簡易檢索 / 詳目顯示

研究生: 周子傑
Chou, Tzu-Chieh
論文名稱: 三氧化鎢系氣體感測器之研製
Fabrication of Tungsten Trioxide (WO3) Based Gas Sensors
指導教授: 劉文超
Liu, Wen-Chau
共同指導教授: 林坤緯
Lin, Kun-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 118
中文關鍵詞: 氣體感測器三氧化鎢奈米粒子溢出效應
外文關鍵詞: Gas sensors, Tungsten trioxide, Pt, Nanoparticle, Spillover effect
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類科技的蓬勃發展給予我們一個智慧、便利的生活模式,然而,科技進步的背後卻也連帶造成環境和健康上的隱憂,隨著暴露在揮發性有機氣體的濃度不同會對人體的健康造成一定程度的傷害,因此氣體感測器已經被廣泛應用於化學工業、生物醫療、農業、食品工業以及環境檢測等領域。此篇論文所製作的三氧化鎢系氣體感測器具備良好的化學穩定性、極佳的氣體選擇性、高靈敏度及製作過程簡單等優點。此外,本論文也藉由X光薄膜繞射分析儀、掃描式電子顯微鏡、能量散式光譜儀、原子力顯微鏡等儀器來分析三氧化鎢系氣體感測器之元件結構、表面型態和元素組成。
    在元件製程方面,吾人利用熱蒸鍍沉積鉻/鉑指叉式電極於藍寶石基板上,接著以射頻磁控濺鍍的方式製做三氧化鎢薄膜感測層,最後使用快速熱退火增進三氧化鎢薄膜的結晶性,並將元件針對不同濃度的氨氣進行感測分析。
    其次,吾人利用濕式製程的方式合成出鉑奈米粒子修飾三氧化鎢薄膜感測層表面,改善三氧化鎢系氣體感測器之操作溫度、靈敏度及氣體選擇性。在研究上已有諸多證據顯示鉑奈米粒子對氫化物而言是一個良好的催化劑,體表面積的增加除了能提供較多的氣體吸附座外,溢出效應的產生更促進電子在材料表面的傳導和反應。實驗結果顯示經鉑奈米粒子修飾後的元件對氨氣有良好的感測能力。
    最後,吾人以熱蒸鍍沉積鉑奈米粒子修飾三氧化鎢薄膜感測層表面,同樣藉由鉑奈米粒子去催化元件對氨氣與氫氣的反應。從實驗結果可以發現,利用熱蒸鍍所沉積的鉑奈米粒子比起濕式製程,在氨氣與氫氣的感測能力均有大幅度的提升。

    The flourishing development of human science and technology has given us a smart and convenient lifestyle. However, technological progress has also brought about environmental and health concerns. With exposure to different concentrations of volatile organic compounds (VOCs), it will affect human health and cause a certain degree of damage. So, gas sensors have been widely used in the chemical industry, biomedical, agricultural, food industry and environmental testing, etc. Tungsten trioxide (WO3) based gas sensors studied in this thesis have the advantages of good chemical stability, excellent selectivity, high sensitivity and simple manufacturing process. In addition, this study will analyze the device structure, surface morphology and elemental composition of WO3 based gas sensors by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersion X-ray spectrometer (EDS), and atomic force microscope (AFM).
    In terms of device processing, the chrome/platinum (Cr/Pt) interdigitated electrodes were fabricated on a sapphire substrate by the thermal evaporation (TE) method. Followed by a radio-frequency (RF) sputtering method deposited the WO3 thin film sensing layer. Then, the crystalline of WO3 thin film was improved by rapid thermal annealing (RTA). Finally, the sensing characteristics under exposure to various concentrations of ammonia were discussed.
    After that, we used a wet process to synthesize platinum nanoparticles (NPs) as the catalytic metal to modify the surface of WO3 thin film sensing layer. It improves the performance of operating temperature, sensitivity, and selectivity of WO3 based gas sensors. Many studies have shown that Pt nanoparticles are a good catalyst for hydrides. The increase in surface-to-volume ratio can provide more gas adsorption sites, and the resulting spillover effect facilitates electron conduction and reaction at the surface of the material. The experimental results show that the nanoparticle-modified device has good sensing properties for ammonia.
