| 研究生: |
李昆儒 Li, Awankana |
|---|---|
| 論文名稱: |
應用微機電技術之聯胺微推進器的設計與性能分析 Design and Performance Analysis of A MEMS-based Hydrazine Microthruster |
| 指導教授: |
袁曉峰
Yuan, Tony |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 226 |
| 中文關鍵詞: | 聯胺 、微推進器 、微機電 |
| 外文關鍵詞: | Hydrazine, microthruster, MEMS |
| 相關次數: | 點閱:111 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著成本分散與風險分散的需求日增,各式太空飛行器的微小化成為近十年來相當熱門的研究方向。傳統衛星上所掛載的各系統元件之微小化,決定著如微衛星或皮米衛星等系統發展的成敗,而其中,在傳統衛星上扮演著舉足輕重地位的推進系統,則更是影響著微型化衛星系統之應用性的關鍵。
由於新製造技術的應用影響著衛星系統元件微小化的進程,本研究嘗試以微機電製造技術將傳統聯胺推進器進行微小化。考量下一個世代微衛星系統之需求,將所研發的微推進器之推力設定在千分之一牛頓等級,經由理論的估算與比較且評估微機電技術的材料相容性後,將微推進器的操作壓力與溫度設定在100psi及900K左右,而其對應的流量約為28.62mg/s,且在此條件限制進行聯胺微推進器之設計、製作與整合。
所設計之微推進器(尺寸約為8.48mm×4.0mm)包含了三個結構:隔離層、微反應器及微噴嘴。隔離層減少了約72%的接觸面積,以求減少由微反應器傳導至上游元件(如微控制閥)的熱傳量,除保護上游元件外,並期能降低微反應器之熱散失。在微反應器的設計上,為能有更大的彈性來處理不同流量以產生不同條件之熱氣源,重新設計的觸媒床為可增減之多層式結構,在本研究中,為能使得聯胺/觸媒反應得更完全來獲得較低的反應溫度,將實驗測試不同層數的觸媒床之氨分解率特性,並選擇適當之微反應器結構來整合成微推進器做最終之性能測試。在微噴嘴之設計上,考量可能的摩擦損耗將造成預期的推力無法達成,其喉部截面在實際設計製作之後,尺寸加大為60μm×77μm,而其擴張比則約為12。
在微反應器的測試上,利用氣相層析儀量得氨分解率的結果顯示,氨分解率隨著流量增加而降低的趨勢並不明顯,此外,觸媒床層數的增加對於氨分解率的影響亦不大,這除了是由於來自於氣體採樣上的誤差外,更多的是因為不論任何層數的觸媒床都提供了相當高的氨分解率(>90%),使得趨勢顯得不明顯。基於這些測試結果,單層觸媒床的微反應器將被採用在後續的微推進器性能測試上。
微推進器性能的實驗測試結果顯示,在所測試的流量範圍內(0.34-0.91mg/s),所量得的推力位於0.43-1.33mN之間,實驗所得之推力與腔體壓力皆隨著流量而增加,然而,比衝值則在流量等於0.63mg/s處存在著一最大值(其推力約為1.01mN)。造成此現的原因推測為熱散失所造成之影響,流量增加造成氨分解率下降並使得反應溫度上升,從而造成更多的熱散失。
所建造之微推力測試台因結構上的影響,使得量測的推力在達平衡前有一近3秒之延遲,同一條件下腔體壓力之延遲僅有0.2秒,故該測試台僅能做一連續推力之量測,精確的脈衝型推力量測則需要對測試台做進一步的改良,且開發一與微推進器整合在一起的微控制閥來對推進劑的供給作更精準的控制。
MEMS techniques were adopted to miniaturize the conventional hydrazine monothruster in this thesis research. Based on the reaction control requirements of the micro- and nano-satellites, the targeted hydrazine microthruster was designed to provide millinewton-level thrusts. Restricted by MEMS materials and fabrication processes, the microthruster’s operation pressure and reaction temperature were set to be 100psi and 900K, respectively.
The designed microthruster was composed by a microreactor and a micronozzle, and was 8.48mm×4.0mm×2.0mm in size and weighted 0.14g. In order to reduce the heat transfer to the upstream device, an insulation layer was bonded on top of the microreactor with 72% contact area reduction. For the microreactor, the iridium-coated catalytic bed was designed and fabricated with a flow volume of 1.53mm3 and a shape of a high contact surface-to-volume ratio (84mm2/mm3), which provided an ammonia dissociation of 0.92 at the exhaust with an inlet hydrazine flow rate of 0.47mg/s. Considering the serious viscous losses in micro channel flow, the 3-D C-D micronozzle was designed to have a throat with a cross section of 60µm×77µm, and, the convergent and divergent area ratios were 3.3:1 and 12:1, respectively.
In the vacuum thrust tests, the design thruster showed thrusts of 0.43mN to1.33mN at the propellant flow rates from 0.34mg/s to 0.91mg/s. The best specific impulse of 162s occurred at the hydrazine flow rate of 0.63mg/s and the thrust of 1.01mN. Comparing to performance of conventional hydrazine thrusters, the analysis showed that the major degradation of the specific impulses of the designed microthruster were from the heat losses of the reactor.
The analyses of the onset of the chamber pressures showed a start-up delay time of about 134ms which was 2 to 5 folds of that of the macro scale hydrazine thrusters. It was believed that the requirement of a long induction period for the micro channel flow to reach it fully-developed condition account for the comparatively slow start-up trend of the microthruster.
This thesis research uniquely demonstrated the feasibility of developing a millinewton-level MEMS-based hydrazine thruster for space applications. However, due to the lack of appropriate microsensors, it was difficult to identify the detailed loss mechanism. Further studies are necessary to provide more detailed information to improve the design for the future development of the designed microthruster.
[1] Schilling, J. H., Spores, R. A., and Spanjers, G. G., “Micropropulsion Options for the TechSat21 Space-Based Radar Flight,” Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol. 187, edited by M. Micci and A. Ketsdever, AIAA, Reston, VA, 2000, Chap. 1.
