簡易檢索 / 詳目顯示

研究生: 鄭明龍
Cheng, Ming-Lung
論文名稱: 由T-DNA插入突變種源中發掘調控水稻發育之新穎基因
Mining for novel genes regulating rice development from the T-DNA insertion mutant population
指導教授: 余淑美
Yu, Su-May
賀端華
Ho, Tuan-Hua
黃浩仁
Huang, Hao-Jen
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 54
中文關鍵詞: TRIM資料庫肌動蛋白絲生長激素運輸胞間連絲水稻捲葉WIN1基因
外文關鍵詞: TRIM database, Actin filament, Auxin transport, Plasmodesmata, Rice, Spiral phenotype, WIN1
相關次數: 點閱:167下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水稻為世界上主要的糧食作物之一,超過50% 的人口以水稻為主食。水稻已於2005年完成全基因體定序,並預測至少有三萬六千個基因存在水稻的基因體中。利用這些已定序的資料及配合農桿菌轉殖技術,Taiwan Rice Insertional Mutants (TRIM) database已建立水稻基因剔除或活化的T-DNA插入突變種原庫。我們利用此種原庫篩選出一個造成水稻鞘葉呈螺旋狀生長的基因(WINDING 1, WIN1)。此基因在突變株中會被T-DNA活化。WIN1 為具有BTB及NPH3 domains及一個coiled coil motif的蛋白質,其與阿拉伯芥的NPH3蛋白質家族具有同源性。WIN1的表現主要在根部、根與鞘葉間的組織,但當WIN1於鞘葉過量表現時,即會造成兩種不同方向的螺旋狀捲葉。在根部的eGFP-WIN1會送到細胞膜上下位置,並與原生質絲共同形成點狀的分佈;但在葉部則分佈在細胞膜上下左右的位置,且會導致生長激素集中分佈在螺旋捲葉外曲的位置。此外,在螺旋捲葉外曲的細胞其絲狀肌動蛋白(F-actin)的量也較螺旋捲葉內曲的細胞多,顯示WIN1會與肌動蛋白作用,造成生長激素不對稱分佈進而造成捲葉的生長。

    Rice is the most important staple food in the world and supports over 50% of the human population. Sequencing of the whole genome of rice was finished in 2005, which predicted at least 30,000 genes. The sequence data provide good bioinformatics information for rice gene functional studies. The Taiwan Rice Insertional Mutants (TRIM) population contains at least 100,000 T-DNA insertion mutant lines, making this a valuable resource and efficient tool for rice gene discoveries. By adopting a forward genetics approach, we screened the TRIM population and found an interesting T-DNA insertion mutant, WINDING 1 (WIN1). The WINDING 1 (WIN1) gene encodes a protein containing BTB and NPH3 domains and a coiled-coil motif, which is homologous to the Arabidopsis NPH3 protein. The rice homolog of NPH3, CPT1, has been shown to be important for coleoptile phototropism and regulation of lateral auxin transport. WIN1 is mainly expressed in roots and leaf/root junctions. Subcellular localization studies show that WIN1 is primarily associated with plasmodesmata along the horizontal edges of plasma membranes. However, upon ectopic expression, WIN1 is distributed on all edges of leaf blade and sheath cells. The excurvature side of the spiral leaf sheath in WIN1Act and WIN1-Ox plants contains more auxin and F-actin than the incurvature side, indicating that WIN1 regulates F-actin organization and causes asymmetric auxin distribution. This dissertation demonstrates the utility of using the genetic resources in the TRIM population for gene discovery and functional studies in rice.