    In the next chapter, we modified the surface of WO3 thin film sensing layer with depositing Pt nanoparticles by the thermal evaporation. Pt nanoparticles were used to catalyze the reaction of ammonia and hydrogen. From the experimental results, it was found that Pt nanoparticles deposited by thermal evaporation compared to the wet process have a significant increase at the sensing properties of ammonia and hydrogen.

    Table List Figure Captions Chapter 1 Introduction 1.1 Introduction of Gas Sensors........................1 1.2 Tungstn Trioxide (WO3).............................2 1.3 Sensing Mechanisms.................................3 1.3.1 Air Sensing Mechanism..............................3 1.3.2 Ammonia Sensing Mechanism..........................3 1.3.3 Hydrogen Sensing Mechanism.........................4 1.4 Spillover Effect...................................5 Chapter 2 Ammonia Sensor Based on a Sputtered WO3 Thin Film 2.1 Introduction.......................................6 2.2 Experimental Processes.............................7 2.2.1 Device Fabrication.................................7 2.2.2 Sensing Measurement................................8 2.2.3 Analytical Equipment...............................9 2.3 Experimental Results and Discussion................9 2.3.1 Ammonia Sensing Characteristics....................9 2.3.2 Structural and Morphological Characteristics......12 2.4 Summary...........................................13 Chapter 3 Gas Sensors Based on Pt Nanoparticle (NP) / WO3 Thin Film Structures 3.1 Introduction......................................14 3.2 Experimental Processes............................15 3.2.1 Device Fabrication................................15 3.2.2 Synthesis of Pt Nanoparticles.....................15 3.2.3 Sensing Measurement...............................16 3.2.4 Analytical Equipment..............................17 3.3 Experimental Results and Discussion...............17 3.3.1 Ammonia Sensing Characteristics...................17 3.3.2 Structural and Morphological Characteristics......19 3.4 Summary...........................................19 Chapter 4 Gas Sensors Based on Thermal Evaporation Pt Nanoparticles (NPs) 4.1 Introduction......................................21 4.2 Experimental Processes............................21 4.2.1 Device Fabrication................................21 4.2.2 Thermal Evaporation Pt Nanoparticles..............22 4.2.3 Sensing Measurement...............................23 4.2.4 Analytical Equipment..............................23 4.3 Experimental Results and Discussion...............24 4.3.1 Ammonia Sensing Characteristics...................24 4.3.2 Hydrogen Sensing Characteristics..................25 4.3.3 Structural and Morphological Characteristics......26 4.4 Summary...........................................27 Chapter 5 Conclusion and Prospect 5.1 Conclusion........................................28 5.2 Prospect..........................................28 Reference.................................................30

    [1] X. Xing, Y. Li, D. Deng, N. Chen, X. Liu, X. Xiao, and Y. Wang, “Ag-Functionalized macro-/mesoporous AZO synthesized by solution combustion for VOCs gas sensing application,” RSC Adv., vol. 6, pp. 101304-101312, 2016.
    [2] C. Jia, S. Batterman, and C. Godwin, “VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers,” Atoms. Environ., vol. 42, pp. 2083-2100, 2008.
    [3] M. Leidinger, T. Sauerwald, T. Conrad, W. Reimringer, G. Ventura, and A. Schütze, “Selective detection of hazardous indoor VOCs using metal oxide gas sensors,” Procedia Eng., vol. 87, pp. 1449-1452, 2014.
    [4] E. Rossinyol, J. Arbiol, F. Peiró, A. Cornet, J.R. Morante, B. Tian, T. Bo, and D. Zhao, “Nanostructured metal oxides synthesized by hard template method for gas sensing applications,” Sens. Actuators B., vol. 109 pp. 57-63, 2005.
    [5] G. N. Chaudhari, A. M. Bende, A. B. Bodade, S. S. Patil, and V. S. Sapkal, “Structural and gas sensing properties of nanocrystalline TiO2: WO3-based hydrogen sensors,” Sens. Actuators B., vol. 115, pp. 297-302, 2006.
    [6] Y. D. Wang, X. H. Wu, Y. F. Li, and Z. L. Zhou, “Mesostructured SnO2 as sensing material for gas sensors.” Solid-State Electron., vol. 48, pp. 627-632, 2004.
    [7] G. Korotcenkov, V. Brinzari, Y. Boris, M. Ivanov, J. Schwank, and J. Morante, “Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis,” Thin Solid Films, vol. 436, pp. 119-126, 2003.
    [8] R. Dolbec and M. A. El Khakani, “Sub-ppm sensitivity towards carbon monoxide by means of plused laser deposited SnO2: Pt based sensors,” Appl. Phys. Lett., vol. 90, p. 173114, 2007.
    [9] S. M. A. Durrani, E. E. Khawaja, and M. F. Al-Kuhaili, “CO-sensing properties of undoped and doped tin oxide thin films prepared by electron beam evaporation,” Talanta, vol. 65, pp. 1162-1167, 2005.
    [10] Z. F. Liu, T. Yamazaki, Y. B. Shen, T. Kikuta, and N. Nakatani, “Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films,” Sens. Actuators B., vol. 128, pp. 173-178, 2007.
    [11] M. Gillet, K. Aguir, M. Bendahan, and P. Mennini, “Grain size effect in sputtered tungsten trioxide thin films on the sensitivity to ozone,” Thin Solid Films, vol. 484, pp. 358-363, 2005.
    [12] C. Imawan, H. Steffes, F. Solzbacher, and E. Obermeier, “A new preparation method for sputtered MoO3 multilayers for the application in gas sensors,” Sens. Actuators B., vol. 78, pp. 119-125, 2001.
    [13] T. Yamazaki, C. J. Jin, A. Nakayama, K. Ito, T. Yoshizawa, T. Kikuta, N. Nakatani, and T. Yamabuchi, “NO2 gas sensor made of porous MoO3 sputtered films,” Jpn. J. Appl. Phys., vol. 44, p. 792, 2005.
    [14] Y. Shimizu, T. Hyodo, and M. Egashira, “H2 sensing performance of anodically oxidized TiO2 thin films equipped with Pd electrode,” Sens. Actuators B., vol. 121, pp. 219-230, 2007.
    [15] J. Yang, H. Lim, and S. Han, “Influence of binder on the sensing and electrical characteristics of WO3-based gas sensors,” Sens. Actuators B., vol. 60, pp. 71-77, 1999.
    [16] D. Davazoglou and T. Dritsas, “Fabrication and calibration of a gas sensor based on chemically vapor deposited WO3 films on silicon substrates: Application to H2 sensing,” Sens. Actuators B., vol. 77, pp. 359-362, 2001.
    [17] M. Penza, M. A. Tagliente, L. Mirenghi, G. Gerardi, C. Martucci, and G. Cassano, “Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor,” Sens. Actuators B., vol. 50, pp. 9-18, 1998.
    [18] T. S. Kim, Y. B. Kim, K. S. Yoo, G. S. Sung, and H. J. Jung, “Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor,” Sens. Actuators B., vol. 62, pp. 102-108, 2000.
    [19] Z. F. Liu, M. Miyauchi, T. Yamazaki, and Y. B. Shen, “Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres,” Sens. Actuators B., vol. 140, pp. 514-519, 2009.
    [20] X. S. Wang, N. Miura, and N. Yamazoe, “Study of WO3-based sensing materials for NH3 and NO detection,” Sens. Actuators B., vol. 66, pp. 74-76, 2000.
    [21] L. J. LeGore, K. Snow, J. D. Galipeau, and J. F. Vetelino, “The optimization of a tungsten trioxide film for application in a surface acoustic wave gas sensor,” Sens. Actuators B., vol. 35, pp. 164-169, 1996.
    [22] R. Ionescu, A. Hoel, C. G. Granqvist, E. Llobet, and P. Heszler, “Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors,” Sens. Actuators B., vol. 104, pp. 132-139, 2005.
    [23] W. H. Tao and C. H. Tsai, “H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining,” Sens. Actuators B., vol. 81, pp. 237-247, 2002.
    [24] T. Masong, D. Guorui, and G. Dingsan, “WO3 thin film sensor prepared by sol-gel technique and its low-temperature sensing properties to trimethylamin,” Mater. Chem. Phys., vol. 69, pp. 176-179, 2001.
