| 研究生: |
許瑞強 Hoi, Soi-Keong |
|---|---|
| 論文名稱: |
不同培養條件對Thermosynechococcus sp. CL-1之固碳效率及藻藍素產率影響 Effects of cultivation conditions on the CO2 fixation rate and production of phycocyanin by Thermosynechococcus sp. CL-1 |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 平板反應器 、藍綠菌 、二氧化碳固定 、藻藍素 、單邊光照 、雙邊光照 |
| 外文關鍵詞: | flat plate photobioreactor, cyanobacteria, CO2 fixation, phycocyanin, double-side, single-side |
| 相關次數: | 點閱:148 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人口增長和工業發展越趨發達,燃燒化石燃料使二氧化碳(CO2)濃度在大氣層中快速增加。因此各方找尋各種碳捕捉技術,期望降低大氣中碳含量。利用光合微生物如微藻或藍綠菌固定二氧化碳(CO2)為永續發展的一個重要因素,固碳後之微生物生質體可再利用發展成為保健食品,同時減少使用化石燃料所造成之二氧化碳排放。
本研究針對TCL-1 (Thermosynechococcus sp. CL-1) 在1.5公分之光合生物反應器(PBR)下,探討不同條件對TCL-1之生長特性和藻藍素累積的影响。 TCL-1在光平板反應器內生長,光照條件以LED燈為光源,其中光照能量範圍為250 ~ 2,000 μmol m-2 s-1,分別以單邊光照與雙邊光照比較。單邊光照條件分別為500、1,000、2,000 μmol m-2 s-1;雙邊光照條件分別為250 /250、500 /500、1,000 /1,000 μmol m-2 s-1。並且使用波長為620 nm的紅光為扶助,探討不同混合波長之光照條件對藻藍素產出的影響。
研究結果顯示,在光照條件為雙邊 500 /500 μmol m-2 s-1 的情況下有最大生質體產出,生質體産率為3,324 ± 0 mg L-1 day-1。在光照條件為雙邊1,000 /1,000 μmol m-2 s-1出現最大CO2固定量,為124.40 ± 6.40 mM day-1。在雙邊條件為 250 /250 μmol m-2 s-1下比較不同氮源濃度後,發現起始氮濃度為14.6 mM時有較高藻藍素産出,産率為201.6 ± 40.4 mg L-1 day-1,同時提高氮源有助緩解氧化性傷害,在高光高氮下脂質過氧化濃度比高光低氮低。
此外,在比較不同混合波長、光照強度、溫度後,以50 oC培養,在250 /250 μmol m-2 s-1 含77.5 % 白光混合 22.5 % 紅光及250 μmol m-2 s-1 100 %白光的雙邊光照條件下有最高藻藍素產出,産率為281.4 ± 10.0 mg L-1 day-1。因此,混合光照對於TCL-1的CO2固定成本低,以雙邊LED光照在TCL-1固定CO2上極具發展空間。
Carbon dioxide (CO2) has increased dramatically due to fossil fuels burning associated with increased population and industrialization. Photosynthesis in microalgae and cyanobacteria has long been recognized to absorb CO2 from atmosphere. Cyanobacteria produces nutraceutical product phycocyanin and simultaneously mitigates CO2 emission during its growth.
In this study, the growth characteristics of cyanobacteria Thermosynechococcus sp. CL-1 (TCL-1) in an 1 L photobioreactor with 1.5 cm light path has been conducted to find the optimal condition for production of biomass and phycocyanin. Two illumination processes, single-side illumination with intensity 500, 1,000, and 2,000 μmol m−2 s−1 and double-side illumination with intensity 250 /250, 500 /500, and 1,000 /1,000 μmol m−2 s−1 have been performed. The red LED with 620 nm wavelength was also mixed with white LED to examine the effect of light color.
The results show that cultivation by double-side of illumination with 500 /500 μmol m-2 s-1 has the maximum biomass productivity, 3,324 ± 0 mg L-1 day-1. The cultures of double-side illumination with 1,000 /1,000 μmol m-2 s-1 has the maximum CO2 fixation rate at 124.40 ± 6.40 mM day-1. The culture with DIN concentration of 14.6 mM has the highest phycocyanin productivity, 201.6 ± 40.4 mg L-1 day-1 (12 hour) or 97.6 ± 11.7 mg L-1 day-1 (24 hour). DIN concentration increased could alleviate oxidative damage. High light with high DIN concentration MDA content higher than high light with DIN starvation.
Further cultivating with different wavelength, light intensity, and temperature, the maximum phycocyanin productivity, 281.4 ± 10.0 mg L-1 day-1, can be obtained by double-side illumination of 250 Mix /250 W μmol m-2 s-1 using the modified Su and Chu’s medium with a 14.6 mM DIN at 50 oC. Therefore, TCL-1 cultivated in the mixed red – white LED has a great potential in biomass productivity, CO2 fixation and phycocyanin productivity.
Arai, S., Okochi, M., Hanai, T., Honda, H., Microcompartmentalized cultivation of cyanobacteria for mutant screening using glass slides with highly water-repellent mark, Biotechnology Reports, Volume 4, 2014, Pages 151-155,
Bear, R., Rintoul, D., Snyder, B., Martha Smith-Caldas, Principles of Biology, 2014, OpenStax CNX
Biotechnology, 93, 2002, pp. 73–85
Adir, N., Dobrovetsky, Y., Lerner, N., Structure of c-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 A: structural implications for thermal stability in phycobilisome assembly, J.Mol.Biol., 2001, 313: 71-81
Bhaskar, S. U., Gopalaswamy, G., Raghu, R., A simple method for efficient extraction and purification of C-phycocyanin from Spirulina platensis Geitler, Indian Journal of Experimental Biology, Vol. 43, 2005, pp. 277-279.
Babu, T. S., Kumar, A., Varma, A. K., Effect of light quality on phycobilisome components of the cyanobacterium spirulina platensis., Plant Physiology, 95(2), 1991, 492–497.
Bogorad, L., Phycobiliproteins and complementary chromatic adaptation, Annual Review of Plant Physiology, 26, 1975, pp. 369–401.
Beer,S., Eshel, A., Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae, Australian Journal of Marine and Freshwater Research, 36, 1985, pp. 785–792
Bermejo, R., Alvarez-Pez, J.M., Acién, F.G., Molina, E., Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum, Journal of
Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., White, J. W. C., Increase in observed net carbon dioxide uptake by land and oceans during the
past 50 years, Nature, 488, 2012, pp. 70–72.
Chu, H., Su, C. M., Hsueh, H. T., Lin, Y. T., Effects of light intensity and quality on the CO2 fixation and phycocyanin production of Thermosynechococcus sp CL-1, ir.lib.ncku.edu.tw, 2012, 987654321/136953
Chu, H.M., Chu, H., Effects of cultivation condition and pretreatment of carbohydrate on the CO2 fixation and production of monosaccharide by Thermosynechococcus sp. CL-1, ir.lib.ncku.edu.tw, 2013,
Chiang, Y. C., Chu, H., The effect of light/dark flashing on the carbon dioxide fixation and production of C-phycocyanin by Arthrospira platensis, Department of Environmental Engineering, 2013
Chaneva, G., Furnadzhieva, S., Minkova, K., Lukavsky, J., Effect of light and temperature on the cyanobacterium Arthronema africanum – a prospective phycobiliprotein-producing strain, Journal of Applied Phycology, 19(5), 2007, 537-544.
Costa, J.A.V., Linde, G.A., Atala, D.I.P., Mibielli, G.M., Kruger, R.T., Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms, World J Microb Biot 16, 2000, 15-18.
Eriksen, N. T., Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine, Appl Microbiol Biotechnol, 2008, 80:1–14.
Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F., and Sabine, C. L., Global ocean storage of anthropogenic carbon, Biogeosciences, 2013, 10, 2169-2191,
Giraldez, N. R., Mateo, P., Bonilla, I., Fernandez, P. F., The relationship between intracellular pH, growth characteristics and calcium in the cyanobacterium Anahaena sp. Strain PCC7120 exposed to low pH, New Phytol., 137, 1997, 599-605
Glazer, A.N., Light guides. Directional energy transfer in a hotosynthetic antenna. J Biol Chem., 1989, 264:1-4
Glazer, A. N., Phycobilisomes : structure s and dynamics, Ann. Rev. Microbiol., 1982, 36:173–198
Ho, S.H., Chen, C.Y., Chang, J.S., 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113, 244-252.
Hsueh, H.T., Chu, H., Chang, C.C., Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon, Environ. Sci. Technol., 41, 2007, pp. 1909–1914
Hannu, L., Sergey N., Kosourov, Lyudmila S., Kaarina S., Anatoly A. Tsygankov, Aro, E.M., Yagut, A., Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films, International Journal of Hydrogen Energy, Volume 37, Issue 1, 2012, Pages 151-161,
Hu, M., Chen, Z., Guo, D., Liu, C., Xiao, B., Hu, Z., Liu, S., Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria, Bioresource Technology, Volume 177, 2015, Pages 41-50.
Hsueh, H.T., Li, W.J., Chen, H.H., Chu, H., Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta, Journal of Photochemistry and Photobiology B: Biology, Volume 95, Issue 1, 2009, Pages 33-39,
Hase, R., Oikawa, H., Sasao, C., Morita, M., Watanabe, Y., Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai City, J. Biosci. Bioeng., 89, 2000, pp. 157–163
Janes, R., Growth and survival of Azolla filiculoides in Britain Vegetative reproduction, Microbiol., 141, 1998a, 2235-2244.
Hirokawa, Y., Suzuki, I., Hanai, T., Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway, Journal of Bioscience and Bioengineering, 2014, 1-6.
Isailovic, D., Sultana, I., Phillips, G.J., Yeung, E.S., Formation of fluorescent proteins by the attachment of phycoerythrobilin to R-phycoerythrin alpha and beta aposubunits, Analytical Biochemistry, 358 (1), 2006, pp. 38–50
Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., Das, D., “Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria”. Bioresource Technology (102), 2011, pp. 4945-4953
Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C., Olivier, G.J., Greet J. M., Jeroen, Peters, A.H.W., Trends in global CO2 emissions 2012 Report. PBL Netherlands Environmental Assessment Agency, The Hague/Bilthoven Mark Maslin, Beyond the science: Facing the challenge of climate change, climatica.org.uk, 2013
Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., Das, D., Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria, Bioresource Technology (102), 2011, pp. 4945-4953.
Kronick, M. N., The use of phycobiliproteins as fluorescent labels in immunoassay, Journal of Immunological Methods, Volume 92, Issue 1, 21 1986, Pages 1-13.
Karthikayulu, S., High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater, Bioresour. Technol., 101 (23), 2010, pp. 9221–9227
Kobayashi, K., Sonoda, N., Takayanagi, R., Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress, American Journal of Physiology, 2013, Vol. 304, R110-R120
Leite, G. B., Hallenbeck, P. C., Engineered Cyanobacteria: Research and Application in Bioenergy. Bioenergy Research: Advances and Applications, 2014, Pages 389–406.
Lurling, M., Eshetu, F., Faassen, E. J., Kosten, S., Huszar, V. L. M., Comparison of cyanobacterial and green algal growth rates at different temperatures, Freshwater Biology (58), 2013, pp. 552-559.
Leema, J.T.M., Kirubagaran, R., Vinithkumar, N.V., Dheenan, P.S., Zheng, J., Inoguchi, T., Sasaki, S., Maeda, Y., McCarty, M. F., Fujii, M., Ikeda, N.,
Lee, E., Pruvost, J., He, X., Munipalli, R., Pilon, L., Design tool and guidelines for outdoor photobioreactors, Chemical Engineering Science, Volume 106, 2014, Pages 18-29,
Li, F., Liang, Z., Zheng, X., Zhao, W., Wu, M., Wang, Z., Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production, Aquatic Toxicology, Volume 158, January 2015, Pages 1-13,
Mehdi, G., Muhammad R. H., Ishwar, K. P., Influence of natural and anthropogenic carbon dioxide sequestration on global warming, Ecological Modelling, 2012, 235-236, 1-7.
Miron, A.S., Gomez, A.C., Camacho, F.G., Grima, E.M., Chisti, Y., Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70, 1999, 249-270.
Munier, M., Jubeau, S., Wijaya, A., Morançais, M., Dumay, J., Marchal, L., Jaouen, P., Fleurence, J., Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum, Food Chemistry, Volume 150, 2014, Pages 400-407
MacColl R, Cyanobacterial phycobilisomes. J. Struct. Biol., 1998, 124:311–334.
Mandal, S., Mallick, N., 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84(2), 281-291.
Matthijs, H.C.P., Balke, H., VanHes, U.M., Kroon, B.M.A., Mur, L.R., Binot, R.A., Application of light-emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng 50, 1996, 98-107.
Marlos, O. R., Orlando, N. Jr., Pio, C., Marcelo, P. B., Co-stressors chilling and high light increase photooxidative stress in diuron-treated red alga Kappaphycus alvarezii but with lower involvement of H2O2, Pesticide Biochemistry and Physiology, Volume 99, Issue 1, January 2011, Pages 7-15,
Pohl, P., Kohlhase, M., Martin, M., Photobioreactors for the axenic mass cultivation of microalgae, Algal Biotechnology, Elsevier Applied Science, 1988, pp. 209–217
Pentecost., 2003. Cyanobacteria associated with hot spring travertines. Can. J. Earth Sci., 40, pp. 1447–1457
Prentice I.C., Farquhar G.D., Third Assessment Report of the Intergovernmental Panel on Climate Change Climate Change. The Scientific Basis, edited by IPCC, 2005, pp. 183-238.
Ravelonandro, P.H., Ratianarivo, D.H., Joannis-Cassan, C., Isambert, A., Raherimandimby, M., Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. J. Chem. Technol, Biotechnol. 83, 2008, 842-848.
Roberta, C., Herbert, A., Natural strategies for photosynthetic light harvesting, Nature Chemical Biology 10, 2014,492–501
Rossi, F., Olguín E. J., Diels, L., Philippis, R. D., Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification, New Biotechnology, Volume 32, Issue 1, 2015, Pages 109-120
Soletto, D., Binaghi, L., Ferrari, L., Lodi, A., Carvalho, J.C.M., Zilli, M., Converti, A., Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor, Biochem. Eng. J., 39 (2), 2008, pp. 369–375
Su, C. M., Hsueh, H. T., Chen, H. H., Chu, H., Effects of dissolved inorganic carbon and nutrient levels on carbon fixation and properties of Thermosynechococcus sp. in a continuous system, Chemosphere, Volume 88, Issue 6, 2012, Pages 706-711
Su, C. M., Hsueh, H. T., Li, T. Y., Huang, L. C., Chu, Y. L., Tseng, C. M., Chu, H., Effects of light availability on the biomass production, CO2 fixation, and bioethanol production potential of Thermosynechococcus sp. CL-1, Bioresource Technology, Volume 145, 2013, Pages 162-165.
Saeed, D. K., Zheng, Y., CO2 capture using calcium oxide under biomass gasification conditions. Journal of CO2 Utilization (9), 2015, pp. 1-7.
Shimizu, M. Kamochi, H. Yoshikawa, Y. Nakayama, Gender difference in alcoholic liver disease. In: Shimizu I (ed) Trends in alcoholic liver disease research: Clinical and scientific aspects. 2012, InTech-Open Access Publisher, Rijeka, Croatia, 2340.
Watanabe, F., Yabuta, Y., Bito, T., Tetrapyrrole Compounds of Cyanobacteria, Studies in Natural Products Chemistry, Volume 42, 2014, Pages 341–351.
Sun, L., Wang, S., Zhao, M., Fu, X., Gong, X., Chen, M., Wang, L., Phycobilisomes from cyanobacteria, Biotechnology and Applications, 2009, pp. 105-160.
Sloth, J.K., Wiebe, M.G., Eriksen, N.T., Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria, Enzyme and Microbial Technology, 67(4), 2006, 168-175
Wharton, S., Falk, M., Bible, K., Schroeder, M., Paw, U. K.T., Old-growth CO2 flux measurements reveal high sensitivity to climate anomalies across seasonal, annual and decadal time scales, Agricultural and Forest Meteorology, Volume 161, 2012, Pages 1-14
Wang, B., Li, Y.Q., Wu, N., Lan, C.Q., CO2 bio-mitigation using microalgae, Appl Microbiol Biot 79, 2008, 707-718.
Zhang, Y. M.; Chen, H. H., Chen-L.; Wang, Q., Nitrogen Starvation Induced Oxidative Stress in an Oil-Producing Green Alga Chlorella sorokiniana C3, Academic Journal, 2013, Vol. 8 Issue 7, p1