簡易檢索 / 詳目顯示

研究生: 黃正雅
Huang, Cheng-Ya
論文名稱: 神經病患比目魚肌痙攣之神經與機械成分探討
Neural and Mechanical Components in the Soleus Muscles of Spastic Patients
指導教授: 黃英修
Hwang, Ing-Shiou
學位類別: 碩士
Master
系所名稱: 醫學院 - 物理治療學系
Department of Physical Therapy
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 82
中文關鍵詞: 肌音肌痙攣H反射
外文關鍵詞: H reflex, spasticity, mechanomyogram
相關次數: 點閱:79下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章

    緒論

      肌肉痙攣是一種運動神經失調,使得牽張反射過度容易啟動,並伴隨過當的神經肌肉反應與肌肉牽張時阻力的異常增加[3][4]。在神經學上,肌肉痙攣為上運動神經元症狀的一種臨床表徵;控制脊髓反射的下行路徑包括興奮性與抑制性路徑,而因神經損傷造成的肌肉痙攣主要是抑制與興奮路徑失去平衡,整體來說是抑制性的訊號減少所致[1][2]。肌肉痙攣主要可分成兩種形式,分別為大腦形式與脊髓形式,可以中風病患與脊椎損傷病患為代表,這兩種不同形式主要是因為不同解剖位置的損傷,而造成生理學上的差異,其表現出來的症狀也會不同。目前已知在大腦形式上,抗地心引力的肌肉表現較為明顯,而脊髓形式在屈肌與伸肌都容易有肌肉痙攣的情形[2][6]。
      被動拉長肌肉時感覺肌肉阻力增加的原因,主要有神經成分與機械成分,而影響肌肉痙攣的原因可分為三個層面,分別為上脊椎層面、脊椎層面(神經成分)與週邊層面(機械成分),在神經成分上主要是alpha運動神經元過於興奮造成反射增大,而機械成分是因肌痙攣患者常有肌肉機械特質的改變,例如:第二類(type II)肌肉萎縮的情形、肌節數目減少使肌肉長度減少[10][14][15],造成肌肉的剛性增加[12][13],而之前研究顯示機械特質的改變無法直接由反射過大來解釋[16][17]。然而,現有量化肌肉痙攣的方式,不論是鐘擺測試(pendulum test)[20][21]、牽張反射(stretch reflex)[11]、肌腱反射(tendon reflex)[27][28]、H反射技術[25][26]等等,不是很難區分肌痙攣中神經與機械成分造成的交互影響,就是以偏蓋全地強調神經成分;同時這些評估與臨床上所觀察到病患肌痙攣程度、功能影響程度也有明顯之落差[40] [41] [42]。配合H反射技術的神經成分檢測,本研究將首次提出肌音訊號(MMG)應用,來定量人體肌肉痙攣機械成分。肌音訊號約在1800年被正式提出[47],藉由肌肉收縮時肌纖維彼此間會產生滑動而產生類似音頻震動,反應肌肉張力、剛性等等肌肉內在機械特質[52][53][54]。
      回顧過去相關的肌痙攣研究,迄今仍無研究同時量化肌痙攣中神經與機械成分,並進一步研究肌痙攣神經、機械成分在功能上之意義。所以本實驗將探討代表大腦形式的中風患者與代表脊髓形式的脊椎損傷患者肌痙攣中神經、機械成分的改變,並對神經、機械成分與臨床肌痙攣量測、功能量表結果的相關性做進一步研究。

    第二章

    方法

      本實驗所使用的設備包括:(1)硬體部分:H反射電刺激器(Model S88, Grass Instruments, USA)、個人電腦、生理訊號濾波放大器(Model 7P511, Grass Instrument, USA)、3個肌電表面電極(Gereonics Inc., USA)與1個肌音表面電極(Nihon Kohden MT-3T, Japan)。(2)軟體部分:Labview 6.0(National Instruments, TX, USA)、Matlab 6.5(The Math Work Inc. USA)、SPSS 11.0(SPSS, USA)。
      本實驗共計有4組受試者:(1)脊椎損傷病患組:11位男性、4位女性脊椎損傷病患,平均年齡為34.13 ± 11.46歲。(2)中風病患組:16位男性、3位女性中風病患,平均年齡為52.11 ± 8.82歲。(3)脊椎損傷病患之控制組:9位男性、7位女性與脊椎損傷病患年紀相符的健康受試者,平均年齡為34.13 ± 11.46歲。(4)中風病患之控制組:3位男性、11位女性與中風病患年紀相符的健康受試者,平均年齡為47.57 ± 9.60歲。將表面電極黏貼於慣用腳比目魚肌肌腹,電刺激之陰極置於後膝窩的後脛神經上、陽極黏貼於髕骨,受試者呈俯臥姿,踝關節固定於正中位置。
      本實驗分成3個主要步驟,實驗過程中受試者皆為放鬆狀態:(1)尋找引起M反應的最小電量(MT),以2.5倍MT電量刺激後脛神經引發最大M反應(Mmax)與最大M反應之肌音訊號值(Mmax_mmg)。(2)尋找最大M反應百分之十所需電量,引發H反射,所得之H反射振幅除以最大M反應振幅,定義為H/Mmax。(3)尋找最大H反射所需之電量,以雙H反射間隔200毫秒收取H反射恢復曲線參數(H2/H1)。步驟(1)(2)(3)以隨機順序方式施測,每個參數各重複收取8次。脊椎損傷與中風病患除上述電生理參數外,另外由一位具執照的治療師施測臨床量表,包括埃許瓦斯量表修改版(Modified Ashworth Scale, MAS)、巴氏量表(Barthel Index)、傅格梅爾動作量表(Fugl-Meyer motor assessment)的下肢部分、賓氏痙攣頻率自我評估量表(Penn spasm frequency)。
      在訊號處理上所得之肌音訊號經由傅立葉轉換得中位頻率,以t檢定(Student t test)比較:1).脊椎損傷病患組與其控制組;2).中風病患組與其控制組;3).脊椎損傷病患組與中風病患組之間,前述各項電生理參數之組間差異。此外,各項電生理參數與臨床量表結果的相關性以斯皮爾曼等級相關(Spearman rank correlation)來檢測,由相關性的檢測中選取與埃許瓦斯量表修改版結果有顯著相關之電生理參數放入多重邏輯式回歸(multiple logistic regression),探討其對埃許瓦斯量表修改版量測結果的解釋力。

    第三章

    結果

      實驗結果共分兩部份陳述,第一部分為脊椎損傷病患、中風病患與其年齡相符之正常受試者在肌痙攣的神經與機械成分的比較,第二部分為代表肌痙攣神經與機械成分的各項電生理參數與臨床量表結果之相關性。
      在最大M波之肌音訊號強度(Mmax_mmg)、H反射比值(H/Mmax)與雙H反射比值(H2/H1)上,脊椎損傷病患組與中風病患相對於其控制組都有明顯增加的情形(p < 0.05),且脊椎損傷病患組與中風病患組間並無顯著差異,但在最大M反應(Mmax)上,只有脊椎損傷病患組的振幅小於其控制組(p < 0.05),此外,肌音訊號的中位頻率(MDF)也只在中風病患組有顯著增加(p < 0.05)。此結果顯示脊椎損傷病患與中風肌痙攣病患其肌肉的神經、機械成分與健康受試者皆有不同。
      各項電生理參數與臨床量表之相關性分析結果顯示:埃許瓦斯量表修改版(MAS)之結果除了與H反射比值(H/Mmax)有顯著相關(ρ = 0.540, p = 0.001)外,也和最大M波肌音訊號強度(Mmax_mmg)有明顯的相關性(ρ = 0.432, p = 0.011),而賓氏痙攣頻率自我評估量表(Penn spasm frequency)與肌音訊號的中位頻率(MDF)有顯著負相關(ρ = -0.355, p = 0.039)、巴氏量表(Barthel Index)僅與最大M波肌音訊號強度(Mmax_mmg)有明顯的負相關(ρ = -0.397, p = 0.020),但下肢部分之傅格梅爾動作量表(Fugl-Meyer motor assessment)與各項電生理參數並無相關。由多重邏輯式回歸(multiple logistic regression)的結果發現脊椎損傷與中風肌痙攣病患之H反射比值(H/Mmax)與肌音訊號強度(Mmax_mmg)可解釋埃許瓦斯量表修改版(MAS)之變異達百分之38.4(ρ = 0.620, p < 0.001),因埃許瓦斯量表修改版(MAS)包含等級0,代表肌肉張力無增加情形,除肌痙攣病患外,再包含正常受試者資料於多重邏輯式回歸算式中,結果發現對於釋埃許瓦斯量表修改版(MAS)的變異解釋程度增加為百分之55.7(ρ = 0.746, p < 0.001)。

    第四章

    討論

      實驗結果顯示脊椎損傷病患與中風病患最大M波之肌音訊號強度(Mmax_mmg)大於正常受試者,由物理模型上得知,肌音電極產生的波動壓力與其感受到的肌纖維之加速度成正比,因此肌痙攣病患最大M波之肌音訊號強度變大代表肌肉剛性增加,此肌肉剛性增加的推論印証之前學者發現肌痙攣肌肉在生物力學特徵上的改變;另外本研究發現僅有中風病患的中位頻率高於其控制組,因頻率的改變主要受肌肉長度與張力影響,推測可能是中風病患伸肌張力較強使其踝關節容易維持在蹠屈位置,造成比目魚肌肌節數減少與肌肉長度變短所致,綜觀以上論述,肌音訊號時閾與頻閾的改變代表肌痙攣病患的機械成分與正常受試者確有不同,且其機械成分的改變可能會因病源學而異。
      在神經成分上,脊椎損傷病患與中風病患的H反射比值(H/Mmax)與雙H反射比值(H2/H1)明顯高於正常受試者,此結果與之前多數研究類似,代表肌痙攣病患的運動神經元過度興奮與上脊椎傳入訊息異常;此外,脊椎損傷病患最大M反應(Mmax)減小可能是肌纖維萎縮、運動單元數減少所致。
      在相關性研究分析上,埃許瓦斯量表修改版(MAS)與H反射比值(H/Mmax)、最大M波之肌音訊號強度(Mmax_mmg)皆有顯著相關,且後兩者間為統計獨立變項;多變數邏輯迴歸分析顯示,H反射比值與最大M波之肌音訊號在統計上可共同有效地解釋埃許瓦斯量表修改版的迴歸變異數,表示H反射比值與最大M波之肌音訊號強度代表不同之肌痙攣成分,而且除神經成分外,機械成分的改變同是影響肌痙攣嚴重程度的要素;至於無法完全解釋的埃許瓦斯量表修改版變異數的部分,部分導因可能為埃許瓦斯量表修改版量表在下肢測試信度較低所造成。在日常活動評估上,巴氏量表(Barthel Index)僅與代表肌痙攣機械成分的最大M波之肌音訊號強度相關;賓氏痙攣頻率自我評估量表(Penn spasm frequency)與肌音訊號的中位頻率(MDF)有顯著負相關,顯示病患日常生活活動缺損、痙攣頻率與肌肉機械特質的關聯大於神經成分;此外,下肢部分之傅格梅爾動作量表(Fugl-Meyer motor assessment)與各項電生理參數並無相關,雖然如此,並不一定代表動作功能與肌痙攣成分全然無關,需考慮本研究肌痙攣的各項評估均在肌肉放鬆狀態進行,然而肌痙攣表現在肌肉放鬆與活動時可能有明顯的差異。

    第五章

    結論

      本研究以H反射技術為探討工具,配合H/Mmax、H2/H1與肌音訊號參數(Mmax_mmg),研究脊椎損傷與中風病患其肌痙攣的神經與機械成分,並進一步探討神經、機械成分與臨床觀察之肌痙攣程度、功能損傷的相關性。
      研究結果顯示病患的H/Mmax與H2/H1比值明顯高於正常受試者,代表肌痙攣病患在運動神經元興奮度異常,此外,病患在肌音訊號強度與中位頻率的改變顯示其肌肉機械特質與正常肌肉確有不同。在相關性研究結果發現同時考慮Mmax_mmg與H/Mmax兩項參數可解釋臨床常使用之埃許瓦斯量表修改版(MAS)量測的肌痙攣結果達百分之38.4,而代表基本日常生活功能的巴氏量表(Barthel Index)僅與Mmax_mmg有顯著相關,此結果顯示相較於肌痙攣的神經成分,病患日常生活功能損傷與其肌肉機械特質異常有更顯著的關係;然而代表動作功能的傅格梅爾動作量表(Fugl-Meyer motor assessment)卻與肌痙攣各項參數皆無明顯相關性。
      因肌痙攣程度在肌肉放鬆與活動的情況會有不同,病患動作功能損傷情形或許與肌肉活動下的肌痙攣表現較有相關性,所以未來研究的發展,可於肌肉活動情況下研究病患肌痙攣的情形。

      Introduction: The Hoffmann reflex (H reflex) is often used to study spasticity, but it does not correlate well with clinical observation and spasticity-related impairment in motor functions, since H reflex accounts primarily for spinal pool excitability. The objectives of this study were 1) to characterize the changes in neural and mechanical components of spasticity for neurological patients with cerebral and spinal lesions using modified H reflex which included innovative use of mechanomyogram (MMG), and 2) to related two components with several clinical scales corresponding to severity of spastic and functional impairments. Methods: Four groups were recruited with consent including spinal cord injury (SCI) group, stroke group and their age-matched control groups. The neural component of spasticity was represented with the adjusted ratio of H reflex to the maximal M response (H/Mmax) and the ratio of paired H reflexes with interpulse interval of 200 msec (H2/H1). To characterize mechanical component in spasticity, amplitude and median frequency of maximal M response recorded with MMG signal were assessed. Clinical functional scales such as Modified Ashworth Scale (MAS), Barthel index, Fugl-Meyer motor assessment and Penn spasm frequency were evaluated by another licensed physical therapist for blind purpose. Results: Significant larger H/Mmax ratio, H2/H1 ratio and amplitude of Mmax_mmg were observed in SCI and stroke groups than their age-matched groups (p < 0.05), but no significant difference in above-mentioned measurements was found between both patient groups. The only exceptions were Mmax which was significantly decreased only in SCI group (p = 0.027) and MDF of Mmax_mmg was significantly increased in stroke group (p = 0.006) in comparison with their control groups. These findings strongly indicated that there were obvious neurophysiological and biomechanical changes in a spastic muscle for patients in SCI and stroke groups. The connection between neural and mechanical components with clinical assessment was scale-dependent. MAS correlated significantly with H/Mmax (ρ = 0.540, p = 0.001) and amplitude of Mmax_mmg (ρ = 0.432, p = 0.011) accounting for the variance of MAS for 55.7% (ρ = 0.746, p < 0.001), if normal subjects whose muscle tone were grade 0 were included. For the other clinical functional scales, Barthel index merely correlated with the amplitude of Mmax_mmg (ρ = -0.397, p = 0.020) and Penn spasm frequency related inversely to MDF of Mmax_mmg (ρ = -0.355, p = 0.039), but Fugl-Meyer motor assessment did not correlate with any spasticity measurement. Conclusion: With the use of modified H reflex, the present study quantitatively identified neural and mechanical components intrinsic with spasticity in patients with SCI and stroke. Only mechanical component of spasticity related to daily activities evaluated with Barthel index, but functional outcomes of patients scored by Fugl-Meyer test was surprisingly independent of any parameters in spasticity quantification. As spasticity measurement in this study was performed on a spastic muscle in relaxed condition, further development will focus on characterizing spasticity dynamically when a spastic muscle activates for motor tasks. It might give better insight into spasticity and explore appropriately the relationship between functional outcomes and spasticity.

    Abstract ……………………………………………………………………… I Chinese Abstract……………………………………………………………… IV List of Tables………………………………………………………………… XVII List of Figures……………………………………………………………… XVIII Chapter 1: Introduction…………………………………………………… 1 1.1 Overview of Spasticity…………………………………………… 1 1.1.1 Definition and Classification…………………………… 1 1.1.2 Neural and Mechanical Components of Spasticity……… 2 1.1.3 Clinico-pathological Correlations……………………… 3 1.2 Related Literature…………………………………………………… 4 1.2.1 Biomechanical Measurements of Spasticity……………… 4 1.2.2 Electrophysiological Measurements of Spasticity……… 5 1.2.3 Problems in Association with Spasticity Quantification 8 1.2.4 Characterization of Musculotendon Complex with Mechanomyogram…………………………………………………… 9 1.2.5 Rationales………………………………………………………… 10 1.3 Significance of the Problems………………………………………… 12 1.4 Hypotheses………………………………………………………………… 13 Chapter 2: Methods……………………………………………………………… 14 2.1 Subjects…………………………………………………………………… 14 2.2 Procedures………………………………………………………………… 15 2.2.1 H-Reflex & MMG Recruitment Curve…………………………… 17 2.2.2 H-Reflex Recovery Curve……………………………………… 27 2.2.3 Testing Protocol………………………………………………… 37 2.2.4 Clinical Measurements for Patients with Spinal Cord Injury and Stroke………………………………………………… 38 2.3 Data and Statistical Analysis………………………………………… 39 Chapter 3: Results………………………………………………………………… 41 3.1 Neural and Mechanical Components of Spasticity and Related Clinical Assessment.…………………………………………………… 41 3.1.1 Features of Spasticity in the SCI Group………………… 41 3.1.2 Features of Spasticity in the Stroke Group……………… 47 3.1.3 Comparison of Neuronal and Mechanical Components of Spasticity between the SCI and Stroke Groups…………… 53 3.2 Correlations Analysis of Neural and Mechanical Components with Clinical Scales…………………………………………………… 54 Chapter 4: Discussion…………………………………………………………… 58 4.1 Mechanical Component of Spasticity………………………………… 58 4.1.1 Increased Amplitude of Mmax_mmg in SCI and Stroke Patients…………………………………………………………… 58 4.1.2 Increased MDF of Mmax_mmg in Stroke Patients…………… 59 4.2 Neural Components of Spasticity…………………………………… 60 4.2.1 Increased Potentiation of the H/Mmax Ratio in SCI and Stroke Patients………………………………………………… 60 4.2.2 Increased Potentiation of the H2/H1 Ratio in SCI and Stroke Patients………………………………………………… 61 4.2.3 Reduction in Mmax for SCI Patients………………………… 63 4.3 MAS vs. Neural and Mechanical Components of Spasticity……… 63 4.4 Neural and Mechanical Components of Spasticity in Relation to Functional Impairments…………………………………………… 66 Chapter 5: Conclusion…………………………………………………………… 69 References………………………………………………………………………… 71

    1. Sheean G: The pathophysiology of spasticity. Eur J Neurol. 9(Suppl 1): 3-9,
    2002
    2. Mayer NH: Clinicophysiologic Conceps of Spasticity and Motor Dysfunction in
    Adults with an Upper Motoneuron Lesion. Muscle Nerve Suppl. 6: S1-S13, 1997
    3. Herman R: The myotatic reflex. Clinico-physiological aspects of spasticity
    and contracture. Brain. 93(2): 273-312, 1970
    4. Knutsson E, Martensson A: Dynamic motor capacity in spastic paresis and its
    relation to prime mover dysfunction, spastic reflexes and antagonist
    co-activation. Scand J Rehabil Med. 12(3): 93-106, 1980
    5. Barnes MP, Johnson GR: Upper motor neuron syndrome and spasticity: Clinical
    management and neurophysiology. Cambridge University Press. pp 21-28, 2001
    6. Glenn MB, Whyte J: The Practical Management of Spasticity in Children and
    Adults. International Copyright Union. pp 19-43, 1990
    7. Young RR.: Spasticity: a review. Neurology. 44(suppl 9): S12-S12, 1994
    8. Carr LJ., Harrison LM., Evans AL., Stephens JA.: Patterns of central motor
    reorganization in hemiplegic cerebral palsy. Brain. 116(5): 1223-1247, 1993
    9. Lance JW. Symposium synopsis. In: Feldman RG, Young RR, Koella WP (eds.)
    Spasticity: Disordered Motor Control. Chicago: Year Book Medical Publishers.
    pp 485- 494, 1980
    10. Singer B., Dunne J., Allison G.: Reflex and non-reflex elements of hypertonia
    in triceps surae muscles following acquired brain injury: implications for
    rehabilitation. Disabil Rehabil. 23(17): 749-757, 2001
    11. Katz RT, Rymer WZ: Spastic Hypertonia: Mechanisms and Measurement. Arch Phys
    Med Rehabil. 70: 144-155, 1989
    12. Dietz V.: Spastic movement disorder. Spinal Cord. 38(7): 389-393, 2000
    13. Sinkjaer T., Toft E., Larsen K., Andreassen S., Hansen HJ.: Non-reflex and
    reflex mediated ankle joint stiffness in multiple sclerosis patients with
    spasticity. Muscle Nerve. 16: 69-76, 1993
    14. Edstrom L.: Selective changes in the sizes of red and white muscle fibres in
    upper motor lesions and Parkinsonism. J Neurol Sci. 11(6): 537-550, 1970
    15. Dietz V., Ketelsen UP., Berger W., Quintern J.: Motor unit involvement in
    spastic paresis. Relationship between leg muscle activation and
    histochemistry. J Neurol Sci. 75(1): 89-103, 1986
    16. Sinkjaer T, Magnussen I: Passive, intrinsic and reflex-mediated stiffness in
    the ankle extensors of hemiparetic patients. Brain. 117(2): 355-363, 1994
    17. Lee WA, Boughton A, Rymer WZ: Absence of stretch reflex gain enhancement in
    voluntarily activated spastic muscle. Exp Neurol. 98(2): 317-335, 1987
    18. Perry J.: Determinants of muscle function in the spastic lower extremity.
    Clin Orthop. 288: 10-26, 1993
    19. Becher JG., Harlaar J., Lankhorst GJ., Vogelaar TW.: Measurement of impaired
    muscle function of the gastrocnemius, soleus, and tibialis anterior muscles
    in spastic hemiplegia: a preliminary study. J Rehabil Res Dev. 35(3): 314-
    326, 1998
    20. Bajd T, Bowman RG: Testing and modeling of spasticity. J Biomed Eng. 4: 90-
    96, 1982
    21. Bajd T, Vodovnik L: Pendulum testing of spasticity. J Biomed Eng. 6: 9-16,
    1984
    22. Lamontagne A., Malouin F., Richards CL., Dumas F.: Evaluation of reflex- and
    nonreflex-induced muscle resistance to stretch in adults with spinal cord
    injury using hand-held and isokinetic dynamometry. Phys Ther. 78(9): 964-978,
    1998
    23. Boiteau M., Malouin F., Richards CL.: Use of a hand-held dynamometer and a
    Kin-Com dynamometer for evaluating spastic hypertonia in children: a
    reliability study. Phys Ther. 75(9): 796-802, 1995
    24. Malouin F., Bonneau C., Pichard L., Corriveau D.: Non-reflex mediated changes
    in plantarflexor muscles early after stroke. Scand J Rehabil Med. 29: 147-
    153, 1997
    25. Simonsen EB, Dyhre-Poulsen P: Amplitude of the human soleus H reflex during
    walking and running. J Physiol. 515(3): 929-939, 1999
    26. Williams LR, Sullivan SJ, Seaborne DE, Morelli M: Reliability of individual
    differences for H-reflex recordings. Electromyogr Clin Neurophysiol. 32: 43-
    49, 1992
    27. Latash ML: Neurophysiological Basis of Movement. Human Kinetics. pp 68, 1998
    28. Fellows SJ, Ross HF, Thilmann AF: The limitations of the tendon jerk as a
    maker of pathological stretch reflex activity in human spasticity. J Neurol
    Neurosurg Psychiatry. 56: 531-537, 1993
    29. Yap CB.: Spinal segmental and long-loop reflexes on spinal motoneurone
    excitability in spasticity and rigidity. Brain. 90(4): 887-896, 1967
    30. Gassel MM.: A critical review of evidence concerning long-loop reflexes
    excited by muscle afferents in man. J Neurol Neurosurg Psychiatry. 33: 358-
    362, 1970
    31. Kagamihara Y, Hayashi A, Okuma Y, Nagaoka M, Nakajima Y, Tanaka R:
    Reassessment of H-reflex recovery curve using the double stimulation
    procedure. Muscle Nerve. 21(3): 352-360, 1998
    32. Koelman JH, Willemse RB, Bour LJ, Hilgevoord AA, Speelman JD, Ongerboer de
    Visser BW: Soleus H-reflex tests in dystonia. Mov Disord. 10(1): 44-50, 1995
    33. Panizza M, Balbi P, Russo G, Nilsson J: H-reflex recovery curve and
    reciprocal inhibition of H-reflex of the upper limbs in patients with
    spasticity secondary to stroke. Am J Phys Med Rehabil. 74(5): 357-363, 1995
    34. Sabbahi M, Etnyre B, Al-Jawayed I, Jankovic J: Soleus H-reflex measures in
    patients with focal and generalized dystonia. Clin Neurophysiol. 114(2): 288-
    294, 2003
    35. Chandran AP., Singh H., Kumar P., Marya RK., Maini BK.: Long latency
    cutaneous reflex effect on H-reflex recovery in hemiplegics and paraplegics:
    a longitudinal study for the assessment of motor function. Int J Neurosci.
    48: 347-365, 1989
    36. Rossi A, Mazzocchio R, Schieppati M.: The H reflex recovery curve
    reinvestigated: low-intensity conditioning stimulation and nerve compression
    disclose differential effects of presumed group Ia fibres in man. Hum
    Neurobiol. 6(4): 281-288, 1988
    37. Taylor S., Ashby P., Verrier M.: Neurophysiological changes following
    traumatic spinal lesions in man. J Neurol Neurosurg Psychiatry. 47: 1102-
    1108, 1984
    38. Little JW., Halar EM.: H-reflex changes following spinal cord injury. Arch
    Phys Med Rehabil. 66(1): 19-22, 1985
    39. Garcia-Mullin R., Mayer RF.: H reflexes in acute and chronic hemiplegia.
    Brain. 95: 559-572, 1972
    40. Shemesh Y., Rozin R., Ohry A.: Electrodiagnostic investigation of motor
    neuron and spinal reflex arch (H-reflex) in spinal cord injury. Paraplegia.
    15: 238-244, 1977
    41. Bakheit AM., Maynard VA., Curnow J., Hudson N., Kodapala S.: The relation
    between Ashworth scale scores and the excitability of the alpha motor
    neurones in patients with post-stroke muscle spasticity. J Neurol Neurosurg
    Psychiatry. 74: 646-648, 2003
    42. Olsen PZ., Diamantopoulos E.: Excitability of spinal motor neurones in normal
    subjects and patients with spasticity, Parkinsonian rigidity, and cerebellar
    hypotonia. J Neurol Neurosurg Psychiatry. 30: 325-331, 1967
    43. Hiersemenzel LP, Curt A, Dietz V.: From spinal shock to spasticity: neuronal
    adaptations to a spinal cord injury. Neurology. 54(8): 1574-1582, 2000
    44. Harburn KL, Vandervoort AA, Helewa A et al.: A reflex technique to measure
    presynaptic inhibition in cerebral stroke. Electromyogr Clin Neurophysiol.
    35: 149-163, 1995
    45. Harburn KL, Hill KM, Vandervoort AA et al: Spasticity measurement in stroke:
    a pilot study. Can J Neurol Sci. 83(Suppl 2): S41-S45, 1992
    46. Katz RT., Rovai GP., Brait C., Rymer WZ.: Objective quantification of spastic
    hypertonia: correlation with clinical findings. Arch Phys Med Rehabil. 73(4):
    339-347, 1992
    47. Wollaston WH.: On the duration of muscle action. Philos Trans R Soc London.
    pp 1, 1810
    48. Orizio C.: Muscle sound: bases for the introduction of a mechanomyographic
    signal in muscle studies. Crit Rev Biomed Eng. 21(3): 201-243, 1993
    49. Madeleine P, Bajaj P, Sogaard K, Arendt-Nielsen L.: Mechanomyography and
    electromyography force relationships during concentric, isometric and
    eccentric contractions. J Electromyogr Kinesiol. 11(2): 113-121, 2001
    50. Barry DT.: Acoustic signals from frog skeletal muscle. Biophys J. 51: 769-
    773, 1987
    51. Frangioni JV., Kwan-Gett TS., Dobrunz LE., McMahon TA.: The mechanism of
    low-frequency sound production in muscle. Biophys J. 51: 775-783, 1987
    52. Wolfarth S., Lorenc-Koci E., Schulze G., Ossowska K., Kaminska A., Coper H.:
    Age-related muscle stiffness: predominance of non-reflex factors.
    Neuroscience. 79(2): 617-628, 1997
    53. Cole NM., Barry DT.: Muscle sound frequencies of the frog are modulated by
    skeletal muscle tension. Biophys J. 66(4): 1104-1114, 1994
    54. Weir JP., Ayers KM., Lacefield JF., Walsh KL.: Mechanomyographic and
    electromyographic responses during fatigue in humans: influence of muscle
    length. Eur J Appl Physiol. 81(4): 352-359, 2000
    55. Barry DT, Hill T, Im D.: Muscle fatigue measured with evoked muscle
    vibrations. Muscle Nerve. 15(3): 303-309, 1992
    56. Yang JF, Edamura FM, Blunt R et al.: H-reflex modulation during walking in
    spastic paretic subjects. Can J Neurol Sci. 18: 443-452, 1991
    57. Lehmkuhl LD, Thoi LL, Baize C, Kelley CJ, Krawczyk L, Bontke CF.:
    Multimodality treatment of joint contractures in patients with severe brain
    injury: cost, effectiveness, and integration of therapies in the application
    of serial / inhibitive casts. J Head Trauma Rehabil. 5: 23-42, 1990
    58. Zehr EP: Considerations for use of the Hoffmann reflex in exercise studies.
    Eur J Appl Physiol. 86: 455-468, 2002
    59. Ashworth B.: Preliminary trial of carisoprodol in multiple sclerosis.
    Practitioner. 192: 540-542, 1964
    60. Fugl-Meyer AR., Jaasko L., Leyman I., Olsson S., Steglind S.: The post-stroke
    hemiplegic patient. 1. a method for evaluation of physical performance. Scand
    J Rehabil Med. 7: 13-31, 1975
    61. Marchetti M., Felici F., Bernardi M., Minasi P., Di Filippo L.: Can evoked
    phonomyography be used to recognize fast and slow muscle in man? Int J Sports
    Med. 13: 65-68, 1992
    62. Hwang IS, Tsai IY: Inter-trial variation of soleus H reflex in humans:
    implication for supraspinal influence. Electromyogr Clin Neurophysiol. 42(8):
    507-512, 2002
    63. Collins DF, Brooke JD, McIlroy WE: The independence of premovement H reflex
    gain and kinesthetic requirements for task performance. Electroencephalogr
    Clin Neurophysiol. 89(1): 35-40, 1993
    64. Bohannon R, Smith M: interrater reliability of a modified Ashworth scale of
    muscle spasticity. Phys Ther. 67: 206, 1987
    65. Mahoney FI, Barthel DW: Functional evaluation: the Barthel Index. Md Med J.
    14: 61-65, 1965
    66. Priebe MM, Sherwood AM, Thornby JI, Kharas NF, Markowski J.: Clinical
    assessment of spasticity in spinal cord injury: a multidimensional problem.
    Arch Phys Med Rehabil. 77(7): 713-716, 1996
    67. Richards SH, Peters TJ, Coast J, Gunnell DJ, Darlow MA, Pounsford J: Inter-
    rater reliability of the Barthel ADL index: how does a researcher compare to
    a nurse? Clin Rehabil. 14: 72–78, 2000
    68. Gosman-Hedstrom G, Svensson E: Parallel reliability of the functional
    independence measure and the Barthel ADL index. Disabil Rehabil. 22: 702–
    715, 2000
    69. Hsueh IP, Lee MM, Hsieh CL: The psychometric characteristics of the Barthel
    ADL index in patients with stroke. J Formos Med Assoc. 100: 526-532, 2001
    70. Barry DT., Cole NM.: Fluid mechanics of muscle vibrations. Biophys J. 53(6):
    899-905, 1988
    71. Lorenc-Koci E., Wolfarth S., Ossowska K.: Haloperidol-increased muscle tone
    in rats as a model of parkinsonian rigidity. Exp Brain Res. 109(2): 268-276,
    1996
    72. Lorenc-Koci E., Ossowska K., Wardas J., Konieczny J., Wolfarth S.:
    Involvement of the nucleus accumbens in the myorelaxant effect of baclofen in
    rats. Neurosci Lett. 170: 125-128, 1994
    73. Levin MF, Hui-Chan CH: Are H and stretch reflexes in hemiparesis reproducible
    and correlated with spasticity? J Neurol. 240: 63-71, 1993
    74. Pisano F., Miscio G., Del Conte C., Pianca D., Candeloro E., Colombo R.:
    Quantitative measures of spasticity in post-stroke patients. Clin
    Neurophysiol. 111(6): 1015-1022, 2000
    75. Crayton JW., Rued RR.: An oscillatory component of the H-reflex. Journal of
    Neurology, Neurosurgery, and Psychiatry. 43: 239-242, 1980
    76. Sabbahi M., Etnyre B., Al-Jawayed I., Jankovic J.: Soleus H-reflex measures
    in patients with focal and generalized dystonia. Clin Neurophysiol. 114(2):
    288-294, 2003
    77. Koelman JH., Willemse RB., Bour LJ., Hilgevoord AA., Speelman JD., Ongerboer
    de Visser BW.: Soleus H-reflex tests in dystonia. Mov Disord. 10(1): 44-50,
    1995
    78. Calancie B., Broton JG., Klose KJ., Traad M., Difini J., Ayyar DR.: Evidence
    that alterations in presynaptic inhibition contribute to segmental hypo- and
    hyperexcitability after spinal cord injury in man. Electroencephalogr Clin
    Neurophysiol. 89(3): 177-186, 1993
    79. Allison SC., Abraham LD.: Correlation of quantitative measures with the
    modified Ashworth scale in the assessment of plantar flexor spasticity in
    patients with traumatic brain injury. J Neurol. 242(10): 699-706, 1995
    80. Milanov I.: Clinical and neurophysiological correlations of spasticity. Funct
    Neurol. 14 (4): 193-201, 1999
    81. Higashi T., Funase K., Kusano K., Tabira T., Harada N., Sakakibara A.,
    Yoshimura T.: Motoneuron pool excitability of hemiplegic patients: assessing
    recovery stages by using H-reflex and M response. Arch Phys Med Rehabil.
    82(11): 1604-1610, 2001
    82. Crone C., Hultborn H., Mazieres L., Morin C., Nielsen J., Pierrot-Deseilligny
    E.: Sensitivity of monosynaptic test reflexes to facilitation and inhibition
    as a function of the test reflex size: a study in man and the cat. Exp Brain
    Res. 81(1): 35-45, 1990
    83. Pandyan AD., Price CI., Barnes MP., Johnson GR.: A biomechanical
    investigation into the validity of the modified Ashworth Scale as a measure
    of elbow spasticity. Clin Rehabil. 17(3): 290-204, 2003
    84. Booth CM., Cortina-Borja MJ., Theologis TN.: Collagen accumulation in muscles
    of children with cerebral palsy and correlation with severity of spasticity.
    Dev Med Child Neurol. 43(5): 314-320, 2001
    85. Friden J., Lieber RL.: Spastic muscle cells are shorter and stiffer than
    normal cells. Muscle Nerve. 27(2): 157-164, 2003
    86. Allison SC., Abraham LD., Petersen CL.: Reliability of the Modified Ashworth
    Scale in the assessment of plantarflexor muscle spasticity in patients with
    traumatic brain injury. Int J Rehabil Res. 19(1): 67-78, 1996
    87. Maruishi M., Mano Y., Sasaki T., Shinmyo N., Sato H., Ogawa, T.: Cerebral
    palsy in adults: Independent effects of muscle strength and muscle tone. Arch
    Phys Med Rehabil. 82(5): 637-641, 2001
    88. Lin FM., Sabbahi M.: Correlation of spasticity with hyperactive stretch
    reflexes and motor dysfunction in hemiplegia. Arch Phys Med Rehabil. 80(5):
    526-530, 1999
    89. Lamontagne A., Malouin F., Richards CL.: Contribution of passive stiffness to
    ankle plantarflexor moment during gait after stroke. Arch Phys Med Rehabil.
    81(3): 351- 358, 2000
    90. Orizio C., Baratta RV., Zhou BH., Solomonow M., Veicsteinas A.: Force and
    surface mechanomyogram relationship in cat g

    下載圖示 校內:立即公開
    校外:2004-07-12公開
    QR CODE