    [25] C. N. Xu, N. Miura, Y. Ishida, K. Matsuda, and N. Yamazoe, “Selective detection of NH3 over NO in combustion exhausts by using Au and MnO3 doubly promoted WO3 element,” Sens. Actuators B., vol. 65, pp. 163-165, 2000.
    [26] D. E. Williams, “Semiconducting oxides as gas-sensitive resistors,” Sens. Actuators B., vol. 57, pp.1-16, 1999.
    [27] M. Bendahan, R. Boulmani, J. L. Seguin, and K. Aguir, “Characterization of ozone sensors based on WO3 reactively sputtered films: Influence of O2 concentration in the sputtering gas, and working temperature,” Sens. Actuators B., vol. 100, pp. 320-324, 2004.
    [28] C. Cantalini, W. Wlodarski, Y. Li, M. Passacantando, S. Santucci, E. Comini, G. Faglia, and G. Sberveglieri, “Investigation on the O3 sensitivity properties of WO3 thin films prepared by sol-gel, thermal evaporation and r.f. sputtering techniques,” Sens. Actuators B., vol. 64, pp. 182-188, 2000.
    [29] M. Akiyama, J. Tamaki, N. Miura, and N. Yamazoe, “Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2,” Chem. Lett., vol. 20, pp. 1611-1614, 1991.
    [30] J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, and N. Yamazoe, “Fabrication of highly selective tungsten oxide ammonia sensors,” J. Electrochem. Soc., vol. 147, pp. 776-779, 2000.
    [31] K. Kanda and T. Maekawa, “Development of a WO3 thick-film-based sensor for the detection of VOC,” Sens. Actuators B., vol. 108, pp. 97-101, 2005.
    [32] X. Li, X, Li, Z. Li, J. Wang, and J. Zhang, “WS2 nanoflakes based selective ammonia sensors at room temperature,” Sens. Actuators B., vol. 240, pp. 273-277, 2017.
    [33] S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development,” Renew. Sustain. Energy Rev., vol. 57, pp. 850-866, 2016.
    [34] M. Z. Ahmad, V. B. Golovko, R. H. Adnan, F. A. Bakar, J. Y. Ruzicka, D. P. Anderson, G. G. Andersson, and W. Wlodarski, “Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films,” Int. J. Hydrogen Energy, vol. 38, pp. 12865-12877, 2013.
    [35] S. K. Arya, S. Krishnan, H. Silva, S. Jean, and S. Bhansali, “Advances in materials for room temperature hydrogen sensors,” Analyst, vol. 137, p. 2743, 2012.
    [36] N. H. Al-Hardan, M. J. Abdullah, and A. A. Aziz, “Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films,” Int. J. Hydrogen Energy, vol. 35, pp. 4428-4434, 2010.
    [37] S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B., vol. 108, pp. 508-514, 2005.
    [38] F. Amano, D. Li, and B. Ohtani, “Fabrication and photoelectrochemical property of tungsten(VI) oxide films with a flake-wall structure,” Chem. Commun., vol. 46, pp. 2769–2771, 2010.
    [39] A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, and Z. L. Wang, “Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks,” Appl. Phys. Lett., vol. 88, p. 203101, 2006.
    [40] J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. Yang, and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays,” Appl. Phys. Lett., vol. 87, p. 223108, 2005.
    [41] D. Le Bellac, A. Azens, and C. G. Granqvist, “Angular selective transmittance through electrochromic tungsten oxide films made by oblique angle sputtering,” Appl. Phys. Lett., vol. 66, p. 1715, 1995.
    [42] M. Qamar, M. A. Gondal, and Z. H. Yamani, “Synthesis of highly active nanocrystalline WO3 and its application in laser-induced photocatalytic removal of a dye from water,” Catal. Commun., vol. 10, pp. 1980-1984, 2009.
    [43] J. M. Wang, E. Khoo, P. S. Lee, and J. Ma, “Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte,” J. Phys. Chem. C, vol. 113, pp. 9655-9658, 2009.
    [44] J. M. Wang, E. Khoo, P. S. Lee, and J. Ma, “Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods,” J. Phys. Chem. C, vol. 112, pp. 14306-14312, 2008.
