簡易檢索 / 詳目顯示

研究生: 曹銘修
Tsao, Ming-Hsiu
論文名稱: 敏化染料之合成及光電性質探討
Synthesis,Characterization,and Photovoltaic Properties of Photosensitizers
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 168
中文關鍵詞: 吩噻嗪敏化染料光轉換效率噻吩二噻吩乙烯二氧噻吩
外文關鍵詞: Phenothiazine, Dye-sensitized, Solar cell, thiophene, 2-2-bithiophene, 3,4-ethylenedioxythiophene
相關次數: 點閱:48下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文合成一系列染料分子,主要為三個部份探討,藉由予體的篩選、共軛系統的延伸與受體的選用三種不同的方式,篩選出最適合之條件,進而得到較高光轉換效率。首先我們由不同予體與受體的開發,成功地合成出一系列價格低廉,亦有不錯效能之染料分子,其中以吩噻嗪(phenothiazine)推電子能力最強,因此有較高的光轉換效率,可達5.53 % ( Jsc =13.35 mA cm-2, Voc = 669 mV, ff = 0.62),另外我們可從雙受體染料中發現,雙芽的鍵結方式,有助於光轉換效率的增益,最後我們藉由所篩選之予體進行改質,延續D-π-A(Donor –π-bridge –Acceptor)的概念,改良以往文獻中常使用的噻吩(thiophene)為間隔(spacer),嘗試以電子豐盈(electron-rich)的二噻吩(2-2-bithiophene)延伸共軛長度,或者藉乙烯二氧噻吩(3,4-ethylenedioxythiophene, EDOT)電洞基團上的乙烯二氧基(ethylene-dioxy group)提供額外電子,使得消光係數增加、光譜更為紅移並增進其光轉換效率,其中以染料38效率最高,可達6.72%。(Jsc =15.18 mA cm-2, Voc = 645 mV, ff = 0.69)。

    A series of new organic dyes comprising carbazole, iminodibenzyl, and phenothiazine moieties, respectively, as the electron donors and rhodanine ring, cyanoacetic acid and acrylic acid moieties as the electron acceptors/anchoring groups are designed and developed for use in dye-sensitized solar cells. This is evidenced by spectral , electrochemical, and density functional theory calculations. Electrochemical study indicates that the phenothiazine unit is much more effective in lowering the ionization potential than are the iminodibenzyl and carbazole units. By the way, the phenothiazine dye has a higher conversion efficiency (η) of 5.53 % than the other dyes. Futthermore, we also develop a series of di-anchoring organic dyes. The molecular structure has two electron acceptors on both sides of each dye molecule, providing the efficient electron extraction paths from electron donor part, these dyes can obtain a higher conversion efficiency.
    A series of organic sensitizers containing the same electron acceptors with various aromatic spacer as a electron-transfer groups, were used in dye-sensitized solar cells to study the effect of aromatic spacer on device performance. For these dyes, the phenothiazine derivative moiety and the cyanoacetic acid/ rhodanine ring are the electron donor and electron acceptor, respectively. The absorption spectra, electrochemical and photovoltaic properties of dyes 36–41 were extensively investigated. It was found that HOMO and LUMO energy level tuning can be conveniently accomplished by alternating the spacer moiety.
    The DSSCs based on dye 38 showed the best photovoltaic performance: a maximum conversion efficiency of 6.72% under standard global AM1.5 solar light conditions, a short-circuit photocurrent density (Jsc) of 15.18 mA cm-2, an open-circuit photovoltage (Voc) of 645 mV, and a fill factor (ff) of 0.69. These results demonstrated that the DSSCs based on phenothiazine dyes could achieve both high performance and good stability
    The effect of the kind of electron acceptor on the performance of DSSC was studied as well. We found that those organic dyes with rhodanine-acetic acid as acceptor gave much lower efficiencies, compared to those with cyanocrylic acid.

    目錄 摘要…………………………………………I 謝誌…………………………………………III 目錄…………………………………………VII 第一章 緒論………………………………1 § 1-1前言……………………………………1 § 1-2太陽能電池的起源與發展………………………3 § 1-3文獻回顧…………………………………7 § 1-4染料敏化太陽能電池的組成……………………22 § 1-5染料敏化太陽能電池工作原理與其性質………………28 § 1-6太陽能電池效率測試及相關參數…………………31 § 1-7太陽光譜………………………………37 § 1-8研究目的與動機……………………………38 第二章 結果與討論-合成部分…………………42 § 2-1合成之壹………………………………42 § 2-2合成之貳………………………………45 § 2-3合成之叁………………………………47 第三章 結果與討論-性質測試…………………51 § 3-1染料光物理性質……………………………51 § 3-2染料電化學性質……………………………68 § 3-3染料理論計算……………………………85 § 3-4光轉換效率測試……………………103 第四章 結論……………………………………112 第五章 實驗部份…………………………………113 § 5-1 實驗儀器………………………………113 § 5-2 實驗藥品與輔助儀器…………………116 § 5-3 元件的製作……………………………117 § 5-4 實驗步驟與光譜資料…………………118 步驟之壹……………………………118 步驟之貳……………………………126 步驟之叁……………………………131 參考文獻……………………………………140 附錄目錄……………………………………145