[2] Reichbach, J. G., Sedwick, R. J., and Sanchez, M. M., “Micropropulsion System Selection for Precision Formation Flying Satellites,” AIAA Paper 2001-3646, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Salt Lake City, Utah, July 2001.
[3] Danzmann, K., and the LISA Study Team, “LISA-An ESA Cornerstone Mission for the Detection and Observation of Gravitational Waves,” Advances in Space Research, Vol. 32, No. 7, 2003, pp. 1233-1242.
[4] Grönland, T., Rangsten, P., Johansson, H., and Stenmark, L., “MEMS Based Micropropulsion-Flight Opportunity in 2008,” 5th Round Table on Micro/Nano Technologies for Space, Noordwijk, Netherlands, Oct. 2005.
[5] Grönland, T.-A., Rangsten, P., Nese, M., and Lang, M., “Miniaturization of Components and Systems for Space Using MEMS-Technology,” Acta Astronautica, Vol. 61, March 2007, pp. 228-233.
[6] Mueller, J., “Thruster Options for Microspacecraft: A Review and Evaluation of State-of-the-Art and Emerging Technologies,” Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol. 187, edited by M. Micci and A. Ketsdever, AIAA, Reston, VA, 2000, Chap. 3.
[7] Sutherland, G. S., and Maes, M. E., “A Review of Microrocket Technology: 10-6 to 1 lbf Thrust,” Journal of Spacecraft and Rockets, Vol. 3, No. 8, 1966, pp. 1153-1165.
[8] DeGroot, W., and Oleson S., “Chemical Microthruster Options,” NASA Contractor Report 198531, 1996.
[9] Janson, S., Helvajian, H., Hansen, W. W., and Lodmell Lt., J., “Batch-Fabricated CW Microthrusters for Kilogram-Class Spacecraft,” AIAA Paper 99-2722, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, California, June 1999.
[10] Madou, M. J., Fundamentals of Microfabrication, New York, CRC Press, 1997.
[11] Rossi, C., “Micropropulsion for Space –A Survey of MEMS-Based Micro Thrusters and their Solid Propellant Technology,” Sensors Update, Vol. 10, Issue 1, 2002, pp. 257-292.
[12] Helvajian, H., Microengineering aerospace systems, edited by H. Helvajian, El Segundo, CA, Aerospace Press, 1999.
[13] Bejhed, J., “Fluidic Microsystems for Micropropulsion Applications in Space,” Acta Universitatis Upsaliensis, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 223, 2006.
[14] Janson, S., Helvajian, H., Amimoto, S., Smit, G., Mayer, D., and Feuerstein, S., “Microtechnology for Space Systems,” IEEE Aerospace Applications Conference Proceedings, Vol. 1, 1998, pp. 409-418.
[15] Janson, S. W., Helvajian, H., and Breuer, K., “MEMS, Microengineering and Aerospace Systems,” AIAA Paper 99-3802, June 1999.
[16] Mueller, J., Chakraborty, I., Vargo, S., Marrese, C., White, V., Bame D., Reinicke, R., and Holzinger, J., “Towards Micropropulsion Systems on-a-Chip: Initial Results of Component Feasibility Studies,” IEEE Aerospace Conference Proceedings, Vol. 4, Big Sky, MT, March 2000, pp. 149-168.
[17] Mueller, J., Marrese, J., Polk, J., Yang, E.-H., Green, A., White, V., Bame, D., Chakraborty, I., and Vargo, S., “An Overview of MEMS-Based Micropropulsion Development at JPL,” Acta Astronautica, Vol. 52, 2003, pp. 881-895.
[18] Rossi, C., Larangot, B., Estève, D., Guélou, Y., Bourrières, F., Kaiser, C., and Dilhan, D., “New Generation of Silicon Based Microthrusters for Space Application,” Proceedings, 3rd International Conference on Spacecraft Propulsion, ESA SP-465, Dec. 2000.
[19] Janson, S. W., “Aerospace Applications of MEMS,” Proceedings of SPIE, Vol. 5717, Bellingham, WA, 2004.
[20] Blandino, J. J., and Cassady, R. J., “Propulsion Requirements and Options for the New Millennium Interferometer (DS-3) Mission,” AIAA Paper 98-3331, 34st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cleveland, OH, July 1998.
[21] Henry, C, “Terrestrial Planet Finder Interferometer 2005: Overview of system design studies and technology development,” Proceedings of SPIE -The International Society for Optical Engineering, Vol. 5905, Techniques and Instrumentation for Detection of Exoplanets II, 2005, p 1-7.
[22] Rinehart, S.A., “SPECS: The submillimeter probe of the evolution of cosmic structure,” Proceedings of SPIE -The International Society for Optical Engineering, v 6265 I, Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, 2006, p 626520.
[23] Kappenstein, C., and Batonneau, Y., “Chemical Micropropulsion. State of the Art and Catalyst Surface Requirements,” AIAA Paper 2005-3920, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, July 2005.
[24] Manzoni, G., Miotti, P., DeGrandis, F., Vaccari, L., Marmiroli, B., Perennes, F., Fabrizio, E., and Tortora, P., “Components for Chemical Micropropulsion Systems, An Overview on Strategies, Concepts, Studies, Prototypes and Concrete Possibilities,” MNTechnology –ESA, May 2003.
[25] Lewis, D., Antonsson, E., and Janson, S., “MEMS Microthruster Digital Propulsion System,” Proceedings, Formation Flying and Micro-Propulsion Workshop, Air Force Research Laboratory (AFRL), Lancaster, CA, Oct. 1998.
[26] Lewis Jr., D. H., Janson, S. W., Cohen, R. B., and Antonsson, E. K., “Digital Micropropulsion,” Sensors and Actuators A: Physical, Vol. 80, 2000, pp. 143-154.
[27] Rossi, C., DoConto, T., Estève, D., and Larangot, B., “Design, Fabrication and Modeling of MEMS-Based Microthrusters for Space Application,” Smart Materials and Structures, Vol. 10, 2001, pp. 1156-1162.
[28] Zhang, K., Chou, S. K., Ang, S. S., “MEMS-Based Solid Propellant Microthruster Design, Simulation, Fabrication, and Testing,” Journal of Microelectromechanical Systems, Vol. 13, No. 2, April 2004, pp. 165-175.
