| 研究生: |
黃冠欽 Huang, Guan-Chin |
|---|---|
| 論文名稱: |
準分子雷射機率式加工法應用於任意曲面三維微結構之製作 Excimer Laser Micromachining of 3D Microstructures Based on Method of Probability Distribution |
| 指導教授: |
李永春
Li, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 折射式微透鏡 、球面微透鏡 、微光學元件 、機率式加工法 、準分子雷射加工 |
| 外文關鍵詞: | Refractive Microlens, Spherical Microlens, Micro-Optic Device, Probability Distribution Method, Excimer Laser Micromachining |
| 相關次數: | 點閱:109 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用準分子雷射(Excimer Laser)微細加工技術製作任意曲面三維微結構,文中以機率式加工法(包括「創新式孔洞面積法」與「準分子雷射行星式加工法」)製作非軸對稱以及軸對稱之三維微結構,並將其應用於折射式微光學元件,證明此二種準分子雷射加工法之可行性與精確度。
在「創新式孔洞面積法」方面,透過雷射加工時不同形式的路徑分布與不同的路徑分布範圍,搭配整面轟擊的方式,可有效改善早期採固定移動間距加工之孔洞面積法表面粗糙度較大的缺點,但由於此加工法之光罩機率分布並非連續,故其所製作之微結構仍有表面形貌精度較差的缺點。未來若能設計一套定位精度高的光罩對位系統,使正、反光罩搭配使用,將可成功應用本加工法於製作雷射二極體準直透鏡等非軸對稱之微光學元件。
而「準分子雷射行星式加工法」方面,利用特殊的光罩設計,配合工件的自轉與公轉,使雷射投射在工件上的機率呈現三維的連續分布,可快速、精確地製作軸對稱球面微透鏡,實驗結果顯示此加工法所製作之微透鏡表面形貌控制佳,且表面粗糙度僅約10 nm,光學特性良好。最後將製作完成之微透鏡與塑膠光纖(Plastic Optical Fiber, POF)結合,使得光纖末端有良好的聚焦效果,以驗證此準分子雷射行星式加工法應用於製作折射式微透鏡之發展潛力。
This study applies excimer laser micro-machining technology to the manufacturing 3D microstructures of continuous profiles. Two different excimer laser machining methods based on the idea of probability distribution are used to fabricate axially symmetrical and non-axially symmetrical microstructures. Both theoretical and experimental studies are carried out to verify the feasibility and machining accuracy of these excimer laser micromachining processes.
Firstly, an “innovated hole area modulation method” is applied to fabricate non-axially symmetrical microstructures. We modify several parameters of machining contour paths and mask design process to minimize the roughness of machined microstructures. The experimental results show that this method could improve the surface roughness successfully through different types and contour ranges of excimer laser machining. However, it still has some problems on machining accuracy because the probability distribution of masks is not continuous. If one can design a mask alignment system of high precision orientation, let non-inverse and inverse masks to be used together, this machining method will have great potentials in manufacturing arbitrary non-axially symmetrical micro-optical devices in the future.
In order to manufacture axially symmetrical spherical microlenses, the “excimer laser planetary contour scanning method” is adopted in this work. The basic idea is based on a specific mask design method and a sample rotation method which includes both self-spinning and circular revolving to provide a probability function of laser machining. The probability function created by the planetary scanning assures a continuous, smooth, and precise surface profile to the machined microstructures. The surface profiles are measured and compared with their theoretical counterparts. Excellent agreements both in profile shapes and dimensions are achieved. The machined microlenses will be combined with plastic optical fiber (POF) to verify potentials in fabricating micro-optic components such as refractive microlenses or other optical-fiber related micro-devices.
[1] 林郁欣, 胡一軍, 周曉宇, 微系統製程技術發展, 科儀新知, 第25卷第4期, 民國93年.
[2] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique For Monolithic Fabrication of Microlens Arrays,” Appl. Opt. Vol. 27, No.7, pp.1281-1297, 1988.
[3] S. Lazare, J. Lopez, J. M. Turlet, M. Kufner, S. Kufner, and P. Chavel, “Microlenses Fabricated by Ultraviolet Excimer Laser Irradiation of Poly (methyl methacrylate) Followed by Styrene Diffusion,” Appl. Opt. Vol. 35, No.22, pp.4471-4475, 1996.
[4] M. Frank, M. Kufner, S. Kufner, and M. Testorf, “Microlenses in Polymethyl Methacrylate With High Relative Aperture,” Appl. Opt. Vol. 30, No.19, pp.2666-2667, 1991.
[5] N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic Technique For Producing Microlenses in Photosensitive Glass,” Appl. Opt. Vol. 24, No.16, pp.2520-2525, 1985.
[6] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet Fabrication of Microlens Arrays,” IEEE Photonic Technology Letters, Vol. 6, No.9, pp.1112-1114, 1994.
[7] S. Zlolkowski, “Contactless Embossing of Microlenses-a Parameter Study,” Opt. Eng., Vol. 42, No.5, pp.1451-1455, 2003.
[8] W. , P. Long, and R. Stein, “General Aspheric Refractive Micro-Optics Fabricated by Optical Lithography Using a High Energy Beam Sensitive Glass Gray-Level Mask,” J. Vac. Sci. Technol. B., Vol. 14, No.6, pp.3730-3733, 1996.
[9] K. Zimmer, D. Hirsch, F. Bigl, “Excimer Laser Machining for the Fabrication of Analogous Microstructures,” Appl. Surf., Vol. 96-98, pp.425-429, 1996.
[10] K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, “Direct Writing of Microlenses In Polycarbonate With Excimer Laser Ablation,” Appl. Opt. Vol. 42, No.31, pp.6349-6359, 2003.
[11] K. Naessens, H. Ottevaere, P. V. Daele, R. Baets, “Flexible Fabrication of Microlenses In Polymer Layers With Excimer Laser Ablation,” Appl. Surf., Vol. 208-209, pp.159-164, 2003.
[12] T. Masuzawa, J. O. Benneker, J. J. C. Eindhoven, “A New Metod for Three Dimensional Excimer Laser Micromachining, Hole Area Modulation (HAM),” Annals of the CIRP, Vol. 49, pp.139-142, 2000
[13] K. H. Choi, J. Meijer, T. Masuzawa, D. H. Kim, “Excimer laser micromachining for 3D microstructure,” Journal of Materials Processing Technology, Vol. 149, pp.561-566, 2004
[14] N. G. Basov, V. A. Danilychev, Y. M. Popov, and D. D. Khodkevich, “Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam,” J. of Experimental and Theoretical Physic Letters, Vol. 12, pp.329, 1970.
[15] S. Searles, G. Hart, “Stimulated emission at 281.8nm from XeBr,” Applied Physics Letters, Vol. 27, pp.243, 1975.
[16] 國科會精密儀器發展中心, 微機電系統技術與應用, 全華科技圖書公司, 台北, 民國92年.
[17] J. Brannon, Excimer Laser Ablation and Etching, Education Committee, American Vacuum Society (1993).
[18] A. A. Tseng, Y. T. Chen, K. J. Ma, “Fabrication of high-aspect-ratio microstructures using excimer laser,” Optics and Lasers in Engineering, Vol. 41, pp.827-847, 2004.
[19] 郭晉良, 李永春, 準分子雷射加工微型3D立體結構, 國立成功大學機械工程研究所碩士論文, 民國91年.
[20] 陳峻明, 李永春, 折射式微透鏡之準分子雷射LIGA製程開發與光學檢測, 國立成功大學機械工程研究所碩士論文, 民國93年.
[21] 吳俊穎, 李永春, 任意曲面3D微結構之準分子雷射加工及光學應用, 國立成功大學微機電系統工程研究所碩士論文, 民國94年.
[22] W. J. Smith, Modern Optical Engineering, McGraw-Hill, USA (2000).