    [45] H. T. Sun, C. Cantalini, L. Lozzi, M. Passacantando, S. Santucci, and M. Pelino, “Microstructural effect on NO2 sensitivity of WO3 thin film gas sensors Part 1. Thin film devices, sensors and actuators,” Thin Solid Films, vol. 287, pp. 258-265, 1996.
    [46] S. Baeck, K. Choi, T. F. Jaramillo, G. D. Stucky, and E. W. McFarland, “Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films,” Adv. Mater., vol. 15, pp. 1269-1273, 2003.
    [47] C. Santato, M. Odziemkowshi, M. Ulmann, and J. Augustynski, “Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications,” Chem. Soc., vol. 123, pp. 10639-10649, 2001.
    [48] E. Llobet, G. Molas, P. Molinàs, J. Calderer, X. Vilanova, J. Brezmes, J. E. Sueiras, and X. Correiga, “Fabrication of highly selective tungsten oxide ammonia sensors,” J. Electrochem. Soc., vol. 147, pp. 776-779, 2000.
    [49] M. Penza, C. Martucci, and G. Cassano, “NOX gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers,” Sens. Actuators B., vol. 50, pp. 52–59, 1998.
    [50] G. Sberveglieri, L. Depero, S. Groppelli, and P. Nelli, “WO3 sputtered thin films for NOX monitoring,” Sens. Actuators B., vol. 26-27, pp. 89-92, 1995.
    [51] X. L. Li, T. J. Lou, X. M. Sun, and Y. D. Li, “Highly sensitive WO3 hollow-sphere gas sensors,” Inorg. Chem., vol. 43, pp. 5442−5449, 2004.
    [52] G. Wang, Y. Ji, X. R. Huang, X. Q. Yang, P. I. Gouma, and M. Dudley, “Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing,” J. Phys. Chem. B, vol. 110, pp. 23777-23782, 2006.
    [53] C. Balázsi, L. Wang, E. O. Zayim, I. M. Szilágyi, K. Sedlacková, J. Pfeifer, A. L. Tóth, and P. I. Gouma, “Nanosize hexagonal tungsten oxide for gas sensing applications,” J. Eur. Ceram. Soc., vol. 28, pp. 913–917, 2008.
    [54] P. V. Tong, N. D. Hoa, N. V. Duy, D. T. T. Le, N. V. Hieu, “Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with Pd nanoparticles,” Sens. Actuators B., vol. 223, pp. 453-460, 2016.
    [55] C. S. Rout, M. Hegde, A. Govindaraj, and C. N. R. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology, vol. 18, p. 205504, 2007.
    [56] M. Stankova, X. Vilanova, E. Llobel, J. Calderer, C. Bittencourt, J. J. Pireaux, and X. Correig, “Influence of the annealing and operating temperatures on the gas-sensing properties of RF sputtered WO3 thin-film sensors,” Sens. Actuators B., vol. 105, pp. 271-277, 2005.
    [57] N. Yamazoe, K. Suematsu, and K. Shimanoe, “Surface chemistry of neat tin oxide sensor for response to hydrogen gas in air,” Sens. Actuators B., vol. 227, pp. 403-410, 2016.
    [58] R. Ab Kadir, Z. Li, A. Z. Sadek, R. A. Rani, A. S. Zoolfakar, M. R. Field, J. Z. Ou, A. F. Chrimes, and K. Kalantar-zadeh, “Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures,” J. Phys. Chem. C, vol. 118, pp. 3129-3139, 2014.
    [59] A. D. Marcellis, G. Ferri, P. Mantenuto, L. Giancaterini, and C. Cantalini, “Hydrogen resistive gas sensor and its wide-range current-mode electronic read-out circuit,” IEEE Sens. J., vol. 13, pp. 2792-2798, 2013.
    [60] Y. H. Kahng, W. Lu, R. G. Tobin, R. Loloee, and R. N. Ghosh, “The role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study,” J. Appl. Phys., vol. 105, p. 064511, 2009.
    [61] S. Khoobiar, “Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles.” J. Phys. Chem., vol. 68, p. 411, 1964.
    [62] M. Boudart, M. A. Vannice, and J. E. Benson, “Adlineation, portholes and spillover,” Z. Phys. Chem., vol. 64, pp. 171-177, 1969.
    [63] K. Tsu and M. Boudart, “Recombination of atoms at the surface of thermocouple probes,” Can. J. Chem., vol. 39, pp. 1239-1246, 1961.
    [64] C. R. Henry, C. Chapon, and C. Duriez, “Precursor state in the chemisorption of CO on supported palladium clusters,” J. Chem. Phys., vol. 95, p. 700, 1991.
    [65] M. Bowker, “‘Seeing’ the active site in catalysis. STM and molecular beam studies of surface reactions,” Studies in Surface Science and Catalysis, vol. 101, pp. 287-295, 1996.
    [66] H. W. Zan, W. W. Tsai, Y. R. Lo, Y. M. Wu, and Y. S. Yang, “Pentacene-based organic thin film transistors for ammonia sensing,” IEEE Sens. J., vol. 12, pp. 594–601, 2012.
    [67] Y. D. Wang, X. H. Wu, Q. Su, Y. F. Li, and Z. L. Zhou, “Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials,” Solid-State Electron., vol. 45, pp. 347-350, 2001.
    [68] R. K. Gangopadhyay and S. K. Das, “Ammonia leakage from refrigeration plant and the management practice,” Process Saf. Prog. 27, pp. 15–20, 2008.
    [69] R. Pandeeswari and B. G. Jeyaprakash, “High sensing response of β-Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature,” Sens. Actuators B., vol. 195, pp. 206–214, 2014.
    [70] H. M. Apsimon, B. M. Barker, and S. Kayin, “Modeling studies of the atmospheric release and transport of ammonia in anticyclonic episodes,” Atmos. Environ., vol. 28, pp. 665-678, 1994.
    [71] S. Yamulki, R. M. Harrison, and K. W. T. Goulding, “Ammonia surface-exchange above an agricultural field in southeast England,” Atmos. Environ., vol. 30, pp. 109–118, 1996.
    [72] R. L. Knight, R. H. Kadlec, and H. M. Ohlendorf, “The use of treatment wetlands for petroleum industry effluents,” Environ. Sci. Technol., vol. 33, pp. 973–980, 1999.
    [73] V. Srivastava and K. Jain, “Highly sensitive NH3 sensor using Pt catalyzed silica coating over WO3 thick films,” Sens. Actuators B., vol. 133, pp. 46–52, 2008.
    [74] C. S. Rout, M. Hegde, A. Govindaraj, and C.N.R. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology, vol. 18, p. 205504, 2007.
    [75] J. F. Mcaleer, P. T. Moseley, J. O. W. Noris, D. E. Williams, and B. C. Tofield, “Tin dioxide gas sensors,” J. Chem. Soc., Faraday Trans. 1, vol. 84, pp. 441-457, 1988.
    [76] Y. Shimizu, Y. Takao, and M. Egashira, “Detection of freshness of fish by a semiconductive Ru/TiO2 sensor,” J. Electrochem. Soc., vol. 135, pp. 2539-2540, 1988.
    [77] I. Hayakawa, Y. Iwamoto, K. Kituta, and S. Hirano, “Gas sensing properties of metal-organics derived Pt dispersed-TiO2 thin film fired in NH3,” Sens. Actuators B., vol. 67, pp. 270–274, 2000.
    [78] C. W. Lin, H. I. Chen, T. Y. Chen, C. C. Huang, C. S. Hsu, and W. C. Liu, “Ammonia sensing characteristics of sputtered indium tin oxide (ITO) thin films on quartz and sapphire substrates,” IEEE Trans. Electron Devices, vol. 58, pp. 4407–4413, 2011.
    [79] H. Steinebach, S. Kannan, L. Rieth, and F. Solzbacher, “H2 gas sensor performance of NiO at high temperatures in gas mixtures,” Sens. Actuators B., vol. 151, pp. 162–168, 2010.
    [80] H. I. Chen, C. Y. Hsiao, W. C. Chen, C. H. Chang, T. C. Chou, I. P. Liu, K. W. Lin, and W. C. Liu, “Characteristics of a Pt/NiO thin film-based ammonia gas sensor,” Sens. Actuators B., vol. 256, pp. 962–967, 2018.
    [81] J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, and N. Yamazoe, “Grain‐size effects in tungsten oxide‐based sensor for nitrogen oxides,” J. Electrochem. Soc., vol. 141, pp. 2207-2210, 1994.
    [82] C. W. Chu, M. J. Deen, and R. H. Hill, “Sensors for detecting sub‐ppm NO2 using photochemically produced amorphous tungsten oxide,” J. Electrochem. Soc., vol. 145, pp. 4219-4225, 1998.
    [83] K. Toda, K. Ochi, and I. Sanemasa, “NO-sensing properties of Au thin film,” Sens. Actuators B., vol. 32, pp. 15–18, 1996.
    [84] H. M. Lin, C. M. Hsu, H. Y. Yang, P. Y. Lee, and C. C. Yang, “Nanocrystalline WO3-based H2S sensors,” Sens. Actuators B., vol. 22, pp. 63-68, 1994.
    [85] T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, “Gold-loaded tungsten oxide sensor for detection of ammonia in air,” Chem. Lett., vol. 21, no. 4, pp. 639–642, 1992.
    [86] C. Cantalini, H. T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi, and M. Passacantando, “NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation,” Sens. Actuators B., vol. 31, pp. 81-87, 1996.
    [87] C. Cantalini, M. Pelino, H. T. Sun, M. Faccio, S. Santucci, L. Lozzi, and M. Passacantando, “Cross sensitivity and stability of NO2 sensors from WO3 thin film,” Sens. Actuators B., vol. 35, pp. 112-118, 1996.
    [88] X. Wang, G. Sakaki, K. Shimanoe, N. Miura, and N. Yamazoe, “Spin-coated thin films of SiO2–WO3 composites for detection of sub-ppm NO2,” Sens. Actuators B., vol. 45, pp. 141-146, 1997.
    [89] J. L. Solis and V. Lantto, “Gas-sensing properties of SnxWO3+x mixed oxide thick films,” Sens. Actuators B., vol. 48, pp. 322-327, 1998.
    [90] T. Usagawa and Y. Kikuchi, “Device characteristics for Pt-Ti-O gate Si-MISFETs hydrogen gas sensors,” Sens. Actuators B., vol.160, pp. 105-114, 2011.
    [91] A. Sutka, M. Stingaciu, G. Mezinskis, and A. Lusis, “An alternative method to modify the sensitivity of p-type NiFe2O4 gas sensor,” J. Mater. Science, vol. 47, pp. 2856-2863, 2012.
    [92] C. Balamurugan and D. W. Lee, “A selective NH3 gas sensor based on mesoporous p-type NiV2O6 semiconducting nanorods synthesized using solution method,” Sens. Actuators B., vol. 192, pp. 414-422, 2014.
    [93] A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh, “Characterization of ZnO nanobelt-based gas sensors for H2, NO2, and hydrocarbon sensing,” IEEE Sens. J., vol. 7, pp. 919-924, 2007.
    [94] J. Dhakshinamoorthy and B. Pullithadathil, “New insights towards electron transport mechanism of highly efficient p-type CuO (111) nanocuboids-based H2S gas sensor,” J. Phys. Chem. C, vol. 120, pp. 4087-4096, 2016.
    [95] Z. D. Lin, S. J. Young, and S. J. Chang, “Carbon nanotube thin films functionalized via loading of Au nanoclusters for flexible gas sensors devices,” IEEE Trans. Elect. Dev., vol. 63, pp. 476-480, 2016.
    [96] A. Sharma, M. Tomar, and V. Gupta, “A low temperature operated NO2 gas sensor based on TeO2/SnO2 p-n heterointerface,” Sens. Actuators B., vol. 176, pp.875-883, 2013.
    [97] L. Rajan, P. Chinnamuthan, V. Krishnasamy, and V. Sahula, “An investigation on electrical and hydrogen sensing characteristics of RF sputtered ZnO thin-film with palladium schottky contacts,” IEEE Sens. J., vol. 17, pp. 14-21, 2017.
    [98] Q. A. Drmosh and Z. H. Yamani, “Hydrogen sensing properties of sputtered ZnO films decorated with Pt nanoparticles,” Ceram. Int., vol. 42, pp. 12378-12384, 2016.
    [99] F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong, X. Deng, P. Tang, and D. Li, “Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods,” Sens. Actuators B., vol. 241, pp. 895-903, 2017.
    [100] J. X. Wang, X. W. Sun, H. Huang, Y. C. Lee, O. K. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “A two-step hydrothermally grown ZnO microtube array for CO gas sensing,” Appl. Phys. A, vol. 88, pp. 611-615, 2007.
    [101] R. W. J. Scott, S. M. Yang, G. Ghabanis, N. Coombs, D. E. Williams, and G. A. Ozin, “Tin dioxide opals and inverted opals: Near-ideal microstructures for gas sensors,” Adv. Mater., vol. 13, pp. 1468-1472, 2001.
    [102] S. Wei, Y. Zhang, and M. Zhou, “Formaldehyde sensing properties of ZnO-based hollow nanofibers,” Sens. Rev., vol. 34, pp. 327-334, 2014.
    [103] S. Choopun, N. Hongsith, P. Mangkorntong, and N. Mangkorntong, “Zinc oxide nanobelts by RF sputtering for ethanol sensor,” Phys. E, vol. 39, pp. 53-56, 2007.
    [104] C. C. Li, Z. F. Du, L. M. Li, H. C. Yu, Q. Wan, and T. H. Wang, “Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature,” Appl. Phys. Lett., vol. 91, p. 032101, 2007.
    [105] N. Hongsith, E. Wongrat, T. Kerdcharoen, and S. Choopun, “Sensor response formula for sensor based on ZnO nanostructures,” Sens. Actuators B., vol. 144, pp. 67-72, 2010.
    [106] Power Diffraction File, Joint Committee of Powder Diffraction Standards, International Centre for Diffration Data (JCPDS-ICDD), 2000, card No. 43-1035.
    [107] S. Yamauchi, “Chemical sensor technology,” Elsevier, vol. 4, 1992.
    [108] B. Liu, D. Cai, Y. Liu, H. Li, C. Weng, G. Zeng, Q. Li, and T. Wang, “High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and schottky barriers,” Nanoscale, vol. 5, pp. 2505-2510, 2013.
    [109] S. H. Lim, B. Radha, J. Y. Chan, M. S. M. Saifullah, G. U. Kulkarni, and G. W. Ho, “Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography,” ACS Appl. Mater. Interfaces, vol. 5, p. 7274, 2013.
    [110] A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett., vol. 5, pp. 667-673, 2005.
    [111] C. Bigey and G. Maire, “Catalysis on Pd/WO3 and Pd/WO2: II. Effect of redox treatments in hexanes and hexenes re-forming reactions,” J. Catal., vol. 196, pp. 224-240, 2000.
    [112] A. Georg, W. Graf, R. Neumann, and V. Wittwer, “Stability of gasochromic WO3 films,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 165-176, 2000.
    [113] W. Yanrong, L. Bin, C. Daoping, L. Han, L. Yuan, W. Dandan, W. Lingling, L. Qiuhong, and W. Taihong, “Room-temperature hydrogen sensor based on grain-boundary controlled Pt decorated In2O3 nanocubes,” Sens. Actuators B., vol. 201, pp. 351-359, 2014.
    [114] T. Samerjai, N. Tamaekong, C. Liewhiran, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Selectivity towards H2 gas by flame-made Pt-loaded WO3 sensing films,” Sens. Actuators B., vol. 157, pp. 290-297, 2011.
    [115] S. J. Ippolito, S. Kandasamy, K. Kalantar-zadeh, and W. Wlodarski, “Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts,” Sens. Actuators B., vol. 108, pp. 154-158, 2005.
    [116] E. Ghadiri, A. Iraji zad, and F. Razi, “Hydrogen sensing properties of pure and Pd activated WO3 nanostructured films,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, vol. 37, pp. 453-456, 2007.
    [117] Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta, and N. Nakatani, “Influence of effective surface area on gas sensing properties of WO3 sputtered thin films,” Thin Solid Films, vol. 517, pp. 2069-2072, 2009.

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE