簡易檢索 / 詳目顯示

研究生: 楊順凱
Yang, Shun-kai
論文名稱: 在無線感測器網路中具備能源效率的目標定位機制
An Energy-Efficient Mechanism for Target Localization in Wireless Sensor Networks
指導教授: 斯國峰
Ssu, Kuo-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 47
中文關鍵詞: 目標定位覆蓋率無線感測器能源效率
外文關鍵詞: target localization, wireless sensor network, coverage, energy efficiency
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 追蹤目標並對目標定位是在無線感測器網路中的重要應用,在這些應用中,感測器蒐集、監視並追蹤目標的移動行為。但感測器的能源通常是由有限的電池所供應,因此能源的使用效率問題是在無線感測器網路中是不可或缺的。大部分現存的目標追蹤協定需要定期地喚醒感測器以追蹤目標,也因此產生了不必要的能源消耗。在這篇論文中提出了一個具有能源效率的目標定位機制,為了要節省能源,該協定固定了追蹤目標的感測器數量,但仍然維持目標定位的品質在可接受的水準。藉由只選擇一小部分的感測器來做定位,其他沒有被選到的感測器可以直接進入睡眠狀態而不是定期地醒來追蹤目標。由模擬結果顯示了該機制不但節省了龐大的能量還延長了感測器網路的生命週期。

    Target tracking and localization are important applications in wireless sensor networks. In these applications, sensor nodes collectively monitor and track the movement of a target. They have limited energy supplied by batteries, so energy efficiency is essential for sensor networks. Most existing target tracking protocols need to wake up sensors periodically to perform tracking. Some unnecessary energy waste is thus introduced. In this thesis, an energy efficient mechanism for target localization is proposed. In order to preserve energy, the protocol fixes the number of sensors for target tracking, but it retains the quality of target localization in an acceptable level. By selecting a set of sensors for target localization, the other sensors can sleep rather than periodically wake up to track the target. Simulation results show that the proposed mechanism saves a significant amount of energy and also prolongs the network lifetime.

    Chapter 1 Introduction .......................................... 1 2 Related Work .......................................... 4 2.1 Network Coverage .................................... 4 2.2 Localization ........................................ 6 2.2.1 RSSI .............................................. 6 2.2.2 ToA and TDoA ...................................... 6 2.2.3 AoA ............................................... 7 2.3 Target Tracking ..................................... 7 3 System Model .......................................... 9 3.1 Signal Propagation Model ........................... 10 3.2 Localization Method ................................ 11 4 Proposed Scheme ...................................... 13 4.1 Network Initialization Phase ....................... 15 4.2 Node Selection Phase ............................... 17 4.3 Target Tracking Phase .............................. 21 5 Analysis ............................................. 27 5.1 Node Density ....................................... 27 5.2 Number of Working Sensors .......................... 28 5.3 Energy Consumption ................................. 29 5.4 Analytic Performance Study ......................... 31 5.4.1 Number of Nodes .................................. 31 5.4.2 Size of Area ..................................... 31 5.4.3 Node Density ..................................... 32 5.4.4 Sampling Rate .................................... 32 6 Performance Evaluation ............................... 34 6.1 Coverage Ratio ..................................... 35 6.2 Quality of Target Localization ..................... 37 6.3 Energy Consumption ................................. 37 6.4 Network Lifetime ................................... 40 7 Conclusion and Future Work ........................... 42 7.1 Conclusion ......................................... 42 7.2 Future Work ........................................ 43 References ............................................. 44 Vita ................................................... 47

    [1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor Networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, August 2002.
    [2] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated Coverage and Connectivity Configuration in Wireless Sensor Networks,” in Proceedings of the
    1st International Conference on Embedded Networked Sensor Systems, Los Angeles, California, USA, November 2003, pp. 28–39.
    [3] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An Energy-efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks,”
    vol. 8, no. 5, pp. 481–494, September 2002.
    [4] H. Zhang and J. C. Hou, “Maintaining Sensing Coverage and Connectivity in Large Sensor Networks,” Ad Hoc & Sensor Wireless Networks, vol. 1, no. 1-2, pp. 89–124,
    March 2005.
    [5] C. F. Huang and Y. C. Tseng, “The Coverage Problem in a Wireless Sensor Network,” in Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications, San Diego, CA, USA, September 2003, pp. 115–121.
    [6] T. T. Wu and K. F. Ssu, “Determining Active Sensor Nodes for Complete Coverage without Location Information,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 1, no. 1-2, pp. 38–46, 2005.
    [7] W. Wang, V. Srinivasan, K.-C. Chua, and B. Wang, “Energy-efficient Coverage for Target Detection in Wireless Sensor Networks,” in Proceedings of the 6th International Conference on Information Processing in Sensor Networks, Cambridge, Massachusetts, USA, April 2007, pp. 313–322.
    [8] ——, “Coverage for Target Localization in Wireless Sensor Networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 2, pp. 667–676, February 2008.
    [9] C. H. Ou, K. F. Ssu, and H. C. Jiau, “Range-Free Localization with Aerial Anchors in Wireless Sensor Networks,” International Journal of Distributed Sensor Networks, vol. 2, no. 1, pp. 1–21, January 2006.
    [10] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless Sensor Networks Localization Techniques,” Computer Networks: The International Journal of Computer and
    Telecommunications Networking, vol. 51, no. 10, pp. 2529–2553, July 2007.
    [11] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-Based User Location and Tracking System,” in 19th Annual Joint Conference of the IEEE Computer and
    Communications Societies, vol. 2, March 2000, pp. 775–784.
    [12] B. H.Wellenhoff, H. Lichtenegger, and J. Collins, Global Positioning System: Theory and Practice. Heidelberg: Springer Verlag, 1997.
    [13] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic Fine-grained Localization in Ad-Hoc Networks of Sensors,” in Proceedings of the 7th Annual International
    Conference on Mobile Computing and Networking, Rome, Italy, July 2001, pp. 166–179.
    [14] D. Niculescu and B. Nath, “Ad Hoc Positioning System (APS) Using AoA,” in 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 3, March 2003, pp. 1734–1743.
    [15] J. L. M. Broxton and J. Paradiso, “Localizing a Sensor Network via Collaborative Processing of Global Stimuli,” in Proceeedings of the 2nd European Workshop on
    Wireless Sensor Networks, January 2005, pp. 321–332.
    [16] F. Zhao, J. Shin, and J. Reich, “Information-driven Dynamic Sensor Collaboration,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 61–72, March 2002.
    [17] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus, “Tracking a Moving Object with a Binary Sensor Network,” in Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, California, USA, November 2003, pp. 150–161.
    [18] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri, “Target Tracking with Binary Proximity Sensors: Fundamental Limits, Minimal Descriptions, and Algorithms,”
    in Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, Boulder, Colorado, USA, March 2006, pp. 251–264.
    [19] H. Yang and B. Sikdar, “A Protocol for Tracking Mobile Targets Using Sensor Networks,” in Proceedings of the 1st IEEE International Workshop on Sensor Network
    Protocols and Applications, May 2003, pp. 71–81.
    [20] W. Zhang and G. Cao, “DCTC: Dynamic Convoy Tree-based Collaboration for Target Tracking in Sensor Networks,” IEEE Transaction on Wireless Communications, vol. 3, no. 5, pp. 1689–1701, September 2004.
    [21] ——, “Optimizing Tree Reconfiguration for Mobile Target Tracking in Sensor Networks,” in 23rd Annual Joint Conference of the IEEE Computer and Communications
    Societies (INFOCOM), vol. 4, March 2004, pp. 2434–2445.
    [22] C. Gui and P. Mohapatra, “Power Conservation and Quality of Surveillance in Target Tracking Sensor Networks,” in Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, Philadelphia, PA, USA, September 2004, pp. 129–143.
    [23] X. Du and F. Lin, “Efficient Energy Management Protocol for Target Tracking Sensor Networks,” in 9th IFIP/IEEE International Symposium on Integrated Network
    Management, May 2005, pp. 45–58.
    [24] T. S. Rappaport, Wireless Communications: Principles and Practice. Upper Saddle River, NJ, United States: Prentice Hall, 2001.
    [25] P. Hall, Introduction to the Theory of Coverage Processes. Hoboken, NJ, United States: Wiley, 1988.
    [26] “The Network Simulator – ns-2,” http://www.isi.edu/nsnam/ns/.
    [27] M. L. Sichitiu and V. Ramadurai, “Localization of Wireless Sensor Networks with a Mobile Beacon,” in IEEE International Conference on Mobile Ad-hoc and Sensor
    Systems (MASS), October 2004, pp. 174–183.

    下載圖示 校內:2012-08-19公開
    校外:2014-08-19公開
    QR CODE