    1. 劉茂煌, 工業材料雜誌, 203.
    2. 童永樑, 工業材料雜誌, 255.
    3. Energy&Nanotechnology Conference .Houston;Christoph Brabec;Konarka
    4. German Advisory Council on Global Change, 2003.
    5. Technical Summary(TS),IPCC,Third Assessment Report (TAR),Working Group I
    6. 陳品誠,碩士論文,台灣師範大學(2008)
    7. 李陵嵐、張正華、葉楚平、楊平華有機與塑膠太陽能電池
    8. Bisquert, J.; Cahen, D.; Hodes, G.; Ru1hle, S.; Zaban, A. J. Phys. Chem. B 2004, 108, 8106-8118.
    9. 蘇昱安,碩士論文,東華大學 (2006)
    10. Ferrere S. Inorg. Chim. Acta 2002, 329, 79–92.
    11. Rubino, P.; Chone, C. ; Larramon, G. ; Bignozzi, C. A. J. Am. Chem. Soc. 2005 127, 15342-15343.
    12. Nazeeruddin, M. K.; Kay, A.; Rodicio ; Baker, R. H.; Miiller, E.; Liska, P.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382-6390.
    13. Chen, C. Y.; Wu, S. J.; Wu, C. G.; Chen, J. G.; Ho, K. C. Angew. Chem. Int. Ed. 2006, 45, 1–5.
    14. Longo, C.; Paoli, M. D. J. Braz. Chem. Soc. 2003 ,14, 889-901.
    15. Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T.; Yanagida, S. Chem. Mater. 2004, 16, 1806.
    16. Yanagida, S.; Senadeera, G. K. R.; Nakamura, K.; Kitamura, T.; Wada , Y. Journal of Photochemistry and Photobiology A: Chemistry 2004, 166, 75.
    17. Zhang, W.; Fang , Z.; Su, M.; Saeys, M.; Liu, B. Macromol. Rapid Commun. 2009, 30, 1533-1537.
    18. Grätzel, M. J. Phys. Chem. 1993, 97, 6272-6277.
    19. Ludlow, J. C. AIChE Symposium Series. 1981, 77, 22-26.
    20. Ryu, H.; Subramanian, L. R.; Hanack, M. Tetrahedron. 2006, 62, 6236-6247.
    21. Wang, Z. S.; Cui, Y.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 19, 1138–1141.
    22. Hagberg; Edvinsson, D. P.; Marinado, T.; Boschloo, T.; Hagfeldt, G.; Sun, L. Chem. Commun. 2006, 2245.
    23. Xu, W.; Peng, B.; Liang, J. J. Phys. Chem. C. 2008, 112, 874.
    24. Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. J. Org. Chem. 2007, 72, 9550-9556.
    25. Liang, M.; Xu, W. J. Phys. Chem. C 2007, 111, 4465.
    26. Yang, C. H. J. Power Sources 2009.
    27. Tian, H.; Yang,; X.; Cong, J.; Chen, R.; Hao, J. L. Y.; Hagfeldt , A.; Sun, L. Chem. Commun. 2009, 6288–6290.
    28. Hagfeldt, A.; Sun, L.; Graützel, M.; Nazeeruddin, M. K. J. Phys. Chem. C 2009, 113, 16816–16820.
    29. Wen, B. Chinese Journal of Chemistry 2008, 26, 929-934
    30. 彭懷夫,碩士論文,東華大學 (2004)
    31. Grätzel, M. Nature 2001,414, 338-344.
    32. 郭明村, 工業材料雜誌, 203.
    33. 崔孟晉, 工業材料雜誌, 257.
    34. Hagberg, D. Stockholm , 2009.
    35. 李富友, 博士論文, 復旦大學. (2005)
    36. Wu, T. Y.; Tsao, M. H.; Chen, F. L.; Su, S. G.; Chang, C. W.; Wang, H. P.; Lin, Y. C.; Ou-Yang, W. C.; Sun, I. W. Int. J. Mol. Sci. 2010, 11, 329-353.
    37. 周怡滿,碩士論文,清華大學 (2009)
    38. Tian, H.; Yang, X.; Cong, J.; Chen, R.; . Liu, C. T.J; Hao, Y.; Wang, L.; Sun, L. Dyes and Pigments 2010,84,62–68.
    39. Wang, Z. S.; Koumura, N.; Cui, Y.; Takahashi, M.; Sekiguchi, H.; Mori, A.; Kubo, T.; Furube, A.; Hara, K. Chem. Mater. 2008, 20, 3993–4003.
    40. Wu, T. Y.; Sheu, R. B.; Chen, Y.; Macromolecules 2004, 37, 725-733.
    41. Gilman, H.; Van Ess, P. R.; Shirley, D. A. J. Am. Chem. Soc. 1944, 66 (7), 1214-1216.
    42. Tsai, M. S.; Hsu, Y. C.; Lin, J. T.; Chen, H. C. J. Phys. Chem. C 2007, 111 (50), 18785-18793.
    43. Huang, S. T.; Hsu, Y. C.; Yen, Y. S.; Chou, H. H.; Lin, J. T.; Chang, C. W. Hsu, C. P.; Tsai, C.; Yin, D. J. J. Phys. Chem. C 2008, 112, 19739–19747.
    44. Qin, P.; Zhu, H.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. J. Am. Chem. Soc. 2008, 130, 8570–8571.
    45. Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Baker, R. H.; Grätzel, M. J. Phys. Chem. B 2003, 107 (51), 14336–14341.
    46. Park, S. S.; Won, Y. S.; Choi, Y. C.; Kim, J. H. Energy & Fuels 2009, 23, 3732–3736.
    47. Vilsmeier, Haack, Ber. 1937, 60, 119.
    48. Campaigne, E.; Archer, W. L. Organic Syntheses 1963, 4, 331.
    49. Bergman, Renstroem, Lars, Sjoeberg, Birger Tetrahedron 1980, 36, 2505 – 2512.
    50. Salakka, A. K.; Jokela, T. H.; Beilstein, K. W. J. Org. Chem. 2006, 2,16.
    51. Tian, H.; Yang, X.; Chen, R.; Pan, Y.; Li, L.; Hagfeldt, A.; Sun, L. Chem. Commun. 2007, 3741 – 3743.
    52. Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; ayama, K. S; Arakawa, H. New J. Chem. 2003, 27, 783–785.
    53. 白佳靈,碩士論文,台灣大學 (2005)
    54. Schmidt, Thelallat, M. Adv. Mater. 1998, 10, 219.
    55. Koene, B. E.; Loy, D. E.; Thomposon, M. E. Chem. Mater. 1998, 10,2235.
    56. Kong, R.Y.; Jenekhe, X.; Bard, S.A. J. Am. Chem. Soc. 2003, 125, 12631–12639.
    57. Abbotto, A.; Manfredi, N.; Marinzi, C.; Angelis, F. D.; Mosconi, E.; Yum, J.H.; Xianxi, Z.; Nazeeruddin, M. K.; Grüatzelc, M. Energy Environ. Sci. 2009, 2, 1094–1101
    58. Lee, N.C.; Chen, Y.Synthetic Metals 2003,139 ,263–269.
    59. Xun, S.; Zhang, J.; Li, X.; Ma, D.; Wang, Y. Synthetic Metals 2008,158 ,484–488.
    60. Lindgren, L. J.; Zhang, F.; Admassie, S.; Wang, X.; Andersson, M. R. Journal of Luminescence 2007,122–123.
    61. Wu, W.; Yang, J.; Hua, J.; Tang, J.; Zhang, L.; Long, Y.; Tian, H. J. Mater. Chem. 2010, 20, 1772 – 1779.
    62. Yang, C. H.; Chen, H. L.; Wu, C. G.; Pei, C.; Chen; Liao, S. H.; Wang, T. L. Journal of Power Sources 2009 , 188, 627–634.
    63. Li, G.; Jiang, K. J.; Li, Y. F.; Liand, S. L.; Yang, L. M. J. Phys. Chem. C , 2008 112, 11591–11599.
    64. Mishra, A.; Fischer, M. K. R.; uerle, P. B. Angew. Chem. Int. Ed. 2009, 48, 2474-2499.
    65. Chang, Y. M.; Wang, L.; Su, W. F. Organic Electronics 2008, 9 , 968–973.
    66. Ahmad, S.; Yum, J. H.; Xianxi, Z.; Grätzel, M.; Butt, H. J.; Nazeeruddin, M. K. J. Mater. Chem. 2010, 20, 1654-1658.

    下載圖示 校內:2015-07-15公開
    校外:2015-07-15公開
    QR CODE