[29] Zhang, K., Chou, S. K., Ang, S. S., “Development of A Solid Propellant Microthruster with Chamber and Nozzle on A Wafer Surface,” Journal of Micromechanics and Microengineering, Vol. 14, April 2004, pp. 785-792.
[30] Rossi, C., Larangot, B., Lagrange, D., and Chaalane, A., “Final Characterizations of MEMS-Based Pyrotechnical Microthrusters,” Sensors and Actuators A: Physical, Vol. 121, 2005, pp. 508-514.
[31] Zhang, K. L., Chou, S. K., Ang, S. S., and Tang, X. S., “A MEMS-Based Solid Propellant Microthruster with Au/Ti Igniter,” Sensors and Actuators A: Physical, Vol. 122, 2005, pp. 113-123.
[32] Dilhan, D., “Small Rocket Motors for Micro Satellites,” Proceedings, ESA Workshop on Low Cost Spacecraft Propulsion Technologies for Small Satellites, ESTEC, Noordwijk, The Netherlands, March 1998.
[33] Rossi, C., Estève, D., Fabre, N., Do Conto, T., Conedera, V., Dilhan, D., and Gnélou, Y., “A New Generation of MEMS Based Microthrusters for Microspacecraft Applications,” 2nd International Conference for Micro/Nanotechnologies for Space Applications, MNT99, Pasadena, CA, April 1999.
[34] Youngner, D., and Choueiri, E., “MEMS Mega-Pixel Microthruster Arrays for Microsatellites,” Proceedings, Formation Flying and Micro-propulsion Workshop, Air Force Research Laboratory (AFRL), Lancaster, CA, Oct. 1998.
[35] DeGroot, W., Reed, B., and Brenizer, D., “Preliminary Results of Solid Gas Generator Micro-Propulsion,” AIAA Paper 98-3225, 34th Joint Propulsion Conference, Cleveland, OH, July 1998.
[36] London, A. P., Epstein, A. H., and Kerrebrock, J. L., “High-Pressure Bipropellant Microrocket Engine,” Journal of Propulsion and Power, Vol. 17, No. 4, Aug. 2001.
[37] London, A. P., Ayón, A. A., Epstein, A. H., Spearing, S. M., Harrison, T., Peles, Y., and Kerrebrock, J. L., “Microfabrication of A High Pressure Bipropellant Rocket Engine,” Sensors and Actuators A: Physical, Vol. 92, 2001, pp. 351-357.
[38] Miotti, P., Tajmar, M., Guraya, C., Perennes, F., Marmiroli, B., Soldati, A., Campolo, M., Kappenstein, C., Brahmi, R., and Lang, M., “Bi-propellant micro-rocket engine,” AIAA Paper 2004-6707, CANEUS 2004 Conference on Micro-Nano-Technologies, Monterey, California, Nov., 2004.
[39] Parker, M., Thunnissen, D., Blandino, J., and Ganapathi, G., “The Preliminary Design and Status of A Hydrazine MilliNewton Thruster Development,” AIAA Paper 99-2596, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, California, June 1999.
[40] Hitt, D. L., Zakrzwski, C. M., and Thomas, M. A., “MEMS-Based Satellite Micropropulsion via Catalyzed Hydrogen Peroxide Decomposition,” Smart Materials and Structures, Vol. 10, Nov. 2001, pp. 1163-1175.
[41] Lee, D. H., Hwang, J. S., Kwon, S., and Park, S.-E., “Thermochemical Design of A Micro Liquid Monopropellant Rocket with Catalytic Reaction of Hydrogen Peroxide,” Proceeding of IMECE2002 ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, Nov. 2002, pp. 195-200.
[42] Roy, L. P., Kappenstein, C., Guérin, M., and Eloirdi, R., “Hydrogen Peroxide Decomposition on Various Supported Catalysts Effect of Stabilizers,” Journal of Propulsion and Power, Vol. 18, No. 6, Nov. 2002, pp. 1235-1241.
[43] Chen, X., Li, Y., Zhou, Z., and Fan, R., “A Homogeneously Catalyzed Micro-Chemical Thruster,” Sensors and Actuators A: Physical, Vol.108, 2003, pp. 149-154.
[44] Zhou, X., and Hitt, D. L., “Numerical Modeling of Monopropellant Decomposition in A Micro-Catalyst Bed,” AIAA Paper 2005-5033, 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Ontario Canada, June 2005.
[45] Kuan, C.-K., Chen, G.-B., and Chao, Y.-C., “Development of A High Test Hydrogen Peroxide (HTP) Micro-Thruster,” 20th International Colloquium on the Dynamics of Explosions and Reactive Systems [CD-ROM], Institute of Dynamics of Explosions and Reactive Systems, Seattle, WA, 2005, paper 180.
[46] Kuan, C.-K., Chen, G.-B., and Chao, Y.-C., “Development and Ground Tests of A 100-MilliNewton Hydrogen Peroxide Monopropellant Microthruster,” Journal of Propulsion and Power, Vol. 23, No. 6, Nov. 2007.
[47] Mueller, J., “Review and Applicability Assessment of MEMS-Based Microvalve Technologies for Microspacecraft Propulsion,” Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol. 187, edited by M. Micci and A. Ketsdever, AIAA, Reston, VA, 2000, Chap. 19.
[48] Usbeck, T., Wohlfart, J., and Schelkle, M., “A Flexible Cold Gas Propulsion System Concept for Different Space Applications,” Proceeding of 4th International Spacecraft Propulsion Conference, Cagliari, Sardinia, Italy, June 2004.
[49] Schelkle, M., “The Grace Cold Gas Attitude and Orbit Control System,” Proceeding of 3rd Space Propulsion Conference, Cannes, 2000, pp. 769-776.
[50] Hansen, W. W., Janson, S. W., and Helvajian, H., “Direct-write UV-laser microfabrication of 3D structures in lithium-aluminosilicate glass,” Proc. SPIE, Vol. 2991, May 1997, pp. 104-112.
[51] Bayt, R. L., “Analysis, Fabrication and Testing of A MEMS-Based Micropropulsion System,” Ph.D. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1999.
[52] Köhler, J., Bejhed, J., Kratz, H., Bruhn, F., Lindberg, U., Hjort, K., and Stenmark, L., “A Hybrid Cold Gas Microthruster System for Spacecraft,” Sensors and Actuators A: Physical, Vol. 97-98, 2002, pp. 587-598.
[53] Mitterauer, J., “Miniaturized Liquid Metal Ion Source (MILMIS),” IEEE Transactions on Electron Devices, Vol. 38, No. 10, Oct. 1991, pp. 2364-2367.
[54] Marcuccio, M., Lorenzi, G., and Andrenucci, M., “Development of Miniaturized Field Emission Electric Propulsion System,” AIAA Paper 98-3919, 34th Joint Propulsion Conference, Cleveland, OH, July 1998.
[55] Marcuccio, M., and Lorenzi, G., “Miniaturized Field Emission Electric Propulsion Systems,” Proceeding, Workshop on Low Cost Spacecraft Propulsion Technologies for Small Satellites, ESA-ESTEC, Noordwijk, The Netherlands, March 1998.
[56] Pranajaya, F. M., “Progress on Colloid Micro-Thruster Research and Flight Testing,” Paper SSC99-VIII-6, 13th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 1999.
[57] Young, M., Muntz, E., and Ketsdever, A., “Investigation of a Candidate Non-Magnetic Ion Micro-Thruster for Small Spacecraft Applications,” AIAA Paper 98-3917, 34th Joint Propulsion Conference, Cleveland, OH, July 1998.
[58] Mueller, J., Pyle, D., Chakraborty, I., Ruiz, R., Tang, W., Marrese, C., and Lawton, R., “Electric Breakdown Characteristics of Silicon Dioxide Films for Use in Microfabricated Ion Engine Accelerator Grids,” Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol. 187, edited by M. Micci and A. Ketsdever, AIAA, Reston, VA, 2000, Chap. 12.
[59] Marrese, C. M., Polk, J. E., Jensen, K. L., Gallimore, A. D., Spindt, C., Fink, R. L., and Palmer, W. D., “Performance of Field Emission Cathodes in Xenon Electric Propulsion System Environments,” Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol. 187, edited by M. Micci and A. Ketsdever, AIAA, Reston, VA, 2000, Chap. 11.
[60] Marrese, C. M., Wang, J. J., Gallimore, A. D., and Goodfellow, K. D., “Space-Charge-Limited Emission from Field Emission Cathodes for Electric Propulsion and Tether Applications,” Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol. 187, edited by M. Micci and A. Ketsdever, AIAA, Reston, VA, 2000, Chap. 18.
[61] Spanjers, G., “Micro-Propulsion Research at the Air Force Research Laboratory,” Proceedings, Air Force Research Laboratory Formation Flying and Micro-Propulsion Workshop, Lancaster, CA, Oct. 1998.
[62] Cassady, R. J. Hoskins, W. A., Campbell, M., and Rayburn, C., “A Micro Pulsed Plasma Thruster (PPT) for the ‘Dawgstar’ Spacecraft,” Proceedings, IEEE Aerospace Conference, Big Sky, MN, March 2000.
[63] Ketsdever, A., Wadsworth, D., Vargo, S., and Muntz, E., “The Free Molecule Micro-Resistojet: An Interesting Alternative to Nozzle Expansion,” AIAA Paper 98-3918, 34th Joint Propulsion Conference, Cleveland, OH, July 1998.
[64] Mueller, J., Chakraborty , I., Bame, D., and Tang, W., “The Vaporizing Liquid Micro-Thruster: Proof of Principle and Preliminary Thermal Characterization,” Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol. 187, edited by M. Micci and A. Ketsdever, AIAA, Reston, VA, 2000, Chap. 8.
[65] Janson, S. W., Helvajian, H., Hansen, W. W., and Lodmell, Lt. J., “Microthrusters for Nanosatellites,” The 2nd International Conference on Integrated Micro Nanotechnology for Space Applications, Pasadena, CA, April 1999.
[66] Khayms, V., and Sanchez, M. M., “Fifty Watt Hall Thruster for Microsatellites,” Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol. 187, edited by M. Micci and A. Ketsdever, AIAA, Reston, VA, 2000, Chap. 9.
[67] Zakirov, V., and Li, L., “Propulsion Challenges for Small Spacecraft: 2005,” Tsinghua Science and Technology, Vol. 11, No. 5, ISSN 1007-0214, Oct. 2006, pp. 507-514.
[68] Schmitz, B. W., Williams, D. A., Smith, W. W., and Maybee, D., “Design and Scaling Criteria for Monopropellant Hydrazine Rocket Engines and Gas Generators Employing Shell 405 Catalyst,” AIAA paper 66-594, AIAA Second Propulsion Joint Specialist Conference, Colorado Springs, Colorado, June 1966.
[69] Morgan, O. M., and Meinhardt, D. S., “Monopropellant Selection Criteria – Hydrazine and other options,” AIAA paper 99-31331, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, CA, June 1999.
[70] Ketsdever, A. D., “System Considerations and Design Options for Microspacecraft Propulsion Systems,” AIAA Paper 99-2723, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Los Angeles, California, June 1999.
[71] Ketsdever, A. D., “System Considerations and Design Options for Microspacecraft Propulsion Systems,” Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol. 187, edited by M. Micci and A. Ketsdever, AIAA, Reston, VA, 2000, Chap. 4.
[72] Yetter, R. A., Yang, V., Wu, M.-H., Wang, Y., Milius, D., Aksay, I. A., and Dryer, F. L., “Combustion Issues and Approaches for Chemical Microthrusters,” Advancements in Energetic Materials and Chemical Propulsion, Begell House, New York, 2007, pp. 389-420.
[73] Sutton, G. P., and Biblarz, O., Rocket Propulsion Elements, 7th ed., New York, John Wiley & Sons, 2001.
[74] Kyle, B. G., Chemical and process thermodynamics, 3rd ed., Upper Saddle River, N.J., Prentice Hall PTR, 1999.
[75] Schmidt, E. W., Hydrazine and its Derivatives-Preparation, Properties, Applications, 2nd ed., New York, John Wiley & Sons, 2001.
[76] Grant, A. F. Jr., “Basic Factors Involved in the Design and Operation of Catalytic Monopropellant – Hydrazine Reaction Chambers,” Report No. 20-77, Pasadena: Jet Propulsion Laboratory, Dec. 1954 (Confidential).
[77] Rocket Research Corporation, “Development of Design and Scaling Criteria for Monopropellant Hydrazine Reactors Employing Shell 405 Spontaneous Catalyst,” RRC-66-R-76-Volume II, Final Report, prepared under NASA Contract NAS 7-372, Jan. 1967.
[78] Alexeenko, A. A., Gimelshein, S. F., Levin, D. A., and Collins, R. J., “Numerical Modeling of Axisymmetric and Three-Dimensional Flows in MEMS Nozzles,” AIAA paper 2000-3668, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, Alabama, July 2000.
[79] Bruno, C., Giacomazzi, E., and Ingenito, A., “Chemical MicroRocket: Scaling and Performance Enhancement,” Final Report issued by EOARD, SPC 02-4034, July 2003.
[80] Hsu, T.-R., MEMS and Microsystems Design and Manufacture, 1st ed., Boston, McGraw-Hill, 2002.
[81] Pello, C. F., “Micropower Generation Using Combustion: Issues and Approaches,” University of California Postprints, paper 1949, 2002.
[82] Yetter, T. A., Yang, V., Wu, M.-H., Wang, Y., Milius, D., Aksay, I. A., and Dryer, F. L., “Combustion Issues and Approaches for Chemical Microthrusters,” Advancements in Energetic materials and Chemical Propulsion, Begell House, New York, 2007, pp. 389-420.
[83] Lawrence, T., “Research into Resistojet Rockets for Small Satellite Stationkeeping Applications,” Ph.D. thesis, University of Surrey, UK, 1998.
[84] Alexeenko, D. A., Levin, D. A., Fedosov, D. A., Gimelshein, S. F., and Collins, R. J., “Coupled Thermal and Fluid Analysis of Microthruster Flows,” AIAA paper 2003-0673, 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, 2003.
[85] London, A. P., “A Systems Study of Propulsion Technologies for Orbit and Attitude Control of Microspacecraft,” Master’s thesis, Massachusetts Institute of Technology, 1996.
[86] Anderson, H. M., Merson, J. A., and Light, R. W., “A Kinetic Model for Plasma Etching Silicon in a SF6/O2 RF Discharge,” IEEE Transactions on Plasma Science, PS-14(2), 1986, pp. 156-164.
[87] Hess, D. W., “Dry Etching Processes,” In Microelectronic Materials and Processes edited by R. A. Levy, Kluwer Academic, Dordrecht, 1989.
[88] Jensen, S., “Inductively Coupled Plasma Etching for Microsystems,” Ph.D. thesis, Department of Micro- and Nanotechnology, Technical University of Denmark, 2004.
[89] Dussart, R., Boufnichel, M., Marcos, G., Lefaucheux, P, Basillais, A., Benoit, R., Tillocher, T., Mellhaoui, X., Szwarckopf, H. E., and Ranson, P., “Passivation Mechanisms in Cryogenic SF6/O2 Etching process,” Journal of Micromechanics and Microengineering, Vol. 14, 2004, pp. 190-196.
[90] Jansen, H., de Boer, M., Wensink, H., Kloeck, B., and Elwenspoek, M., “The Black Silicon Method VIII A Study of the Performance of Etching Silicon Using SF6/O2-based Chemistry with Cryogenical Wafer Cooling and a High Density ICP Source,” Microelectronics Journal, Vol. 32, 2001, pp. 769-777.
[91] Kiihamäki, J, and Franssila, S., “Deep Silicon Etching in Inductively Coupled Plasma Reactor for MEMS,” Physica Scripta, Vol. T79, 1999, pp. 250-254.
[92] Zhao, Y., and Zhang, X., “Profile Control in Silicon Nanostructures Using Fluorine-Enhanced Oxide Passivation,” IEEE Transactions on Nanotechnology, Vol. 7, No. 1, Jan. 2008, pp. 40-47.
[93] Li, X., Abe, T., and Esashi, M., “Deep Reactive Ion Etching of Pyrex Glass Using SF6 Plasma,” Sensors and Actuators A, Vol. 87, 2001, pp. 139-145.
[94] Xiao, H., Introduction to Semiconductor Manufacturing Technology, Upper Saddle River, N.J., Prentice Hall Inc., 2001.
[95] Maluf, N., An Introduction to Microelectromechanical Systems Engineering, Boston, Artech House, 2000.
[96] Tong, Q.-Y., Gösele, U., Semiconductor Wafer Bonding: Science and Technology, New York, John Wiley & Sons, 1999.
[97] Schmid, H., and Seidel, H., “Effect of High Temperature Annealing on the Electrical Performance Titanium/Platinum Thin Films,” Thin Solid Films, Vol. 516, 2008, pp. 898-906.
[98] Clevenger, L. A., Jr. Cabral, C., Roy, R. A., Lavoie, C., Jordan-Sweet, J., Brauer, S., Morales, G., Jr. Ludwig, K. F., and Stephenson, G. B., “Formation of A Crystalline Metal-Rich Silicide in Thin Film Titanium/Silicon Reactions,” Thin Solid Films, Vol. 289, 1996, pp.220-226.
[99] Kim, E.-H., Ko, D.-H., Choi, S., Yoo, B.-Y., and Lee, H.-D., “Low Temperature Annealing Behaviors of the Titanium Films Formed by the Ionized Sputtering Process on (001) Silicon Substrates,” Journal of Electron Materials, Vol. 28, No. 10, Oct. 1999, pp. L20-L23.
[100] Tan, C. C., Lu, L., See, A., and Chan, L., “Effect of Silicon Substrate Amorphization on the Kinetics of Reaction Between A Titanium Thin Film and Silicon,” Philosophical Magazine A, Vol. 82, No. 16, 2002, pp. 2923-2934.
[101] Zhecheva, A., Sha, W., Malinov, S., and Long, A., “Enhancing the Microstructure and Properties of Titanium Alloys Through Nitriding and Other Surface Engineering Methods,” Surface & Coatings Technology, Vol. 200, 2005, pp. 2192-2207.
[102] Makogon, Y., Pavlova, O., Sidorenko, S., Beddies, G., and Mogilatenko, A., “Influence of Annealing Environment and Film Thickness on the Phase Formation in the Ti/Si(100) and (Ti+Si)/Si(100) Thin Film Systems,” Diffusion and Defect Data, Vol. 264, 2007, pp. 159-162.
[103] Armstrong, W. E., Ryland, L. B., and Voge, H. H., “Catalyst Comprising Ir or Ir and Ru for Hydrazine Decomposition,” US Patent 4124538, 1978.
[104] Cho, S. J., Lee, J., Lee, Y. S., an Kim, D. P., “Characterization of Iridium Catalyst for Decomposition of Hydrazine Hydrate for Hydrogen Generation,” Catalysis Letters, Vol. 109, No. 3-4, July 2006, pp. 181-187.
[105] Fan, Ch., Wu, T., Kaden, W. E., and Anderson, S. L., “Cluster Size Effects on Hydrazine Decomposition on Irn/Al2O3/NiAl(110),” Surface Science, Vol. 600, 2006, pp. 461-467.
[106] Smith, O. I., Solomon, W. C., and Air Force Rocket Propulsion Laboratory, “Kinetics of Hydrazine Decomposition on Iridium and Alumina Supported Iridium Catalysts,” Final report for period July 1971-June 1973, AD0766698, Aug. 1973.
[107] Vieira, R., Netto, D. B., Ledoux, M.-J., and Huu, C. P., “Hydrazine Decomposition over Iridium Supported on Carbon Nanofibers Composite for Space Applications: Near Actual Flight Conditions Tests,” Applied Catalysis A: General, Vol. 279, 2005, pp. 35-40.
[108] Li, L., Wang, X., Zhao, X., Zheng, M., Cheng, R., Zhou, L., and Zhang, T., “Microcalorimetric Studies of the Iridium Catalyst for Hydrazine Decomposition Reaction,” Thermochimica Acta, Vol. 434, 2005, pp. 119-124.
[109] Rauscher, H., Kostov, K. L., and Menzel, D., “Adsorption and decomposition of hydrazine on Ru(001),” Chemical Physics, Vol. 177, Issue 2, Nov. 1993, pp. 473-496.
[110] Dopheide, R., Schörter, L., and Zacharias, H., “Adsorption and decomposition of hydrazine on Pd(100),” Surface Science, Vol. 257, No. 1-3, Nov. 1991, pp. 86-96.
[111] Alberas, D. J., Kiss, J., Liu, Z.-M., and White, J. M., “Surface chemistry of hydrazine on Pt(111),” Surface Science, Vol. 278, No. 1-2, Nov. 1992, pp. 51-61.
[112] Gland, J. L., Fisher, G. B., and Mitchell, G. E., “Vibrational characterization of adsorbed NH on the Ni(111) surface,” Chemical Physics Letters, Vol. 119, Issue 1, 1985, pp. 89-92.
[113] Kreider, K. G., and Gillen, G., “High Temperature Materials for Thin-Film Thermocouples on Silicon Wafers,” Thin Solid Films, Vol. 376, 2000, pp. 32-37.
[114] Robinson, A. T., Burdette, G. W., “The Compatibility of Various Metals With MHF-3,” NWC TP 4956, Naval Weapons Center, China Lake, California, July 1970.
[115] Uney, P. E., and Fester, D. A., “Material Compatibility with Space Storable Propellants- Design Guidebook,” NASA-CR-127057, prepared for Jet Propulsion Laboratory California Institute of Technology Pasadena, California 91103, March 1972.
[116] Williams, L. O., “Hydrazine Purity Influence on Construction Material Compatibility,” AIAA Paper 73-1264, AIAA/SAE 9th Propulsion Conference, Las Vegas, Nevada, Nov. 1973.
[117] Williams, L. O., Anselmi, R. T., and Neiswander, D. W., “Hydrazine/Material Compatibility,” AIAA Paper 75-1245, AIAA SAE 11th Propulsion Conference, Anaheim, California, Sep. 1975.
[118] Osaki, Y., and Takahashi, K., “Microfluidics of Liquid Propellant Microthruster for Pico-Satellites,” IEEJ Transactions on Sensors and Micromachines, Vol.123-E, No. 10, 2003, pp. 436-441.
[119] Luke, A., and Cheng, D.-C., “High Speed Video Recording of Bubble Formation with Pool Boiling,” International Journal of Thermal Science, Vol. 45, 2006, pp. 310-320.
[120] Kotthoff, S., and Gorenflo, D., “Heat Transfer and Bubble Formation on Horizontal Copper Tubes with Different Diameters and Roughness Structures,” Heat Mass Transfer, Vol. 45, 2009, pp. 893-908.
[121] Kappenstein, C., and Batonneau, Y., “Chemical Micropropulsion. State of the Art and Catalyst Surface Requirements,” AIAA Paper 2005-3920, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, July 2005.
[122] Krasowska, M., and Malysa, K., “Kinetics of Bubble Collision and Attachment to Hydrophobic solids: I Effect of Surface Roughness,” International Journal of Mineral Processing, Vol. 81, No. 4, Jan. 2007, pp. 205-216.
[123] Sayer, C. F., “The Heterogeneous Decomposition of Hydrazine, Part 1: Kinetics of the Liquid Phase Decomposition on a Supported Iridium Catalyst,” RPE Westcott (U.K.), RPE-TR-68/8, AD-691511, N69-41142, Oct. 1968.
[124] Sayer, C. F., “The Heterogeneous Decomposition of Hydrazine, Part V: Kinetics of the Liquid Phase Decomposition on a Supported Ruthenium Catalyst,” Br. Rocket Prop. Establ., RPE-TR-72/1, AD-750423, N73-14122, CA 78, 89029, Jan. 1972.
[125] Sayer, C. F., “The Heterogeneous Decomposition of Hydrazine, Part VI: Kinetics of the Liquid Phase Decomposition on a Supported Palladium and Platinum Catalyst,” Rocket Prop. Establ., England, Tech Rept. 31, DRIC-BR-47538, AD-A013003, N76-11298, Nov. 1974.
[126] Gaidei, T. P., Novgorodov, V. N., and Tyuryaev, I. Y., “Simulation of Preparing Highly Concentrated supported Platinum Group Metal Catalyst (transl. from the Russian),” Russian Journal of Applied Chemistry, Vol. 67, No. 1, CA 121, 264652, 1994, pp. 18-21.
[127] Gaidei, T. P., Novgorodov, V. N., and Tyuryaev, I. Y., “Catalytic Decomposition of Hydrazine as a Source of Power (transl. from the Russian),” Russian Journal of Applied Chemistry, Vol. 70, No. 7, CA 128, 5370, 1997, pp. 1067-1073.
[128] Gaidei, T. P., and Tyuryaev, I. Y., “Influence of Metal Dispersity on the Activity of Supported Aluminoiridium Catalyst (transl. from the Russian),” Russian Journal of Applied Chemistry, Vol. 70, No. 8, CA 128, 40080, 1997, pp. 1254-1257.
[129] Gaidei, T. P., and Tyuryaev, I. Y., “Hexachloroiridic Acid as a Component in Production of Aluminoiridium Catalyst (transl. from the Russian),” Russian Journal of Applied Chemistry, Vol. 71, No. 2, CA 129, 177509, 1998, pp. 265-270.
[130] Mumtaz, K., Echigoya, J., and Taya, M., “Preliminary Study of Iridium Coating on Carbon/Carbon Composites,” Journal of Materials Science, Vol. 28, 1993, pp. 5521-5527.
[131] Mumtaz, K., Echigoya, J., Hirai, T., and Shindo, Y., “Iridium Coatings on Carbon-Carbon Composites Produced by Two Different Sputtering Methods: A Comparative Study,” Journal of Materials Science Letters, Vol. 12, 1993, pp. 1411-1412.
[132] Kovacs, G. T. A., Storment, C. W., and Kounaves, S. P., “Microfabricated Heavy Metal Ion Sensor,” Sensors and Actuators B, Vol. 23, 1995, pp. 41-47.
[133] El Khakani, M. A., Chaker, M., and Le Drogoff, B., “Iridium Thin Films Deposited by Radio-Frequency Magnetron Sputtering,” Journal of Vacuum Science and Technology A, Vol. 16, No. 2, 1998, pp. 885-888.
[134] Kreider, K. G., and Gillen, G., “High temperature Materials for Thin-Film Thermocouples on Silicon Wafers,” Thin Solid Films, Vol. 376, 2000, pp. 32-37.
[135] Kohli, S., Rithner, C. D., and Dorhout, P. K., “X-ray Characterization of Annealed Iridium Films,” Journal of Applied Physics, Vol. 91, No. 3, Feb. 2002, pp. 1149-1154.
[136] Kohli, S., Niles, D., Rithner, C. D., and Dorhout, P. K., “Structural and Optical Properties of Iridium Films Annealed in Air,” Advances in X-ray Analysis, Vol. 45, 2002, pp. 352-358.
[137] Pawlak, M. A., Schram, T., Maex, K., and Vantomme, A., “Investigation of Iridium as a Gate Electrode for Deep Sub-micron CMOS Technology,” Microelectronic Engineering, Vol. 70, 2003, pp. 373-376.
[138] Echigoya, J., Mumtaz, K., Hayasaka, Y., and Soyagi, E., “Electron Microscopic Study of Sputter-Deposited Ir Films,” Journal of Materials Science, Vol. 39, 2004, pp. 6215-6219.
[139] Ievlev, V. M., Kushchev, S. B., Rudneva, I. G., and Soldatenko, S. A., “Phase Composition, Orientation, and Substructure of Iridium Silicide Films on Silicon,” Inorganic Materials, Vol. 39, No. 5, 2003, pp. 472-478.
[140] Gong, Y., Wang, C., Shen, Q., and Zhang, L., “Effect of Annealing on Thermal Stability and Morphology of Pulsed Laser Deposited Ir Thin Films,” Applied Surface Science, Vol. 254, 2008, pp. 3921-3924.
[141] Hamilton, J. C., Yang, N. Y. C., Clift, W. M., Boehme, D. R., McCarty, K. F., and Franklin, J. E., “Diffusion Mechanisms in Chemical Vapor-Deposited Iridium Coated on Chemical Vapor-Deposited Rhenium,” Metallurgical Transactions A, Vol. 23A, March 1992, pp. 851-855.
[142] Bolz, A., Fröhlich, R., Schmidt, K., and Schaldach, M., “Effect of Smooth, Porous and Fractal Surface Structure on the Properties of an Interface,” Journal of Materials Science: Materials in Medicine, Vol. 6, 1995, pp. 844-848.
[143] Ritterhaus, Y., Hur’yeva, T., Lisker, M., and Burte, E. P., “Iridium Electrodes for Ferroelectric Capacitors Deposited by Liquid-Delivery MOCVD and PVD,” ECS Transactions, Vol. 2, No. 7, 2006, pp. 67-78.
[144] Neburchilova, E. B., and Kasatkin, E. V., “Iridium-Titanium Textured Electrodes: Production and Investigation by Electrochemical Scanning Tunneling Microscopy and Spectroscopy,” Russian Journal of Electrochemistry, Vol. 36, No. 12, 2000, pp. 1283-1290.
[145] Zhang, Q., and Leng, Y., “Electrochemical Activation of Titanium for Biomimetic Coating of Calcium Phosphate,” Biomaterials, Vol. 26, 2005, pp. 3853-3859.
[146] Feng, B., Weng, J., Liang, Y., Qu, S., Wang, J., and Lu, X., “Fabrication of Porous Titania and Porous Calcium Phosphate Coatings on Titanium Surface,” Key Engineering Materials, Vols. 330-332, 2007, pp. 529-532.
[147] Yu, J., Wang, Y., Lu, J.-Q., and Gutmann, R., “Low-Temperature Silicon Wafer Bonding Based on Ti/Si Solid-State Amorphization,” Applied Physics Letters, Vol. 89, No. 092104, 2006.
[148] Xiao, Z.-X., Wu, G.-Y., Zhang, D., Zhang, G., Li, Z.-H., Hao, Y.-L., and Wang, Y.-Y., “Silicon/Glass Wafer-to-Wafer Bonding with Ti/Ni Intermediate Bonding,” Sensors and Actuators A, Vol. 71, 1998, pp. 123-126.
[149] Makino, E., Mitsuya, T., Nakatsuji, T., and Shibata, T., “Pattering and Bonding of TiNi Shape Memory Thin Film for Fabrication of Micropump,” Part of the Symposium on Design, Test, and Microfabrication of MEMS and MOEMS, SPIE, Vol. 3680, Paris, France, March-April, 1999, pp. 1030-1037.
[150] Wolffenbuttel, R. F., and Wise, K. D., “Low-Temperature Silicon Wafer-toWafer Bonding Using Gold at Eutectic Temperature,” Sensors and Actuators A, Vol. 43, 1994, pp. 223-229.
[151] Lani, S., Bosseboeuf, A., Belier, B., Clerc, C., Gousset, C., and Aubert, J., “Gold Metallizations for Eutectic Bonding of Silicon Wafers,” Microsyst Technol, Vol. 12, June 2006, pp. 1021-1025.
[152] Nayak, D., Reisman, A., and Turlik, I., “Metal-to-Metal Bonding Using an Oxidizing Ambient Atmosphere,” Journal of Electromechanical Society: Solid-State Science and Technology, Vol. 135, No. 4, April 1988, pp.1023-1025.
[153] Liu, M., Sun, J., Chen, Y., Cat, X., “The Thrust Measurement for Micro Thrusters,” Mechanics and Engineering, Vol. 25, No. 3, June 2003, pp. 9-14.
[154] 刘向阳, 范宁军, 李科杰, “The State-of-the-Art and Development Tendencies of Thrust Measurement for Micro-Thrusters,” Measurement & Control Technology, Vol. 23, No. 5, 2004, pp. 18-20.
[155] Beiting, E. J., “Impulse Thrust Stand for MEMS Propulsion Systems,” AIAA Paper 99-2720, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, CA, June 1999.
[156] Orieux, S., Rossi, C., and Estève, D., “Thrust Stand for Ground Tests of Solid Propellant Microthrusters,” Review of Science Instruments, Vol. 73, No. 7, July 2002, pp. 2694-2698.
[157] Capt. Lake, J. P., Lt. Cavallaro, G., Spanjers, G., Adkison, P. B., and Dulligan, M. J., “Resonant Operation of A Micro-Newton Thrust Stand,” Technical Report, AD-A408511 Space and Missile Propulsion Division, Jan. 2003.
[158] Wang, Y., Wang, B., Liu, Z., Luo, X., and Chen, H., “Design Optimization of Compound Pendulum System for Measurement of Micro Thrust,” Fifth International Symposium on Instrumentation and Control Technology, Proceeding of SPIE, Vol. 5253, 2003, pp. 283-286.
[159] Canuto, E., and Rolino, A., “Nanobalance: An Automated Interferometric Balance for Micro-Thrust Measurement,” ISA Transactions, Vol. 43, 2004, pp. 169-187.
[160] Rocca, S., and Nicolini, D., “Micro-Thrust Balance Testing and Characterization,” The 29th International Electric Propulsion Conference, IEPC-2005-126, Princeton University, Oct. 2005.
[161] Rocca, S., Menon, C., and Nicolini, D., “FEEP Micro-Thrust Balance Characterization and Testing,” Measurement Science and Technology, Vol. 17, 2006, pp. 711-718.
[162] Kang, S.-J., Cho, H.-R., and Chang, Y.-K., “Development and Testing of A Micro-Thruster Impulse Characterization System Utilizing Pendulum Swing Time Measurements,” Sensors and Actuators A: Physical, Vol. 148, 2008, pp. 381-387.
[163] Jamison, A. J., Ketsdever, A. D., Muntz, E. P., “Gas Dynamic Calibration of A Nano-Newton Thrust Stand,” Review of Science Instruments, Vol. 73, No. 10, Oct. 2002, pp. 3629-3637.
[164] Alexeenko, A. A., Gimelshein, S. F., Levin, D. A., Ketsdever, A. D., and Ivanov, M. S., “Measurements and Simulation of Orifice Flow for Micropropulsion Testing,” Journal of Propulsion and Power, Vol. 19, No. 4, July 2003, pp. 588-594.
[165] Selden, N. P., and Ketsdever, A. D., “Comparison of Force Balance Calibration Techniques for the Nano-Newton Range,” Review of Science Instruments, Vol. 74, No. 12, Dec. 2003, pp. 5249-5254.
[166] Koizumi, H., Kolurasaki, K., and Arakawa, Y., “Development of Thrust Stand for Low Impulse Measurement from Microthrusters,” Review of Science Instruments, Vol. 75, No. 10, Oct. 2004, pp. 3185-3190.
[167] D’Souza, B. C., and Ketsdever, A. D., “Development of A Nano-Impulse Balance for Micropropulsion Systems,” AIAA Paper 2005-4080, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, July 2005.
[168] Pancotti, A. P., Lilly, T., Ketsdever, A. D., Aguero, V., and Schwoebel, P. R., “Development of A Thrust Stand Micro-Balance to Assess Micropropulsion Performance,” AIAA Paper 2005-4415, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, July 2005.
[169] Chen, J.-W., and Xu, J.-L., “Research on Micro-Thrust Test in Vacuum,” Journal of Astronautics, Vol. 29, No. 2, March 2008, pp. 621-625.
[170] Liu, R.-K., “Injector Design and Test of a Prototype Low-Thrust Hydrazine Thruster,” Master’s Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1999.
[171] Yao, J.-S., “A Study of the Start Up Delay for Low-Thrust Hydrazine Thrusters,” Master’s Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2000.
[172] Ya, Z.-B., “The Design and Test of a Low-Thrust Hydrazine Thruster,” Master’s Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1997.
[173] Yuan, T., and Li., A., “Design and Fabrication of a MEMS-Based Milli-Newton Level Hydrazine Thruster,” AIAA paper 2009-5201, 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Denver, Colorado, Aug. 2009.