    Chapter 1 1 Introduction to rice functional genomics research using TRIM 1 References 5 Chapter 2 7 Ectopic expression of WINDING 1 leads to asymmetrical distribution of auxin and a spiral phenotype in rice 7 Introduction 7 Materials and Methods 10 Plants materials 10 Primers 10 Plasmid construction 10 RT-PCR analyses 11 Phylogenetic analysis of WIN1 homologous proteins 12 GUS staining 12 Subcellular localization studies 12 Microscopic examination of actin filaments 13 Protein extraction and immunoblotting analyses 13 GUS activity assays 14 Measurement of epidermal cell size and guard cell size 14 Statistical analysis 14 Accession number of WIN1 15 Result 16 Ectopic expression of WIN1 leads to a spiral phenotype in rice shoots 16 WIN1 is a member of the BTBN protein family with novel functions 17 WIN1 is specifically expressed in roots and shoot/root junctions 18 WIN1 primarily localizes on plasma membrane and partially co-localizes with plasmodesmata 18 The spiral phenotype in WIN1Act and WIN1-Ox plants is not altered by growth under constant darkness or treatment with exogenous auxins or auxin transporter inhibitors 20 Ectopic expression of WIN1 leads to asymmetric distribution of auxin in leaf sheaths 20 Ectopic expression of WIN1 leads to differential cell expansion and a reduction of F-actin in leaf sheaths 21 Discussion 23 Ectopic expression of WIN1, which encodes a unique BTBN protein, is responsible for the shoot spiral phenotype 23 WIN1 is localized to the plasma membrane in a punctate pattern and also partially co-localized to plasmodesmata 24 Ectopic expression of WIN1 leads to an unequal horizontal distribution of auxin in shoots 25 Ectopic expression of WIN1 causes changes in the levels of F-actin and differential cell enlargement between the excurvature and incurvature sides of the shoot spiral structure 27 Reference 47 Chapter 3 52 Perspectives: Future research for crop improvement with WIN1 52 Perspectives for WIN1 52 References 54 Table 1. Primers list for WIN1 study 30 Table 2. Accession number of WIN1 homologous proteins used for phylogenetic analysis 31 Figure 1. Overexpression of WIN1 confers the spiral shoot phenotype 33 Figure 2. Ectopic expression of WIN1 in aboveground tissues confers twisted abnormal development 34 Figure 3. Multiple alignment of WIN1, AtNPH3 and CPT1 showing the low identity of amino acid sequences 35 Figure 4. WIN1 overexpression does not alter the phototropism of coleoptiles 36 Figure 5. Phylogenetic tree of WIN1 homologous proteins in plants 37 Figure 6. Overexpression of WIN1 in Arabidopsis does not cause a spiral shoot or twisted leaf phenotype 38 Figure 7. WIN1 is highly expressed in roots and the shoot/root junction region 39 Figure 8. WIN1 is localized on the plasma membrane and partially co-localizes with a plasmodesmata marker protein 40 Figure 9. Treatment with auxins, auxin efflux transporter inhibitor or growth under constant darkness do not alter the spiral phenotype of WIN1-overexpressing plants 41 Figure 10. Abscisic acid (ABA), brassinolide and gibberellin could not recover the spiral phenotype in rice ectopically-expressing WIN1 42 Figure 11. Uneven auxin distribution correlates with the winding phenotype in leaf sheaths of the WIN1Act line 43 Figure 12. Ectopic WIN1 expression causes differential cell expansion in leaf sheaths 44 Figure 13. F-actin networks are affected by ectopic expression of WIN1 45 Figure 14. Expression of two other genes causing rice spiral phenotype is not affected by ectopic expression of WIN1 46

    Arumuganathan, K., and Earle, E.D. Nuclear DNA content of some important plant species Plant Mol Biol Rep. 9. p11, 1991.
    Gou, X., and Li, J. Activation tagging. Methods Mol Biol. 876. p117-133, 2012.
    Hsing, Y.I., Chern, C.G., Fan, M.J., Lu, P.C., Chen, K.T., Lo, S.F., Sun, P.K., Ho, S.L., Lee, K.W., Wang, Y.C., Huang, W.L., Ko, S.S., Chen, S., Chen, J.L., Chung, C.I., Lin, Y.C., Hour, A.L., Wang, Y.W., Chang, Y.C., Tsai, M.W., Lin, Y.S., Chen, Y.C., Yen, H.M., Li, C.P., Wey, C.K., Tseng, C.S., Lai, M.H., Huang, S.C., Chen, L.J., and Yu, S.M. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol. 63. p351-364, 2007.
    Hsu, K.H., Liu, C.C., Wu, S.J., Kuo, Y.Y., Lu, C.A., Wu, C.R., Lian, P.J., Hong, C.Y., Ke, Y.T., Huang, J.H., and Yeh, C.H. Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening. Plant Mol Biol. 86. p125-137, 2014.
    Jeong, D.H., An, S., Kang, H.G., Moon, S., Han, J.J., Park, S., Lee, H.S., An, K., and An, G. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130. p1636-1644, 2002.
    Kanjanaphachoat, P., Wei, B.Y., Lo, S.F., Wang, I.W., Wang, C.S., Yu, S.M., Yen, M.L., Chiu, S.H., Lai, C.C., and Chen, L.J. Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxylase results in a dark brown phenotype and stunted growth. Plant Mol Biol. 78. p525-543, 2012.
    Ko, S.S., Li, M.J., Sun-Ben Ku, M., Ho, Y.C., Lin, Y.J., Chuang, M.H., Hsing, H.X., Lien, Y.C., Yang, H.T., Chang, H.C., and Chan, M.T. The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in Rice. Plant Cell. 26. p2486-2504, 2014.
    Krishnan, A., Guiderdoni, E., An, G., Hsing, Y.I., Han, C.D., Lee, M.C., Yu, S.M., Upadhyaya, N., Ramachandran, S., Zhang, Q., Sundaresan, V., Hirochika, H., Leung, H., and Pereira, A. Mutant resources in rice for functional genomics of the grasses. Plant Physiol. 149. p165-170, 2009.
    Lo, S.F., Yang, S.Y., Chen, K.T., Hsing, Y.I., Zeevaart, J.A., Chen, L.J., and Yu, S.M. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell. 20. p2603-2618, 2008.
    Lo, S.F., Fan, M.J., Hsing, Y.I., Chen, L.J., Chen, S., Wen, I.C., Liu, Y.L., Chen, K.T., Jiang, M.J., Lin, M.K., Rao, M.Y., Yu, L.C., Ho, T.H., and Yu, S.M. Genetic resources offer efficient tools for rice functional genomics research. Plant Cell Environ. 39. p998-1013, 2016.
    United Nations, Department of Economic and Social Affairs, World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. 2017.
    Project, I.R.G.S. The map-based sequence of the rice genome. Nature. 436. p793-800, 2005.
    Sasaki, T., and Burr, B. International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr Opin Plant Biol. 3. p138-141, 2000.
    Thangasamy, S., Chen, P.W., Lai, M.H., Chen, J., and Jauh, G.Y. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters. Plant J. 71. p288-302, 2012.
    Thangasamy, S., Guo, C.L., Chuang, M.H., Lai, M.H., Chen, J., and Jauh, G.Y. Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytol. 189. p869-882, 2011.
    Wan, S., Wu, J., Zhang, Z., Sun, X., Lv, Y., Gao, C., Ning, Y., Ma, J., Guo, Y., Zhang, Q., Zheng, X., Zhang, C., Ma, Z., and Lu, T. Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Mol Biol. 69. p69-80, 2009.
    Wei, F.J., Droc, G., Guiderdoni, E., and Hsing, Y.I. International Consortium of Rice Mutagenesis: resources and beyond. Rice (N Y). 6. p39, 2013.
    Weigel, D., Ahn, J.H., Blazquez, M.A., Borevitz, J.O., Christensen, S.K., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malancharuvil, E.J., Neff, M.M., Nguyen, J.T., Sato, S., Wang, Z.Y., Xia, Y., Dixon, R.A., Harrison, M.J., Lamb, C.J., Yanofsky, M.F., and Chory, J. Activation tagging in Arabidopsis. Plant Physiol. 122. p1003-1013, 2000.
    Yang, Y., Li, Y., and Wu, C. Genomic resources for functional analyses of the rice genome. Curr Opin Plant Biol. 16. p157-163, 2013.
    Abas, L., and Luschnig, C. Maximum yields of microsomal-type membranes from small amounts of plant material without requiring ultracentrifugation. Anal Biochem. 401. p217-227, 2010.
    Bell, K., and Oparka, K. Imaging plasmodesmata. Protoplasma. 248. p9-25, 2011.
    Benitez-Alfonso, Y., Faulkner, C., Pendle, A., Miyashima, S., Helariutta, Y., and Maule, A. Symplastic intercellular connectivity regulates lateral root patterning. Dev Cell. 26. p136-147, 2013.
    Benitez-Alfonso, Y., Cilia, M., San Roman, A., Thomas, C., Maule, A., Hearn, S., and Jackson, D. Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci U S A. 106. p3615-3620, 2009.
    Blakeslee, J.J., Peer, W.A., and Murphy, A.S. Auxin transport. Curr Opin Plant Biol. 8. p494-500, 2005.
    Brunoud, G., Wells, D.M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A.H., Beeckman, T., Kepinski, S., Traas, J., Bennett, M.J., and Vernoux, T. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature. 482. p103-106, 2012.
    Buschmann, H., Fabri, C.O., Hauptmann, M., Hutzler, P., Laux, T., Lloyd, C.W., and Schaffner, A.R. Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol. 14. p1515-1521, 2004.
    Chang, S., Puryear, J., and Cairney, J. A Simple and Efficient Method for Isolating RNA from Pine Trees. Plant Molecular Biology Reporter. 11. p4, 1993.
    Cheng, Y., Qin, G., Dai, X., and Zhao, Y. NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc Natl Acad Sci U S A. 104. p18825-18829, 2007.
    Cormack, B.P., Valdivia, R.H., and Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 173. p33-38, 1996.
    Durst, S., Nick, P., and Maisch, J. Nicotiana tabacum actin-depolymerizing factor 2 is involved in actin-driven, auxin-dependent patterning. J Plant Physiol. 170. p1057-1066, 2013.
    Haga, K., Takano, M., Neumann, R., and Iino, M. The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell. 17. p103-115, 2005.
    Han, X., Hyun, T.K., Zhang, M., Kumar, R., Koh, E.J., Kang, B.H., Lucas, W.J., and Kim, J.Y. Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Dev Cell. 28. p132-146, 2014.
    Hashimoto, T. Dissecting the cellular functions of plant microtubules using mutant tubulins. Cytoskeleton (Hoboken). 70. p191-200, 2013.
    Henikoff, S., and Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 89. p10915-10919, 1992.
    Holweg, C., Susslin, C., and Nick, P. Capturing in vivo dynamics of the actin cytoskeleton stimulated by auxin or light. Plant Cell Physiol. 45. p855-863, 2004.
    Hsing, Y.I., Chern, C.G., Fan, M.J., Lu, P.C., Chen, K.T., Lo, S.F., Sun, P.K., Ho, S.L., Lee, K.W., Wang, Y.C., Huang, W.L., Ko, S.S., Chen, S., Chen, J.L., Chung, C.I., Lin, Y.C., Hour, A.L., Wang, Y.W., Chang, Y.C., Tsai, M.W., Lin, Y.S., Chen, Y.C., Yen, H.M., Li, C.P., Wey, C.K., Tseng, C.S., Lai, M.H., Huang, S.C., Chen, L.J., and Yu, S.M. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol. 63. p351-364, 2007.
    Hung, C.J., Huang, Y.W., Liou, M.R., Lee, Y.C., Lin, N.S., Meng, M., Tsai, C.H., Hu, C.C., and Hsu, Y.H. Phosphorylation of coat protein by protein kinase CK2 regulates cell-to-cell movement of Bamboo mosaic virus through modulating RNA binding. Mol Plant Microbe Interact. 27. p1211-1225, 2014.
    Ishida, T., Kaneko, Y., Iwano, M., and Hashimoto, T. Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 104. p8544-8549, 2007.
    Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6. p3901-3907, 1987.
    Jo, Y., Cho, W.K., Rim, Y., Moon, J., Chen, X.Y., Chu, H., Kim, C.Y., Park, Z.Y., Lucas, W.J., and Kim, J.Y. Plasmodesmal receptor-like kinases identified through analysis of rice cell wall extracted proteins. Protoplasma. 248. p191-203, 2011.
    Karimi, M., De Meyer, B., and Hilson, P. Modular cloning in plant cells. Trends Plant Sci. 10. p103-105, 2005.
    Kim, I., Kobayashi, K., Cho, E., and Zambryski, P.C. Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci U S A. 102. p11945-11950, 2005.
    Kumar, S., Stecher, G., and Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 33. p1870-1874, 2016.
    Leyser, O. Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell. 121. p819-822, 2005.
    Leyser, O. The power of auxin in plants. Plant Physiol. 154. p501-505, 2010.
    Li, G., Liang, W., Zhang, X., Ren, H., Hu, J., Bennett, M.J., and Zhang, D. Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth. Proc Natl Acad Sci U S A. 111. p10377-10382, 2014.
    Liscum, E., and Briggs, W.R. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell. 7. p473-485, 1995.
    Liscum, E., and Briggs, W.R. Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol. 112. p291-296, 1996.
    Liu, Y., Xu, M., Liang, N., Zheng, Y., Yu, Q., and Wu, S. Symplastic communication spatially directs local auxin biosynthesis to maintain root stem cell niche in Arabidopsis. Proc Natl Acad Sci U S A. 27. p1616387114, 2017.
    Lo, S.F., Fan, M.J., Hsing, Y.I., Chen, L.J., Chen, S., Wen, I.C., Liu, Y.L., Chen, K.T., Jiang, M.J., Lin, M.K., Rao, M.Y., Yu, L.C., Ho, T.H., and Yu, S.M. Genetic resources offer efficient tools for rice functional genomics research. Plant Cell Environ. 39. p998-1013, 2016.
    Lucas, W.J., and Lee, J.Y. Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol. 5. p712-726, 2004.
    Mizukami, Y. A matter of size: developmental control of organ size in plants. Curr Opin Plant Biol. 4. p533-539, 2001.
    Motchoulski, A., and Liscum, E. Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science. 286. p961-964, 1999.
    Nakajima, K., Furutani, I., Tachimoto, H., Matsubara, H., and Hashimoto, T. SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell. 16. p1178-1190, 2004.
    Nick, P. Probing the actin-auxin oscillator. Plant Signal Behav. 5. p94-98, 2010.
    Nick, P., Han, M.J., and An, G. Auxin stimulates its own transport by shaping actin filaments. Plant Physiol. 151. p155-167, 2009.
    Pedmale, U.V., and Liscum, E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem. 282. p19992-20001, 2007.
    Rahman, A., Bannigan, A., Sulaman, W., Pechter, P., Blancaflor, E.B., and Baskin, T.I. Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J. 50. p514-528, 2007.
    Robards, A.W. Plasmodesmata. Annu. Rev. Plant Physiol. 26. p17, 1975.
    Sachs, T. On the Determination of the Pattern of Vascular Tissue in Peas Ann Bot. Ann Bot. 32. p10, 1968.
    Shoji, T., Narita, N.N., Hayashi, K., Asada, J., Hamada, T., Sonobe, S., Nakajima, K., and Hashimoto, T. Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis. Plant Physiol. 136. p3933-3944, 2004.
    Simpson, C., Thomas, C., Findlay, K., Bayer, E., and Maule, A.J. An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell. 21. p581-594, 2009.
    Thitamadee, S., Tuchihara, K., and Hashimoto, T. Microtubule basis for left-handed helical growth in Arabidopsis. Nature. 417. p193-196, 2002.
    Thomas, C.L., Bayer, E.M., Ritzenthaler, C., Fernandez-Calvino, L., and Maule, A.J. Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol. 6. pe7, 2008.
    Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. 9. p1963-1971, 1997.
    Wu, S., Xie, Y., Zhang, J., Ren, Y., Zhang, X., Wang, J., Guo, X., Wu, F., Sheng, P., Wang, J., Wu, C., Wang, H., Huang, S., and Wan, J. VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice. Plant Cell. 27. p2829-2845, 2015.
    Yang, W., Ren, S., Zhang, X., Gao, M., Ye, S., Qi, Y., Zheng, Y., Wang, J., Zeng, L., Li, Q., Huang, S., and He, Z. BENT UPPERMOST INTERNODE1 encodes the class II formin FH5 crucial for actin organization and rice development. Plant Cell. 23. p661-680, 2011.
    Zhang, Z., Zhang, Y., Tan, H., Wang, Y., Li, G., Liang, W., Yuan, Z., Hu, J., Ren, H., and Zhang, D. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell. 23. p681-700, 2011.
    Zhao, Z., Andersen, S.U., Ljung, K., Dolezal, K., Miotk, A., Schultheiss, S.J., and Lohmann, J.U. Hormonal control of the shoot stem-cell niche. Nature. 465. p1089-1092, 2010.
    Zollman, S., Godt, D., Prive, G.G., Couderc, J.L., and Laski, F.A. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc Natl Acad Sci U S A. 91. p10717-10721, 1994.
    Aoyama, T., and Chua, N.H. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11. p605-612, 1997.
    Fernandez-Calvino, L., Faulkner, C., Walshaw, J., Saalbach, G., Bayer, E., Benitez-Alfonso, Y., and Maule, A. Arabidopsis plasmodesmal proteome. PLoS One. 6. pe18880, 2011.
    Motchoulski, A., and Liscum, E. Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science. 286. p961-964, 1999.
    Pedmale, U.V., and Liscum, E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem. 282. p19992-20001, 2007.
    Wang, K.L., Yoshida, H., Lurin, C., and Ecker, J.R. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature. 428. p945-950, 2004.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE