| 研究生: |
邱天佑 Chiu, Tein-Yu |
|---|---|
| 論文名稱: |
即時與高通量的抗癲癇藥物斑馬魚篩檢平臺的建立與應用 Establishment and application of a real-time and high throughput platform with zebrafish for potential anti-epilepsy compounds screening |
| 指導教授: |
傅子芳
Fu, Tzu-Fun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 斑馬魚 、戊四唑 、癲癇 、高通量藥物篩選平臺 、抗癲癇藥物 、維他命 、中草藥 |
| 外文關鍵詞: | Zebrafish, Pentylenetetrazole, Epilepsy, High-throughput drug screening platform, Anti-epileptic drug, Vitamin, Herbal extract |
| 相關次數: | 點閱:80 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癲癇症是一種神經傳導物質分泌不平衡所產生的神經性病變,症狀從幾乎無法偵測的病發、產生嚴重的肢體抖動至造成生命危險。目前癲癇症狀多以抗癲癇藥物進行控制以減緩發作的程度或是減少發生機率,但現今有三分之一的癲癇病患無法以抗癲癇藥物獲得有效的控制,過去研究也發現過量服用抗癲癇藥物會造成肝毒性,因此開發新型且安全的抗癲癇藥物是重要且急迫的。癲癇症狀主要來自神經與肌肉組織之間的反應異常,因此現今抗癲癇藥物的開發主要是利用活體的動物模式進行。斑馬魚具有高生產力、發育快速及具有與哺乳類動物類似的神經反應系統等特性的脊椎動物。過去研究指出癲癇會造成幼魚泳動的上升,因此本實驗主要利用監測儀器Danio Vision大量且快速的進行行為學分析並以此判斷癲癇的嚴重程度。在本實驗中我們利用戊四唑 (pentylenetetrazole) 在六天大的幼魚中建立癲癇的動物疾病模式並利用此平臺篩選抗癲癇藥物。實驗結果發現抗癲癇藥物及維他命皆可減緩癲癇造成幼魚泳動上升的情形。實驗結果也指出苯妥因(Phenytoin)和左乙拉西坦(Levetiracetam)與維他命的同時處理及乙苯嘧啶二酮(Primidone)在維他命的預先處理時比起藥物單獨處理更可降低癲癇所誘發泳動上升的情形。另外我們也利用此平臺對66種中草藥萃取物進行篩選,我們找到編號317藥物-白芍可降低癲癇引發的泳動上生的情形,而在維他命與317藥物的預先處理後有更顯著的效果,但是以317藥物的主成分預先處理中未看到顯著的效果。未來我們希望藉由戊四唑誘發癲癇並以Danio Vision監測的模式大量且快速的篩選未知藥物的安全性以及對癲癇症狀治療的能力。
Epilepsy is a neurological disorder about imbalanced neurotransmitters. The symptoms of epilepsy could be diverse from brief and nearly undetectable, vigorous body shaking to life-threatening. Patients with epilepsy are usually prescribed with anti-epileptic drugs (AEDs) to ease or prevent epilepsy. However, there are still one third of the patients with epilepsy cannot be relieved through AEDs treatment. Previous study showed that overdose with AEDs may result in liver toxicity. Therefore, developing a new and safe AED is an important and urgent issue. The action of epilepsy seizure is induced by neuromuscular disorders. AEDs are mainly screening in animal models. Zebrafish is a vertebrate with high productivity, quickly development and comparable neurological system with mammals. Previous studies indicated that increased moving distance is observed in larvae with epileptic seizure. A high-throughput tracking system, Danio Vision, was used in this study to perform the behavioral analysis and evaluate the severity of the seizure. Pentylenetetrazole (PTZ) was treated in 6 day-post-fertilization (dpf) larvae to establish the model of epileptic seizure and screen AEDs. The results showed that both AEDs and vitamin relieve the increased moving distance in PTZ-treated larvae. The result also showed that Phenytoin and Levetiracetam co-treated with vitamin mixture and primidone with vitamin pre-treatment decrease the induced moving distance in PTZ-treated larvae. Furthermore, 66 herbal extracts were screened in this platform, and found that No. 317, Paeonia lactiflora decrease the increased moving distance in PTZ-treated larvae. In addition, larvae pre-treated with vitamin mixture and No. 317 exhibit a better rescued effect than vitamin mixture or No. 317 alone. However, no significantly rescued effect was observed in larvae pre-treated with the main ingredient of 317. In the future, we can use the disease model of PTZ-induced seizure and analyzed by Danio Vision as the high-throughput drug screening platform to estimate new therapeutic strategies or identify the new and safe AEDs
1. Stafstrom, C.E. and L. Carmant, Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med, 2015. 5(6).
2. Moshe, S.L., et al., Epilepsy: new advances. Lancet, 2015. 385(9971): p. 884-98.
3. Kerr, M.P., The impact of epilepsy on patients' lives. Acta Neurol Scand Suppl, 2012(194): p. 1-9.
4. Thurman, D.J., et al., Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia, 2011. 52 Suppl 7: p. 2-26.
5. McCabe, P.H., New anti-epileptic drugs for the 21st century. Expert Opin Pharmacother, 2000. 1(4): p. 633-74.
6. Gupta, E., R. Kunjal, and J.D. Cury, Severe Hyponatremia Due to Valproic Acid Toxicity. J Clin Med Res, 2015. 7(9): p. 717-9.
7. Abdel-Dayem, M.A., et al., Valproate-induced liver injury: modulation by the omega-3 fatty acid DHA proposes a novel anticonvulsant regimen. Drugs R D, 2014. 14(2): p. 85-94.
8. Iivanainen, M. and H. Savolainen, Side effects of phenobarbital and phenytoin during long-term treatment of epilepsy. Acta Neurol Scand Suppl, 1983. 97: p. 49-67.
9. Reid, E.S., et al., Seizures Due to a KCNQ2 Mutation: Treatment with Vitamin B6. JIMD Rep, 2016. 27: p. 79-84.
10. Pendo, K. and C.M. DeGiorgio, Vitamin D3 for the Treatment of Epilepsy: Basic Mechanisms, Animal Models, and Clinical Trials. Front Neurol, 2016. 7: p. 218.
11. Nowell, M., et al., Advances in epilepsy surgery. J Neurol Neurosurg Psychiatry, 2014. 85(11): p. 1273-9.
12. Sills, G.J. and M.J. Brodie, Update on the mechanisms of action of antiepileptic drugs. Epileptic Disord, 2001. 3(4): p. 165-72.
13. Argikar, U.A. and R.P. Remmel, Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab Dispos, 2009. 37(1): p. 229-36.
14. Meunier, H., et al., [Pharmacodynamic properties of N-dipropylacetic acid]. Therapie, 1963. 18: p. 435-8.
15. Yaari, Y., M.E. Selzer, and J.H. Pincus, Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol, 1986. 20(2): p. 171-84.
16. Cuttle, L., et al., Phenytoin metabolism by human cytochrome P450: involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug Metab Dispos, 2000. 28(8): p. 945-50.
17. Mercado, J. and C. Czajkowski, Gamma-aminobutyric acid (GABA) and pentobarbital induce different conformational rearrangements in the GABA A receptor alpha1 and beta2 pre-M1 regions. J Biol Chem, 2008. 283(22): p. 15250-7.
18. Garnett, W.R., Lamotrigine: pharmacokinetics. J Child Neurol, 1997. 12 Suppl 1: p. S10-5.
19. Custer, K.L., et al., Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci, 2006. 26(4): p. 1303-13.
20. Doelken, M.T., et al., Alterations of intracerebral gamma-aminobutyric acid (GABA) levels by titration with levetiracetam in patients with focal epilepsies. Epilepsia, 2010. 51(8): p. 1477-82.
21. Patsalos, P.N., Clinical pharmacokinetics of levetiracetam. Clin Pharmacokinet, 2004. 43(11): p. 707-24.
22. Loscher, W., Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, 2011. 20(5): p. 359-68.
23. Gupta, P., S.B. Khobragade, and V.M. Shingatgeri, Effect of Various Antiepileptic Drugs in Zebrafish PTZ-Seizure Model. Indian J Pharm Sci, 2014. 76(2): p. 157-63.
24. Lee, G.H., et al., Zebrafish larvae exposed to ginkgotoxin exhibit seizure-like behavior that is relieved by pyridoxal-5'-phosphate, GABA and anti-epileptic drugs. Dis Model Mech, 2012. 5(6): p. 785-95.
25. Baraban, S.C., et al., Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience, 2005. 131(3): p. 759-68.
26. Howe, K., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503.
27. Kalueff, A.V., A.M. Stewart, and R. Gerlai, Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci, 2014. 35(2): p. 63-75.
28. Fontana, B.D., et al., The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol, 2018. 299(Pt A): p. 157-171.
29. Kodentsova, V.M., et al., [Vitamin-mineral supplements in nutrition of adults]. Vopr Pitan, 2015. 84(6): p. 141-50.
30. Duggan, S.N., et al., The prevalence of malnutrition and fat-soluble vitamin deficiencies in chronic pancreatitis. Nutr Clin Pract, 2014. 29(3): p. 348-54.
31. Cadario, F., et al., Administration of vitamin D and high dose of omega 3 to sustain remission of type 1 diabetes. Eur Rev Med Pharmacol Sci, 2018. 22(2): p. 512-515.
32. Matos, A., et al., The relationship between serum vitamin A and breast cancer staging before and after radiotherapy. Nutr Hosp, 2014. 29(1): p. 136-9.
33. McCarty, D.E., et al., The link between vitamin D metabolism and sleep medicine. Sleep Med Rev, 2014. 18(4): p. 311-9.
34. Elf, K., et al., Vitamin D deficiency in patients with primary immune-mediated peripheral neuropathies. J Neurol Sci, 2014. 345(1-2): p. 184-8.
35. Tamaddonfard, E., et al., Effects of safranal, a constituent of saffron, and vitamin E on nerve functions and histopathology following crush injury of sciatic nerve in rats. Phytomedicine, 2014. 21(5): p. 717-23.
36. Czeizel, A.E., et al., Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients, 2013. 5(11): p. 4760-75.
37. Christakos, S., et al., Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev, 2016. 96(1): p. 365-408.
38. Kalueff, A.V., A. Minasyan, and P. Tuohimaa, Anticonvulsant effects of 1,25-dihydroxyvitamin D in chemically induced seizures in mice. Brain Res Bull, 2005. 67(1-2): p. 156-60.
39. Borowicz, K.K., et al., Cholecalciferol enhances the anticonvulsant effect of conventional antiepileptic drugs in the mouse model of maximal electroshock. Eur J Pharmacol, 2007. 573(1-3): p. 111-5.
40. Borowicz, K.K., D. Morawska, and M. Morawska, Effect of cholecalciferol on the anticonvulsant action of some second generation antiepileptic drugs in the mouse model of maximal electroshock. Pharmacol Rep, 2015. 67(5): p. 875-80.
41. Burton, G.W., A. Joyce, and K.U. Ingold, Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch Biochem Biophys, 1983. 221(1): p. 281-90.
42. Wysota, B., et al., Severe but reversible neuropathy and encephalopathy due to vitamin E deficiency. Clin Neurol Neurosurg, 2017. 160: p. 19-20.
43. Oski, F.A. and L.A. Barness, Hemolytic anemia in vitamin E deficiency. Am J Clin Nutr, 1968. 21(1): p. 45-50.
44. Clarke, M.W., J.R. Burnett, and K.D. Croft, Vitamin E in human health and disease. Crit Rev Clin Lab Sci, 2008. 45(5): p. 417-50.
45. Mehvari, J., et al., Effects of Vitamin E on seizure frequency, electroencephalogram findings, and oxidative stress status of refractory epileptic patients. Adv Biomed Res, 2016. 5: p. 36.
46. Turunen, M., J. Olsson, and G. Dallner, Metabolism and function of coenzyme Q. Biochim Biophys Acta, 2004. 1660(1-2): p. 171-99.
47. Watts, G.F., et al., Coenzyme Q(10) improves endothelial dysfunction of the brachial artery in Type II diabetes mellitus. Diabetologia, 2002. 45(3): p. 420-6.
48. Zhang, Y., et al., Uptake of dietary coenzyme Q supplement is limited in rats. J Nutr, 1995. 125(3): p. 446-53.
49. Greenberg, J.A., et al., Folic Acid supplementation and pregnancy: more than just neural tube defect prevention. Rev Obstet Gynecol, 2011. 4(2): p. 52-9.
50. Herbert, V., Absorption of vitamin B12 and folic acid. Gastroenterology, 1968. 54(1): p. 110-5.
51. Blom, H.J. and Y. Smulders, Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis, 2011. 34(1): p. 75-81.
52. Hoffbrand, A.V. and D.G. Weir, The history of folic acid. Br J Haematol, 2001. 113(3): p. 579-89.
53. Leistner, E. and C. Drewke, Ginkgo biloba and ginkgotoxin. J Nat Prod, 2010. 73(1): p. 86-92.
54. Papp, A., O. Feher, and L. Erdelyi, The ionic mechanism of the pentylenetetrazol convulsions. Acta Biol Hung, 1987. 38(3-4): p. 349-61.
55. Squires, R.F., et al., Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain. Life Sci, 1984. 35(14): p. 1439-44.
56. Martinc, B., I. Grabnar, and T. Vovk, The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr Neuropharmacol, 2012. 10(4): p. 328-43.
57. Terbach, N. and R.S. Williams, Structure-function studies for the panacea, valproic acid. Biochem Soc Trans, 2009. 37(Pt 5): p. 1126-32.
58. Dupuis, R.E., S.N. Lichtman, and G.M. Pollack, Acute valproic acid overdose. Clinical course and pharmacokinetic disposition of valproic acid and metabolites. Drug Saf, 1990. 5(1): p. 65-71.
59. Dalton, K. and M.J. Dalton, Characteristics of pyridoxine overdose neuropathy syndrome. Acta Neurol Scand, 1987. 76(1): p. 8-11.
60. Mintzer, S., C.T. Skidmore, and M.R. Sperling, B-vitamin deficiency in patients treated with antiepileptic drugs. Epilepsy Behav, 2012. 24(3): p. 341-4.
61. He, D.Y. and S.M. Dai, Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall., a traditional chinese herbal medicine. Front Pharmacol, 2011. 2: p. 10.
62. Ip, F.C., et al., Neuroprotective effect of a novel Chinese herbal decoction on cultured neurons and cerebral ischemic rats. BMC Complement Altern Med, 2016. 16(1): p. 437.
63. Wang, D., et al., Effects of paeoniflorin on neurobehavior, oxidative stress, brain insulin signaling, and synaptic alterations in intracerebroventricular streptozotocin-induced cognitive impairment in mice. Physiol Behav, 2018. 191: p. 12-20.
64. Chen, Y.F., et al., Paeoniflorin inhibits excitatory amino acid agonist-and high-dose morphine-induced nociceptive behavior in mice via modulation of N-methyl-D-aspartate receptors. BMC Complement Altern Med, 2016. 16: p. 240.
65. Vezzani, A., A. Friedman, and R.J. Dingledine, The role of inflammation in epileptogenesis. Neuropharmacology, 2013. 69: p. 16-24.