簡易檢索 / 詳目顯示

研究生: 楊尚仁
YANG, Shang-Ren
論文名稱: 共蒸鍍法製備鋅、銦氧化薄膜與摻鈀薄膜氣體感測器之研究
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 125
中文關鍵詞: 摻雜鈀薄膜氣體感測器
外文關鍵詞: sensitivity, doping Pd, thin film, indium, zinc, gas sensor
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來應用半導體薄膜於氣體感測上的使用非常廣泛,其主要感測機制乃是利用半導體薄膜在不同氣體下其導電性質不同所致,而由感測器電阻值的變化可求得其對氣體之感測度。
    本研究以物理氣相共蒸鍍法在氧化鋁基板上共蒸鍍鋅、銦薄膜,配合貴金屬鈀的混合摻雜及熱氧化法製備半導體式薄膜氣體感測器,並藉由SEM、XRD分析其薄膜之型態及組成,再以酒精與一氧化碳氣體作為感測氣體進行相關感測性質的量測。試著探討半導體式氣體感測器之感測機制及在不同蒸度速率、不同原子比例、不同操作溫度及摻雜貴金屬鈀時對感測性質之影響。
    由實驗結果顯示:1. 氧氣在感測機制中扮演相當重要之角色,當溫度較高時(T>500K),氧氣會與半導體內之電子形成氧離子(O-)吸附,使得感測器電阻升高;而當還原性感測氣體通入時會與所吸附之氧反應,而降低感測器之電阻。2. 在相同條件下對酒精比對一氧化碳具有更高的感測度。3. 對於酒精與一氧化碳各存在一最佳感測溫度,分別為3500C與4500C。4. 蒸鍍速率較快時,所得之薄膜表面晶粒粒徑較大,其感測性值較差。 5. 對不同原子比例之感測器薄膜當蒸度速率相同時,其表面型態類似,對酒精與一氧化碳之感測度分別以鋅銦兩成分在鋅佔42.3 at %與72.6 at %時有最佳感測值。6. 混合法摻雜鈀時,其感測度皆下降,但會隨摻雜量增加而有回升之趨勢。7. 對酒精而言摻雜鈀時其應答及回覆時間都有下降之趨勢,而對一氧化碳氣體則無。8. 摻雜鈀時其最佳操作溫度有下降之趨勢,而隨著操作溫度的升高其應答與回覆時間都有所短的情形。

    Thin-film semiconductor is extensively used as gas sensor to detect poison gas, in recent years. The major sensing mechanism of semiconductor gas sensor is base on the change of electrical properties with gas composition, the gas sensitivity in response to the reacting gas is calculated to the change of the for the electrical properties.
    In the paper, the ZnO and In2O3 thin films doped with Pd were prepared by vacuum co-deposition of zinc and indium on Al2O3 substrate followed with thermal annealing and oxidation. The thin film morphology and composition was analyzed using SEM and XRD. In the study the sensing mechanism of thin-film semiconductor gas sensor was examined, and the sensing properties for CO and ethanol gas were measured.
    The experimental results show that (1) the oxygen gas play an important role in the sensing mechanism, as temperature increases up to 500k, the adsorbed oxygen on the sensor surface dissociates and forms O-, where electron is extracted from semiconductor leading to an increase in the resistance. When exposing to reduce gas, the reduce gas reacts with adsorbed O-, and the electron is released to the semiconductor, resulting in a decrease in the resistance. (2) The sensor has a higher sensitivity to ethanol than that to CO in the same conditions. (3) The sensor has an optimum sensitivity at 3500C and 4500C for ethanol and CO, respectively. (4) Larger grain sizes produced at higher deposition rate, that the lower sensitivity was obtained. (5)No obvious change in surface morphology with atomic ratio at the same deposition rate. The optimum sensitivity is response to ethanol and CO at Zn 42.3 at%, 72.6 at% in the sensor with Zn-In binary component. (6) When doped with Pd, the sensitivity decreases, but recovers as the doped amount increase further. (7) Doping of Pd leads to a decrease in response time and recover time for detecting ethanol but no change for CO. (8) The optimum temperature decreases with the doping of Pd, and the response and recover time decrease with increasing temperature.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅳ 目錄 Ⅴ 表目錄 Ⅸ 圖目錄 Ⅹ 照片目錄 ⅩⅤ 符號 ⅩⅥ 第一章 緒論 1 1.1簡介 1 1.2研究發展與文獻回顧 10 1.3研究目標 15 第二章 理論回顧 16 2.1 真空蒸鍍理論 16 2.1.1 真空理論 16 2.1.2蒸鍍理論 18 2.2薄膜沉積與成長 21 2.2.1 蒸氣原子在基板的表面行為 21 2.2.2 影響薄膜沉積的因素 23 2.2.3薄膜的成長 25 2.3氣體感測器工作原理 27 2.3.1 蕭特基接觸 27 2.3.2 氧氣的吸附與還原性氣體的作用 31 2.3.3 電子空乏層 36 2.3.4氧空位 38 2.4 晶粒大小對感測性質的影響 39 2.5摻雜理論 43 2.5.1內部摻雜 43 2.5.2表面摻雜 44 第三章 實驗系統與操作 47 3.1材料 47 3.1.1氧化鋁基板 47 3.1.2鍍膜材料 51 3.2薄膜製備 52 3.2.1基板的清洗 52 3.2.2 真空蒸鍍 53 3.2.2.1真空抽氣系統 53 3.2.2.2蒸鍍成膜系統 54 3.2.3薄膜高溫氧化處理 56 3.3 薄膜試片分析及氣體感測 56 3.3.1 薄膜分析 56 3.3.2.氣體感測 57 3.3.2.1電性量測 57 3.3.2.2氣體偵測 57 3.3.2.3真空下感測 58 第四章 實驗結果與討論 62 4.1感測機制之探討 63 4.2感測器之選擇性 74 4.3鍍膜速度與感測度的關係 77 4.4操作溫度對感測器的影響 84 4.5 原子比例對感測性質的影響 90 4.6 摻雜把(Pd)對感測器性質的影響 98 4.6.1摻雜把之感測器組成成分與表面型態 98 4.6.2摻雜對感測度的影響 102 4.6.3摻雜對應答時間與回復時間的影響 106 4.6.4摻雜對操作溫度的影響 109 4.7感測器之活化能 113 第五章 結論 115 參考文獻 118 自述 125 表目錄 表1-1可燃性氣體於常溫常壓下之爆炸濃度 6 表1-2常見感測方式與原理 7 表1-3常見半導體感測材料與感測氣體 13 表1-4半導體感測器材料常用之催化劑及感測氣體 14 表3-1氧化鋁基板之成分分析及材料特性 50 表4-1蒸鍍速率2-4 Å/S、7-9 Å/S所製備的感測器實驗分析結果 83 圖目錄 圖1-1 TGS式半導體氣體感測器圖 8 圖1-2 陶瓷式半導體氣體感測器圖 8 圖1-3 配合微機電製程之半導體氣體感測器圖 9 圖2-1 氣體流動模式示意圖 17 圖2-2常見金屬材料飽和蒸氣壓與溫度關係圖 18 圖2-3蒸發源材料與鍍膜材料潤濕狀態 20 圖2-4蒸氣原子在基板表面上的行為 22 圖2-5蒸氣原子沈積基板表面之行為 24 圖2-6薄膜在基板上之成長模式 26 圖2-7 半導體的表面能帶圖 29 圖2-8半導體的能帶圖 30 圖2-9 定壓下的吸附和溫度關係圖 34 圖2-10氧氣吸附態的能量圖 35 圖2-11氧氣吸附於半導體金屬氧化物模式圖 37 圖2-12 晶粒效應之示意圖 40 圖2-13 SnO2感測器之粒徑與感測度、電阻之關係 42 圖2-14 SnO2摻雜Pt感測器薄膜製程 45 圖2-15 溢流效應 46 圖2-16費米能階效應 46 圖3-1實驗流程圖 48 圖3-2氧化鋁基板之X-ray繞射分析圖 49 圖3-3 Zn及In的蒸汽壓隨溫度變化關係圖 51 圖3-4 真空蒸鍍系統簡圖 55 圖3-5 酒精氣體偵測系統裝置圖 59 圖3-6 一氧化碳氣體偵測系統裝置圖 60 圖3-7 真空下之感測裝置圖 61 圖4-1 感測器在通空氣下升溫至(a)180℃、(b)250℃達穩定之電阻變化圖 66 圖4-2感測器在通空氣下升溫至(a)300℃、(b)450℃達穩定之電阻變化圖 67 圖4-3感測器在真空下升溫至300℃過程之電阻之變化圖 70 圖4-4 感測器在400℃時由空氣換成氬氣氣氛過程之電阻變化圖 71 圖4-5感測器在400℃時由氬氣換成空氣氣氛過程之電阻變化圖 72 圖4-6在400℃時對3000ppm酒精氣體所進行之感測,感測器之電阻變化圖 73 圖4-7感測器在400℃對相同濃度3000ppm的酒精與一氧化碳所進行的感測行為 76 圖4-8薄膜氧化前之XRD繞射圖 79 圖4-9薄膜氧化後之XRD繞射圖 80 圖4-10蒸鍍速率為7-10Å/S時EDS分析圖 81 圖4-11蒸鍍速率為2-4Å/S時EDS分析圖 81 圖4-12蒸鍍速率2-4 Å/S、7-10 Å/S所製備的感測器對一氧化碳氣體在400℃下所進行的感測行為. 83 圖4-13感測器對3000ppm酒精,在不同操作溫度下之感測行為圖. 87 圖4-14感測器對3000ppm一氧化碳,在不同操作溫度下之感測行為圖. 88 圖4-15感測器對酒精與一氧化碳之感測度隨工作溫度變化之情形 89 圖4-16 EDS 能量分散光譜儀所作之元素分析,薄膜成分組成 Zn 58 atom% 92 圖4-17 EDS 能量分散光譜儀所作之元素分析,薄膜成分組成 Zn 42 atom% 92 圖4-18 EDS 能量分散光譜儀所作之元素分析,薄膜成分組成 Zn 32 atom% 93 圖4-19不同原子比感測器對3000ppm酒精之感測情形 95 圖4-20不同原子比感測器對3000ppm CO之感測情形 96 圖4-21感測器對酒精與一氧化碳之感測度隨不同原子比例變化情形 97 圖4-22 EDS 能量分散光譜儀所作之元素分析,薄膜成分組成 Zn 48 atom% 99 圖4-23摻雜不同厚度鈀的感測器在400℃下分別對一氧化碳與酒精的感測度 103 圖4-24摻雜不同厚度鈀之感測器在4000C對酒精氣體之感測行為 104 圖 4-25 摻雜不同厚度鈀之感測器在4000C對一氧化碳氣體之感測行為圖 105 圖4-26摻雜不同厚度鈀之感測器在400℃對酒精與一氧化碳其應答時間變化情形 107 圖4-27摻雜不同厚度鈀之感測器在400℃對酒精與一氧化碳其回覆時間變化情形 108 圖4-28摻雜50Å鈀之感測器對酒精與一氧化碳感測度隨工作溫度變化之情形 110 圖4-29摻雜50Å鈀之感測器對酒精與一氧化碳應答時間隨工作溫度變化之情形 111 圖4-30摻雜50Å鈀之感測器對酒精與一氧化碳回覆時間隨工作溫度變化之情形 112 圖4-31感測器昇溫至300℃,其電阻與溫度相對應之關係……… 114 照片目錄 相片3-1 氧化鋁基板之表面形態圖 49 照片4-1感測器之電子顯微鏡照片,感測器製備過程中蒸鍍速率為2-4 埃/秒 78 照片4-2 感測器之電子顯微鏡照片,感測器製備過程中蒸鍍速率為7~10埃/秒 78 照片4-3薄膜成分組成Zn 58 at%之掃描式電子顯微鏡照片 93 照片4-4薄膜成分組成Zn 42at%之掃描式電子顯微鏡照片 94 照片4-5薄膜成分組成Zn 32at%之掃描式電子顯微鏡照片 94 照片4-6感測器摻雜13埃鈀之掃描式電子顯微鏡照片 99 照片4-7感測器摻雜27埃鈀之掃描式電子顯微鏡照片 100 照片4-8感測器摻雜50埃鈀之掃描式電子顯微鏡照片 100 照片4-9 感測器表面摻雜13埃鉑之元素影像分析(mapping) 100 照片4-10感測器表面摻雜27埃鉑之元素影像分析(mapping) 100 照片4-11感測器表面摻雜50埃鉑之元素影像分析(mapping) 101

    1. 葉陶淵,化學感測器中氣體感測器的新動向,科儀新知第20卷4期75頁(1999)
    2. 李俊遠,氣體感測器介紹,工業材料第124期第82頁,(1997)
    3. N.Taguchi. Japn.Pat.45-38200(1962)
    4. 朱俊彥,攜帶式氣體分析儀與偵測器市場新趨勢,環保產業雙月刊第12期(2002)
    5. 蔡嬪嬪,氣體感測器的新動向,工業材料150期98頁(1999).
    6. 張希誠,感測器的基礎與應用:工廠與機械人篇, 第49-51頁(1986)
    7. 邱碧秀,氣體感測器:半導體型氣體感測器,科儀新知 第6卷第6期 第67-71頁(1985).
    8. 鄭煜騰,氣體感測器的市場分析與發展概況,科儀新知第18卷5期76~84頁(1995).
    9. B.Bhookloka Rao , Zinc oxide ceramic semi-conductor gas sensor for ethanol vapor, Materials Chemistry and Physics 64 62-65 (2000)
    10. Wei-Han Tao , Ching-Hsiang Tasi , H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining , Sensors and Actuators B 81 237-247 (2002)
    11. P.B.Weisz, Effects of electronic charge transfer between adsorbate and solid on chemsiorption and catalysis , J.Chem.Phys Vol.21 pp.1531 ~ 1538 (1953).
    12. T.Seiyama,A.Kato,K.Fajiishi,M.Nagatahi,A new detector for gaseous components using semiconductive thin films, Analystical chemistry 34 pp.1502 (1962).
    13. P.J.Shaver,Activated tungsten oxide gas detectors,Appl. Phys. Lett.,11 pp.255~257(1967).
    14. S.Kudo,H.Ohnishi,T.Matsumoto and M.Ippomatsu,NOx sensing using YBa2Cu3O7 thin film ,Sensor and actuators B,23 219-222(1995) .
    15. T. takada, Ozone detection by In2O3 thin film gas sensor ,in T.Seiyama(ed.),ChemicalSensorTechnology,Vol.2,Elsevier,Amsterdam/Kodansha,Tokyo, pp.59-70 (1989).
    16. T.Arakawa,K. Takada, Y. Tsunemine and J. Shiokawa , Characteristics of CO detecting on the reduce perovskite oxide LaCoO3 Proc. 2 nd Int. Meet.Chemical Sensors,Bordeaux,France, July 7-10, pp115-118 1986 .
    17. J.R. Steter, A surface chemical view of gas detection, J. Colloid Interface Sci., 65 pp 432-443 (1978) .
    18. N.Hykaway, W.M. Sears, R.F. Frindt and S.R. Morrison, The gas sensing properties of bismuth molybdate evaporate films, Sensors and Actuators, 15 pp 105 (1988) .
    19. P.T. Mosely and D.E.Williams,A selective ammonia sensor, Sensors and Actuators, B1 pp 113-115 (1990)
    20. H. Nanto, T.Minami and S. Takata, Zinc oxide thin film ammonia gas sensors with high sensitivity and excel selectivity, J. Appl. Phys.,60 482 (1986).
    21. G.Sbervegileri, S.Groppelli and G. Coccoli, Radio frequence magnetron sputtering growth and characterization of indium-tin oxide (ITO) thin film for NO2 gas sensor, Sensors and Actuators, 15 pp 235(1988).
    22. G.Sbervegileri, P.Benussi, G. Coccoli, S. Groppelli and P.Nill, reactivity sputtered indium tin oxide polycrystalline thin film as NO and NO2 gas sensor, Thin Solid Films, 186 pp 349 (1990) .
    23. G.Sberveglieri, C. PEREGO, F. Parmigian, and G.Quattroni, Sn1-xFexOy: a new material for carbon monoxide detection, Tech. Digest, 7 th Int. Conf. Solid-State Sensors and Actuators, Yokohama , Japan, ,pp.972-976 ,June 7-10, 1993
    24. P. Bonzi, L.E.Depero, F. Parmigiani, C. Perego, G. Sberveglieri and G.Quattroni, Formation and structure of tin iron oxide thin film CO gas sensor, J. Mater. Res.,submitted for publication.
    25. Suzuki, K. Zakrzewska and M. Rekas, Thin oxide film as gas sensor, Thin Solid Films, 174 pp 269-275(1989) .
    26. G. Sberveglieri, Recent developments in semiconductor thin-film gas sensors, Sensors and Actuators B 23 pp103-109(1995).
    27. Xing-Hui Wu, Yu-De Wang, Zi-Hua Tian, Huan-Lin Liu, Zhen-Lai Zhou, Yan-Feng Li, Study on ZnSnO3 sensitivity material based on combustible gases, Solid-State Electronics 46 pp 715-719 (2002).
    28. James A.Dirksen , Kristin Duval , Terry A. Ring , NiO thin-film formaldehyde gas sensor , Sensors and Actuators B 80 pp 106-115(2001).
    29. R.B. Vasiliev, M.N. Rumyantseva , S.E. Podguzova, A.S. Ryzhikov, L.I. Ryabova, A.M. Gaskov , Effect of interdiffusion on electrical and gas sensor properties of CuO/SnO2 heterostructure, Materials Science and Engineering B57 pp241- 246 (1999) .
    30. J. Gerblinger, W. Lohwasser, U. Lampe, H. Meixner,High temperature oxgen sensor based on sputtered cerium oxide, Sensors and Actuators B 26-27 pp93 – 96(1995)
    31. Youngxiang Li , Wojtek WLODARSKI , Kosmas Galatsis, Sayed Hassib Moslih, Jared Cole , Salvy Russo , Natasha Rockelmann , Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin film , Sensors and Actuators B 83 pp 160 –163 (2002).
    32. 陳一誠,金屬氧化物半導體型氣體感測器,材料與社會68期62~66頁(1992).
    33. 陳寶清,真空表面處理工學,表面工業雜誌第31期(1992)
    34. Zeleny,Z. Proc.Camb.Phil.Soc.18,71(1915)
    35. IRAN. Levine, ”Physical chemistry 4th edition”, McGraw-Hill,New York,pp443,1995
    36. 賴耿陽,真空蒸著應用技術,復漢出版社(1991)
    37. J A Venables, G D T Spiller and M Hanbucken ,”Nucleation and growth of thin film”,Reports on Progress in Physics, Vol.47 , pp.399-459(1984).
    38. J.A.Venables , G. L. Price, “Nucleation of thin films”in Epitaxial Growth ,ed.J.W.Matthews,New York:Academic Press , pp.381(1975)
    39. V.E.Bauer, ”Phanomenologische theorie der kristallabscheidung an oberflachen. I”,Zeitschrift fur Kristallographie , Bd. 110, pp. 372-394 (1958) .
    40. 林鴻明、曾世杰,奈米半導體材料之特殊氣體感測性質,工業材料第157期pp.163-169,(2000)  
    41. S.R.Morrision, ”Chemical sensors”in Semiconductor Sensors , ed.S.M.Sze,New York:John Wiley and Sons, Inc., pp.383(1994)
    42. P. B. Weisz, “Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis”, The Journal of Chemical Physics, Vol. 21, No. 9, pp. 1531-1538 (1953).
    43. S. R. Morrison, The Chemical Physics of Surfaces 2nd , New York: Plenum Press pp.251 (1990).
    44. D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices, Sensors and Actuators Vol.18 pp.71~113 (1989)
    45. H.Windischmann and P.Mark, A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor, Journal of the electrochemical society Vol.126 No.4 pp.627~633 (1979).
    46. N. Yamazoe, J. Fuchigami, M. Kishikawa and T.Seiyama, Interac- tions of tin oxide surface with O2, H2O and H2, Surface Science Vol.86 pp. 335-344 (1979).
    47. Yasuhiro Schimizu and Makoto Egashira, MRS Bulletin, 24(6), June, (1999) 18.
    48. H.Ogawan, M.Nishikawa, and A.Abe, J. Appl. Phys. 53(1982)4448
    49. J. F. Mcaleer, P. T. Moseley, J. O. W. Norris and D. E. Williams, Tin dioxide gas sensors, Journal of the Chemical Society. Faraday Trans- actions Vol. 83 pp. 1323~1346 (1987).
    50. S. C. Chang, Thin-film semiconductor NOx sensor, IEEE Transac- tions on Electron Devices Vol. ED-26, No. 12 pp. 1875~1880 (1979)
    51. G. Heiland, Homogeneous semiconducting gas sensors, Sensors and Actuators Vol.2 pp. 343~361 (1982)
    52. C.Xu, J.Tamaki, N.Miura, and N.Yamazoe, Sensor and Actuators, B3 (1991) 147.
    53. Chang-Hyun Shim, et al ,Gas sensing characters of SnO2 thin film fabricated by thermal oxidation of a Sn/Pt double layer , Sensors and Actuators B81 , pp176-181(2002)
    54. G.Sberveglieri, S.Groppelli, P.Nelli & A.Camanzi ,Bismuth-doped tin oxide thin-film gas sensors, Sensors and Actuators B Vol.3 pp183~189 (1991).
    55. Kyung.Hyun Cha,Hee Chan Park,Kwang Ho Kim ,Effect of palladium doping and film thickness on the H2-gas sensing chara- cteristics of SnO2, Sensors and Actuators B Vol.21 pp.91~96 (1994).
    56. G.C.Bond,M.J.Fuller and L.Molloy, Oxidation of carbon monoxide catalysed by palladium on tin oxide:an example of spillover catalysis, proc.6th Intern.Congr.Catalysis,London U.K. pp356~364 (1988).
    57. N.Yamazoe,Y.Kurokawa and T.Seiyama, Effects of additives on sem- iconductor gas sensors , Sensors and Actuators B Vol.4 pp283~289 (1983)
    58. S.R.Morrison, Selectivity in semiconductor gas sensors, Sensors and Actuators B Vol.12 pp.425 (1987)
    59. 施敏,半導體元件物理與製作技術,第13-15頁,高立出版,2001。
    60. J. Watson, A note on the electrical characterization of solid-state gas sensors, Sensors and Actuators B Vol. 8 pp. 173~177 (1992).
    61. F.Reti,M.Fleischer,H.Meixner and J.Giber, Influence of water on the coadsorption of oxidizing and reducing gases on the β–Ga2O3 surface, Sensors and Actuators B Vol.18-19 pp.138~142 (1994)
    62. N.Barsen and R.Ionescu, The mechanism of the interaction between CO and an SnO2 surface: the role of water vapor ,Sensors and Actu- ators B Vol.12 pp.71~75 (1993)
    63. F.Hellegouarc’h,PECVD prepared SnO2 thin films for ethanol sensors, Sensors and Actuators B Vol.73 pp.27-34 (2001)
    64. Andrew P.Lee, Temperature modulation in semiconductor gas sensing, Sensors and Actuator B Vol.60 pp35~42 (1999)
    65. P.T.Moseley , Materials selection for semiconductor gas sensors, Sen- sors and Actuators B Vol.6 pp.149-156 (1992).
    66. IRA N. Levine, Physical chemistry 4th edition, McGraw-Hill, New York pp443(1995)
    67. R Bene, Application of quadrupole mass spectromter for the analysis of near-surface gas composition during DC sensor-tests, Vacuum Vol. 50 number3-4 pp.331~337 (1998)
    68. D.Kohl, Adsorption and decomposition of methane on gallium oxide films, Sensors and Actuator B Vol.59 pp140~145 (1999)
    69. G.Gaggiotti, Temperature dependencies of sensitivity and surface chemical composition of SnO gas sensor, Sensors and Actuators B Vol.24-25 pp516~519 (1995)
    70. .J.Mizsei, How can sensitive and selective semiconductor gas sensors be made, Sensors and Actuators B Vol.23 pp173~176 (1995)
    71. G. Sberveglieri,S. Groppelli, P. Nelli, A. Tintinelli, G. Giunta, A no- vel method for the proparation of NH3 sensors based on ZnO-In thin films, Sensors and Actuators B Vol.24-25 pp.588-590 (1995) Actuators B Vol.24-25 pp.588-590 (1995)
    72. Shigenori, Matsushina, New methods for supporting palladium on tin oxide gas sensor, Sensors and Actuators B Vol.9 pp.71~78(1992)
    73. Sung-Song Park, J.D. Mackenzie, Thickness and microstructure effect on alcohol sensing of tin oxide thin film, Thin Solid Films 274 pp 154-159 (1996)
    74. 莊鴻億,摻雜貴金屬鋅銦氧化薄膜氣體感測器之研究,成功大學,2002
    75.K.Aguir, C.Lemire, D.B.B.Lollman , Electrical properties of reactively sputtered WO3 thin film as gas sensor, Sensor and Actuators B 84 pp.1-5(2002)

    下載圖示 校內:2004-08-11公開
    校外:2004-08-11公開
    QR CODE