-site operator conduct scheduling through rule of thumb and the simple rules of dispatching, however the scheduling performance is usually worse (i.e. longer makespan or more transition products). In addition, only a few people know that the rule of thumb that is hard to manage knowledge effectively in the company. This study proposes the engineering experience sheets to characterize the production characteristics and the constraints in petrochemical industry and develop a heuristic algorithm based on the sheets for generating the feasible scheduling. This study focuses on three key production issues – reducing capacity loss (reducing the production of transitional products), enhancing production yield (defective products depending on the number of transitions), and meeting customer delivery requirements. Then proposing a multi-objective genetic algorithm embedded with reinforcement learning technique to solve the scheduling problem. The study defines the state, action, and reward of genetic operators and developed in reinforcement learning to fine tune the hyperparameters or to select the appropriate mechanism of genetic operators in multi-objective genetic algorithm. An empirical study of petrochemical industry was conducted to validate the proposed algorithms. The results show that the multi-objective genetic algorithm embedded with reinforcement learning can provide better performance than the current heuristic algorithm in the petrochemical production scheduling.

    中文摘要 I Abstract II Table of Contents V List of Figures VII List of Tables IX Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Problem Description and Research Purposes 3 1.3 Research Overview and Framework 6 Chapter 2. Literature Review 8 2.1 Related Research of Production Scheduling 8 2.1.1 Scheduling in petrochemical industry 9 2.1.2 Genetic Algorithm applied in Production Scheduling 12 2.1.3 Multi-Objective Scheduling problem 12 2.2 Related Research of Reinforcement Learning 14 2.2.1 Genetic Algorithm combined with reinforcement learning 14 2.2.2 Multi-Objective Reinforcement Learning 17 2.3 Fundamental for Proposed Framework 19 2.3.1 Genetic Algorithm (GA) 19 2.3.2 Non-dominated Sorting Genetic Algorithm II (NSGA-II) 21 2.3.3 Reinforcement Learning and Markov Decision Process 25 2.3.4 Density-based spatial clustering of applications with noise 27 2.3.5 Rank Correlation Coefficient 28 Chapter 3. The proposed Engineering Experience Heuristic for Petrochemical Production Scheduling 30 3.1 The Proposed Framework 30 3.2 Problem Definition 31 3.3 Petrochemical Industry’s characteristics and constraints related to production scheduling 34 3.4 The Design of the engineering experience reference sheets about production constraints and characteristics 37 3.5 The proposed Engineering Experience Heuristic (EEH) for generating feasible production scheduling 41 3.6 Empirical Study and Discussion 45 Chapter 4. Multi-objective Genetic Algorithm and Reinforcement Learning for Petrochemical Production Scheduling 47 4.1 The Proposed Framework 47 4.2 Problem Definition 49 4.3 Non-dominated Sorting Genetic algorithm II Design 50 4.4 Non-dominated Sorting Genetic Algorithm II embedded with Reinforcement Learning (NSGAeRL) Design 57 4.4.1 The first stage of NSGAeRL 60 4.4.2 The second stage of NSGAeRL 65 4.5 Empirical Study and Discussion 66 Chapter 5. Conclusion and Future Research 71 Reference 73 Appendix 76

    Abdi, H. (2007). The Kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA, 508-510.
    Abdullah, S., Shamayleh, A., & Ndiaye, M. (2016). Capacitated lot-sizing and scheduling with sequence-dependent setups in petrochemical plants. Paper presented at the Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia.
    Alipour, M. M., Razavi, S. N., Derakhshi, M. R. F., & Balafar, M. A. (2018). A hybrid algorithm using a genetic algorithm and multiagent reinforcement learning heuristic to solve the traveling salesman problem. Neural Computing and Applications, 30(9), 2935-2951.
    Arbiza, M. J., Bonfill, A., Guillén, G., Mele, F. D., Espuna, A., & Puigjaner, L. (2008). Metaheuristic multiobjective optimisation approach for the scheduling of multiproduct batch chemical plants. Journal of Cleaner Production, 16(2), 233-244.
    Bellman, R. (1957). Dynamic programming: Princeton univ. press. N・J, 95.
    Blömer, F., & Günther, H.-O. (1998). Scheduling of a multi-product batch process in the chemical industry. Computers in industry, 36(3), 245-259.
    Blomer, F., & Gunther, H.-O. (2000). LP-based heuristics for scheduling chemical batch processes. International Journal of Production Research, 38(5), 1029-1051.
    Chen, Q., Huang, M., Xu, Q., Wang, H., & Wang, J. (2020). Reinforcement Learning-Based Genetic Algorithm in Optimizing Multidimensional Data Discretization Scheme. Mathematical Problems in Engineering, 2020.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on evolutionary computation, 6(2), 182-197.
    Dunford, N., Schwartz, J. T., Bade, W. G., & Bartle, R. G. (1967). Linear operators: General theory: Interscience Publishers.
    Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Paper presented at the Kdd.
    Graves, S. C. (1981). A review of production scheduling. Operations research, 29(4), 646-675.
    Hill, A., Cornelissens, T., & Sörensen, K. (2016). Efficient multi-product multi-BOM batch scheduling for a petrochemical blending plant with a shared pipeline network. Computers & Chemical Engineering, 84, 493-506.
    Holland, J. (1975). Adaptation in natural and artificial systems, univ. of mich. press. Ann Arbor.
    Howard, R. A. (1960). Dynamic programming and markov processes.
    Kondili, E., Pantelides, C. C., & Sargent, R. W. (1993). A general algorithm for short-term scheduling of batch operations—I. MILP formulation. Computers & Chemical Engineering, 17(2), 211-227.
    Koza, J. R. (1997). Future work and practical applications of genetic programming. Handbook of Evolutionary Computation, H1.
    Lei, D. (2008). A Pareto archive particle swarm optimization for multi-objective job shop scheduling. Computers & Industrial Engineering, 54(4), 960-971.
    Liu, F., & Zeng, G. (2009). Study of genetic algorithm with reinforcement learning to solve the TSP. Expert Systems with Applications, 36(3), 6995-7001.
    Mihaylov, M., Jurado, S., Avellana, N., Van Moffaert, K., de Abril, I. M., & Nowé, A. (2014). NRGcoin: Virtual currency for trading of renewable energy in smart grids. Paper presented at the 11th International conference on the European energy market (EEM14).
    Murata, T., & Ishibuchi, H. (1994). Performance evaluation of genetic algorithms for flowshop scheduling problems. Paper presented at the Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
    Omar, M., Baharum, A., & Hasan, Y. A. (2006). A Job-shop Scheduling Problem (JSSP) Using Genetic Algorithm (GA). Paper presented at the Proceedings of the 2nd im TG T Regional Conference on Mathematics, Statistics and Applications Universiti Sains Malaysia.
    Sadegheih, A. (2006). Scheduling problem using genetic algorithm, simulated annealing and the effects of parameter values on GA performance. Applied Mathematical Modelling, 30(2), 147-154.
    Sehgal, A., La, H., Louis, S., & Nguyen, H. (2019). Deep reinforcement learning using genetic algorithm for parameter optimization. Paper presented at the 2019 Third IEEE International Conference on Robotic Computing (IRC).
    Vamplew, P., Yearwood, J., Dazeley, R., & Berry, A. (2008). On the limitations of scalarisation for multi-objective reinforcement learning of pareto fronts. Paper presented at the Australasian Joint Conference on Artificial Intelligence.
    Van Moffaert, K., Drugan, M. M., & Nowé, A. (2013a). Hypervolume-based multi-objective reinforcement learning. Paper presented at the International Conference on Evolutionary Multi-Criterion Optimization.
    Van Moffaert, K., Drugan, M. M., & Nowé, A. (2013b). Scalarized multi-objective reinforcement learning: Novel design techniques. Paper presented at the 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).
    Van Moffaert, K., & Nowé, A. (2014). Multi-objective reinforcement learning using sets of pareto dominating policies. The Journal of Machine Learning Research, 15(1), 3483-3512.
    Van Otterlo, M. (2009). Markov decision processes: concepts and algorithms. Course on ‘Learning and Reasoning.
    Wu, C.-M. (2019). An Empirical Study of Two-Phase Multi-Objective Genetic Algorithm for Lithography Scheduling in Semiconductor DRAM Fab. (Master). National Cheng Kung University, Tainan. Retrieved from https://hdl.handle.net/11296/p5tey6
    Wu, M.-Y. (2016). Multi-Objective Stochastic Scheduling Optimization: A Study of Auto Parts Manufacturer in Taiwan. (Master). National Cheng Kung University, Tainan. Retrieved from https://hdl.handle.net/11296/4e23b3
    Zar, J. H. (2005). Spearman rank correlation. Encyclopedia of Biostatistics, 7.
    Zhang, Y., Feng, Y., & Rong, G. (2018). Data-driven rolling-horizon robust optimization for petrochemical scheduling using probability density contours. Computers & Chemical Engineering, 115, 342-360.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on evolutionary computation, 7(2), 117-132.

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE