簡易檢索 / 詳目顯示

研究生: 黃俊諺
Huang, Chun-Yen
論文名稱: 以組合化學方法合成α-L-鼠李醣水解酶的新穎抑制劑
Combinatorial approach toward synthesis of novel α-L-rhamnosidase inhibitors
指導教授: 鄭偉杰
Cheng, Wei-Chieh
共同指導教授: 黃福永
Huang, Fu-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 124
中文關鍵詞: 亞胺醣環硝鼠李醣鼠李醣水解酶抑制劑
外文關鍵詞: azasugar, cyclic nitrone, rhamnose, rhamnosidase inhibitors
相關次數: 點閱:64下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 亞胺醣衍生物對於抑制醣之水解酶和轉移酶所衍生的治療效果近年來越來越受到重視。從化學結構上分析,亞胺醣質子化之後的構形可以模擬水解酶在水解醣的過程中產生的過渡態 oxocarbonium ion,進而達到抑制水解酶的能力。論文中我們經由關鍵的中間產物-五員環硝,合成出不同構形的五員環多羥基吡咯烷分子,再經由快速的組合化學合成方法做不同取代基的修飾,產生出以吡咯烷為骨架的分子庫,並檢測其對於α-L-rhamnosidase的抑制能力。首先藉由初步的生物檢測可以挑選出具有較強抑制效果的候選分子,當重新合成這些化合物後再做進一步的生物測試。在具有較強抑制效果的化合物中,亞胺醣衍生物39顯示出對於α-L-rhamnosidase 具有最強的抑制效果,其IC50為0.29 μM, Ki為0.24 μM,是一種競爭型的抑制劑。
    經由這一系列的過程,我們成功地用快速的化學方法從大量的分子庫中找到對α-L-鼠李醣水解酶有抑制效果的化合物,而此方法也可以應用於其他水解醣酵素抑制的研究。

    Therapeutic application of iminosugar derivatives for inhibiting sugar processing enzymes and transferases has received a lot of attention recently. From structure point of view, protonated conformation of iminosugars could mimic the transition state oxocarbenium ion, which are generated during the hydrolysis of sugar substrates by glycosidases, and exhibit inhibitory ability toward glycosidases. In this thesis, five-membered iminosugars-based scaffolds were prepared using five-membered chiral cyclic nitrones as key intermediates, followed by rapid conjugation with diverse acids through an amide coupling to generate five polyhydroxylated pyrrolidine-based libraries (5 x 127 = 635). The inhibitory ability of these libraries toward α-L-rhamnosidase were evaluated determine and the preliminary screening results showed some interesting and potent hits. After re-synthesis of these hits, the inhibitor 39 showed a Ki value of 0.24 μM against α-L-rhamnosidase with a competitive inhibition.
    Through the design of scaffolds and assistance of rapid diversification, and in situ bioevaluation, potent and new α-L-rhamnosidase inhibitors could be efficiently discovered. Importantly, this approach can be applied to discovery of inhibitors against various sugar processing enzymes.

    Table of Contents 摘要 I Abstract II 謝誌 III Table of Contents IV Index of Figures VI Index of Tables VIII Index of Schemes IX Abbreviations X Chapter 1. Introduction 1 1-1 Introduction of iminosugars 1 1-1.1 Mechanism of enzymatic hydrolysis and the transition state mimics 1 1-2 Applications of iminosugars 2 1-3 Background of α-L-rhamnosidase 3 1-3.1 Relationship between α-L-rhamnosidase and rhamnosyl transferase 4 1-3.2 Current known α-L-rhamnosidase inhibitors 5 1-4 Design and strategy 6 Chapter 2. Results and discussion 9 2-1 Preparation of scaffolds 1, 2, 3 from ribose 9 2-1.1 Preparation of scaffolds 4, 5 from xylose 13 2-1.2 1H NMR NOESY spectrums of 12, 14, 16 and 23 14 2-1.3 Preparation of reference compound 30 17 2-2 Library synthesis 18 2-3 Bioassay 23 2-4 Bioassay of re-synthesis compounds 29 2-5 Conclusion 32 Chapter 3. Experimental section 33 3-1 General experimental procedure 33 3-2 General procedure for preparation of model 10 33 3-3 General procedure for preparation of libraries 31-35 35 3-4 General procedure A for preparation of amide products 35 3-5 Procedure of preliminary bio-screening 35 3-6 Procedure of bioassay 36 3-6.1 Modified procedure of bioassay 37 3-7 Procedure and experimental data 38 3-7.1 Procedure and experimental data for reference compound 30 47 3-7.2 Procedure and experimental data for re-synthesis amide products 50 References 54 Appendix 60 Index of Figures Figure 1.1 Mechanism of enzymatic hydrolysis and transition state mimics. 2 Figure 1.2 Examples of iminosugars for the treatment of diseases. 3 Figure 1.3 Mycobacterium tuberculosis cell wall glycan and the linker region. 4 Figure 1.4 Currently potent α-L-rhamnosidase inhibitors (µM). (a, b and c represented compounds from different papers). 6 Figure 1.5 Structure design and five proposed pyrrolidine-based scaffolds. 7 Figure 1.6 Flowchart for the development of α-L-Rhamnosidase inhibitors. 8 Figure 2.1 1H-1H NOESY spectrum of 12. 15 Figure 2.2 1H-1H NOESY spectrum of 14. 15 Figure 2.3 1H-1H NOESY spectrum of 16. 16 Figure 2.4 1H-1H NOESY spectrum of 23. 17 Figure 2.5 Substituent diversify by amide bond formation. 19 Figure 2.6 Acid libraries A-E (1-10). 20 Figure 2.7 Acid libraries F-J (1-10). 21 Figure 2.8 Acid libraries K-L (1-10) and M (1-7). 22 Figure 2.9 Primary inhibitory screening of library 31 at 100μM toward α-L-rhamnosidase. 24 Figure 2.10 Primary inhibitory screening of library 32 at 100μM toward α-L-rhamnosidase. 25 Figure 2.11 Primary inhibitory screening of library 33 at 100μM toward α-L-rhamnosidase. 25 Figure 2.12 Primary inhibitory screening of library 34 at 100μM toward α-L-rhamnosidase. 26 Figure 2.13 Primary inhibitory screening of library 35 at 100μM toward α-L-rhamnosidase. 26 Figure 2.14 Inhibition potential of scaffolds 1-5 at 100 μM against enzyme. 27 Figure 2.15 Primary inhibitory screening of selected potent hits from library 33 at 1 μM. 27 Figure 2.16 Chemical structures of potent α-L-rhamnosidase inhibitor. 28 Figure 2.17 The Lineweaver-Burk plots of (a) 36, (b) 37, (c) 38, (d) 39 (e) 40 and (f) scaffold 5 for the inhibition of α-L-rhamnosidase. The increasing concentrations of substrate were used to determine the Ki values and the data were plotted as 1/v versus 1/[S]. 31 Figure 2.18 The Lineweaver-Burk plots of reference inhibitor 30 for the inhibition of α-L-rhamnosidase. The increasing concentrations of substrate were used to determine the Ki values and the data were plotted as 1/v versus 1/[S]. 31 Figure I Km plot of naringinase with substrate para-nitrophenyl α-L-rhamnopyranoside. 62 Figure II IC50 plots of (a) 36, (b) 37, (c) 38, (d) 39, (e) 40, (f) scaffold 5 and (g) 30. 64 Index of Tables Table 2.1 Preparation of dehydroxylated 8. 10 Table 2.2 Preparation of scaffold 1. 11 Table 2.3 Inhibition potential of iminosugars 36-40, 5 and 30 against α-L-rhamnosidase. 29 Index of Schemes Scheme 2.1 Preparation of polyhydroxylated pyrrolidine-based scaffold 1. 9 Scheme 2.2 Preparation of scaffold 2. 12 Scheme 2.3 Preparation of scaffold 3. 12 Scheme 2.4 Preparation of scaffold 4. 13 Scheme 2.5 Preparation of scaffold 5. 14 Scheme 2.6 Preparation of reference compound 30. 18 Scheme I Resynthesis of potential structures showed strong inhibitory ability. 61

    References

    1. Alonzo, D.; Guaragna, A.; Palumbo, G., Glycomimetics at the mirror: medicinal chemistry of L-iminosugars. Curr. Med. Chem. 2009, 16, 473-505.

    2. Krülle, T. M.; de la Fuente, C.; Pickering, L.; Aplin, R. T.; Tsitsanou, K. E.; Zographos, S. E.; Oikonomakos, N. G.; Nash, R. J.; Griffiths, R. C.; Fleet, G. W. J., Triazole carboxylic acids as anionic sugar mimics? inhibition of glycogen phosphorylase by a D-glucotriazole carboxylate. Tetrahedron: Asymmetry 1997, 8, 3807-3820.

    3. Winchester, B. G., Iminosugars: from botanical curiosities to licensed drugs. Tetrahedron: Asymmetry 2009, 20, 645-651.

    4. Meloncelli, P. J.; Gloster, T. M.; Money, V. A.; Tarling, C. A.; Davies, G. J.; Withers, S. G.; Stick, R. V., D-Glucosylated derivatives of isofagomine and noeuromycin and their potential as inhibitors of β-glycoside hydrolases. Aust. J.Chem. 2007, 60, 549-565.

    5. Horne, G.; Wilson, F. X.; Tinsley, J.; Williams, D. H.; Storer, R., Iminosugars past, present and future: medicines for tomorrow. Drug Discovery Today 2011, 16, 107-118.

    6. Tsou, E.-L.; Yeh, Y.-T.; Liang, P.-H.; Cheng, W.-C., A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP. Tetrahedron 2009, 65, 93-100.

    7. Tsou, E.-L.; Chen, S.-Y.; Yang, M.-H.; Wang, S.-C.; Cheng, T.-R. R.; Cheng, W.-C., Synthesis and biological evaluation of a 2-aryl polyhydroxylated pyrrolidine alkaloid-based library. Bioorg. Med. Chem. 2008, 16, 10198-10204.

    8. Kim, J. H.; Curtis-Long, M. J.; Seo, W. D.; Lee, J. H.; Lee, B. W.; Yoon, Y. J.; Kang, K. Y.; Park, K. H., α-Rhamnosidase inhibitory activities of polyhydroxylated pyrrolidine. Bioorg. Med. Chem. Lett. 2005, 15, 4282-4285.

    9. Provencher, L.; Steensma, D. H.; Wong, C.-H., Five-membered ring azasugars as potent inhibitors of α-L-rhamnosidase (naringinase) from Penicillium decumbens. Bioorg. Med. Chem. 1994, 2, 1179-1188.

    10. Håkansson, A. E.; van Ameijde, J.; Guglielmini, L.; Horne, G.; Nash, R. J.; Evinson, E. L.; Kato, A.; Fleet, G. W. J., Looking glass inhibitors: synthesis of a potent naringinase inhibitor L-DIM [1,4-dideoxy-1,4-imino-l-mannitol], the enantiomer of DIM [1,4-dideoxy-1,4-imino-d-mannitol] a potent α-d-mannosidase inhibitor. Tetrahedron: Asymmetry 2007, 18, 282-289.

    11. Estevez, J. C.; Saunders, J.; Besra, G. S.; Brennan, P. J.; Nash, R. J.; Fleet, G. W., Mimics of L-rhamnose: synthesis of C-glycosides of L-rhamnofuranose and an α-azidoester as divergent intermediates for combinatorial generation of rhamnofuranose libraries. J. Tetrahedron: Asymmetry 1996, 7, 383-386.

    12. Håkansson, A. E.; van Ameijde, J.; Horne, G.; Nash, R. J.; Wormald, M. R.; Kato, A.; Besra, G. S.; Gurcha, S.; Fleet, G. W. J., Synthesis of the naringinase inhibitors L-swainsonine and related 6-C-methyl-L-swainsonine analogues: (6R)-C-methyl-L-swainsonine is a more potent inhibitor of L-rhamnosidase by an order of magnitude than L-swainsonine. Tetrahedron Lett. 2008, 49, 179-184.

    13. Davis, B. G.; Hull, A.; Smith, C.; Nash, R. J.; Watson, A. A.; Winkler, D. A.; Griffiths, R. C.; Fleet, G. W. J., 5-epi-Deoxyrhamnojirimycin is a potent inhibitor of an α-L-rhamnosidase: 5-epi-deoxymannojirimycin is not a potent inhibitor of an α-D-mannosidase. Tetrahedron: Asymmetry 1998, 9, 2947-2960.

    14. Davis, B. G.; Brandstetter, T. W.; Hackett, L.; Winchester, B. G.; Nash, R. J.; Watson, A. A.; Griffiths, R. C.; Smith, C.; Fleet, G. W. J., Tetrazoles of manno- and rhamno-pyranoses: contrasting inhibition of mannosidases by [4.3.0] but of rhamnosidase by [3.3.0] bicyclic tetrazoles. Tetrahedron 1999, 55, 4489-4500.

    15. Mills, J. A.; Motichka, K.; Jucker, M.; Wu, H. P.; Uhlik, B. C.; Stern, R. J.; Scherman, M. S.; Vissa, V. D.; Pan, F.; Kundu, M.; Ma, Y. F.; McNeil, M., Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability. J. Biol. Chem. 2004, 279, 43540-43546.

    16. P. Shilvock, J.; R. Wheatley, J.; J. Nash, R.; A. Watson, A.; C. Griffiths, R.; D. Butters, T.; Muller, M.; J. Watkin, D.; A. Winkler, D.; W. J. Fleet, G., Synthesis of homorhamnojirimycins and related trihydroxypipecolic acid derivatives via divergent bicyclic amino lactone intermediates: inhibition of naringinase (L-rhamnosidase) and dTDP-rhamnose biosynthesis. J. Chem. Soc., Perkin Trans. 1 1999, 2735-2745.

    17. Davis, B.; Bell, A. A.; Nash, R. J.; Watson, A. A.; Griffiths, R. C.; Jones, M. G.; Smith, C.; Fleet, G. W. J., L-(+)-swainsonine and other pyrrolidine inhibitors of naringinase: through an enzymic looking glass from D-mannosidase to L-rhamnosidase? Tetrahedron Lett. 1996, 37, 8565-8568.

    18. Estevez, J. C.; Smith, M. D.; Lane, A. L.; Crook, S.; Watkin, D. J.; Besra, G. S.; Brennan, P. J.; Nash, R. J.; Fleet, G. W. J., Mimics of L-rhamnose: anomeric spirohydantoins and diketopiperazines-approaches to novel N-linked glycopeptides of rhamnofuranose. Tetrahedron: Asymmetry 1996, 7, 387-390.

    19. McNeil, M.; Daffe, M.; Brennan, P. J., Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J. Biol. Chem. 1990, 265, 18200-18206.

    20. Lucas, R.; Balbuena, P.; Errey, J. C.; Squire, M. A.; Gurcha, S. S.; McNeil, M.; Besra, G. S.; Davis, B. G., Glycomimetic inhibitors of mycobacterial glycosyltransferases: targeting the TB cell wall. ChemBioChem 2008, 9, 2197-2199.

    21. Berg, S.; Kaur, D.; Jackson, M.; Brennan, P. J., The glycosyltransferases of Mycobacterium tuberculosis—roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 2007, 17, 35R-56R.

    22. Pearson, M. S. M.; Floquet, N.; Bello, C.; Vogel, P.; Plantier-Royon, R.; Szymoniak, J.; Bertus, P.; Behr, J.-B., The spirocyclopropyl moiety as a methyl surrogate in the structure of L-fucosidase and L-rhamnosidase inhibitors. Bioorg. Med. Chem. 2009, 17, 8020-8026.

    23. Mercer, T. B.; Jenkinson, S. F.; Bartholomew, B.; Nash, R. J.; Miyauchi, S.; Kato, A.; Fleet, G. W. J., Looking glass inhibitors: both enantiomeric N-benzyl derivatives of 1,4-dideoxy-1,4-imino-D-lyxitol [a potent competitive inhibitor of α-D-galactosidase] and of 1,4-dideoxy-1,4-imino-L-lyxitol [a weak competitive inhibitor of α-D-galactosidase] inhibit naringinase, an α-L-rhamnosidase competitively. Tetrahedron: Asymmetry 2009, 20, 2368-2373.

    24. P. Shilvock, J.; J. Nash, R.; A. Watson, A.; L. Winters, A.; D. Butters, T.; A. Dwek, R.; A. Winkler, D.; W. J. Fleet, G., Piperidine analogues of D-galactose as potent inhibitors of α-galactosidase: Synthesis by stannane-mediated hydroxymethylation of 5-azido-1,4-lactones. Structural relationships between D-galactosidase and L-rhamnosidase inhibitors. J. Chem. Soc., Perkin Trans. 1 1999, 2747-2754.

    25. Shilvock, J. P.; Wheatley, J. R.; Davis, B.; Nash, R. J.; Griffiths, R. C.; Jones, M. G.; Müller, M.; Crook, S.; Watkin, D. J.; Smith, C.; Besra, G. S.; Brennan, P. J.; Fleet, G. W. J., Inhibition of naringinase (L-rhamnosidase) by piperidine analogues of L-rhamnose: scaffolds for libraries incorporating trihydroxypipecolic acids. Tetrahedron Lett. 1996, 37, 8569-8572.

    26. Bell, A. A.; Pickering, L.; Watson, A. A.; Nash, R. J.; Griffiths, R. C.; Jones, M. G.; Fleet, G. W. J., 2-Hydroxycastanospermines (dihydroxy-L-swainsonines) from octonolactones: Inhibition of naringinase (L-rhamnosidase). Tetrahedron Lett. 1996, 37, 8561-8564.

    27. Chang, Y.-F.; Guo, C.-W.; Chan, T.-H.; Pan, Y.-W.; Tsou, E.-L.; Cheng, W.-C., Parallel synthesis of natural product-like polyhydroxylated pyrrolidine and piperidine alkaloids. Mol Divers 2011, 15, 203-214.

    28. Haque, M. E.; Kikuchi, T.; Kanemitsu, K.; Tsuda, Y., Selective deoxygenation via regioselective thioacylation of non-protected glycopyranosides by the dibutyltin oxide Method. Chem. Pharm. Bull. 1987, 35, 1016-1029.

    29. Courchay, F. C.; Baughman, T. W.; Wagener, K. B., Understanding the effect of allylic methyls in olefin cross-metathesis. J. Organomet. Chem. 2006, 691, 585-594.

    30. Moravcová, J.; Čapková, J.; Staněk, J.; Raich, I., Methyl 5-deoxy-α and β-D-xylofuranosides. J. Carbohydr. Chem. 1997, 16, 1061-1073.

    31. Takano, S.; Iwabuchi, Y.; Ogasawara, K., A concise enantioselective synthesis of (+)-muscarine from (R)-O-benzylglycidol [(R)-benzyloxymethyloxirane]. J. Chem. Soc., Chem. Commun. 1989, 1371-1372.

    32. Fei, X.; Wang, J.-Q.; Miller, K. D.; Sledge, G. W.; Hutchins, G. D.; Zheng, Q.-H., Synthesis of [18F]Xeloda as a novel potential PET radiotracer for imaging enzymes in cancers. Nucl. Med. Biol. 2004, 31, 1033-1041.

    33. Aouadi, K.; Lajoix, A.-D.; Gross, R.; Praly, J.-P., Multi-step synthesis and biological evaluation of analogues of insulin secretagogue (2S,3R,4S)-4-hydroxyisoleucine. Eur. J. Org. Chem. 2009, 61-71.

    34. Long, D. D.; Smith, M. D.; Martin, A.; Wheatley, J. R.; Watkin, D. G.; Muller, M.; Fleet, G. W. J., Complex tetrahydrofurans from carbohydrate lactones: THF amino acids as building blocks for unnatural biopolymers. J. Chem.Soc., Perkin Trans. 1 2002, 1982-1998.

    35. Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.; Pawlak, J. M.; Vaidyanathan, R., Dibutyltin oxide catalyzed selective sulfonylation of α-chelatable primary alcohols. Org. Lett. 1999, 1, 447-450.

    36. Skaanderup, P. R.; Poulsen, C. S.; Hyldtoft, L.; Joergensen, M. R.; Madsen, R., Regioselective conversion of primary alcohols into iodides in unprotected methyl furanosides and pyranosides. ChemInform 2003, 34, no.

    37. Dangerfield, E. M.; Timmer, M. S. M.; Stocker, B. L., Total synthesis without protecting groups: pyrrolidines and cyclic carbamates† Org. Lett. 2008, 11, 535-538.

    38. Barker, R.; Fletcher, H. G., 2,3,5-Tri-O-benzyl-D-ribosyl and -L-arabinosyl bromides. J. Org. Chem. 1961, 26, 4605-4609.

    39. Zeng, J.; Vedachalam, S.; Xiang, S.; Liu, X.-W., Direct C-glycosylation of organotrifluoroborates with glycosyl fluorides and its application to the total synthesis of (+)-varitriol. Org. Lett. 2011, 13, 42-45.

    40. Wu, S.-F.; Ruan, Y.-P.; Zheng, X.; Huang, P.-Q., Samarium diiodide-mediated reductive couplings of chiral nitrones with aldehydes/ketones and acyl chlorides. Tetrahedron 2010, 66, 1653-1660.

    41. Romero, C.; Manjón, A.; Bastida, J.; Iborra, J., A method for assaying the rhamnosidase activity of naringinase. Anal. Biochem. 1985, 149, 566-571.

    42. Magario, I.; Neumann, A.; Oliveros, E.; Syldatk, C., Deactivation kinetics and response surface analysis of the stability of α-L-rhamnosidase from Penicillium decumbens. Appl. Biochem. Biotechnol. 2009, 152, 29-41.

    43. Chapman, T. M.; Courtney, S.; Hay, P.; Davis, B. G., Highly diastereoselective additions to polyhydroxylated pyrrolidine cyclic imines: ready elaboration of aza-sugar scaffolds to create diverse carbohydrate-processing enzyme probes. Chem. Eur. J. 2003, 9, 3397-3414.

    下載圖示 校內:2013-09-13公開
    校外:2014-09-13公開
    QR CODE