| 研究生: |
張宏銘 Chang, Hung-Ming |
|---|---|
| 論文名稱: |
氮化鎵系列發光二極體於磊晶品質及元件效能之提升 The Performance Improvement on GaN-based Light-Emitting-Diodes in Epitaxial Quality and Efficiency of Device |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 共同指導教授: |
賴韋志
Lai, Wel-Chih |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 氮化鎵 、發光二極體 、圖形化基板 、光取出 、紫外光 |
| 外文關鍵詞: | GaN, LED, Pattern sapphire, light-extraction, UV |
| 相關次數: | 點閱:111 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用金屬有機氣相沈積的方式製備相關的氮化物系列磊晶材料,並在文章中探討其發光二極體的品質,元件效率,亮度及抗靜電能力等特性的改善。
首先,為了改善氮化物系列發光二極體的磊晶品質,我們以不同TMGa流速去研究氮化鎵在圖形化藍寶石基板上的初始成長模式。當TMGa流速由80 sccm增加到200 sccm時,X-ray繞射儀量測到氮化鎵(102)面半高寬FWHM由470 增加到580 arcsec。從一些分析中我們可以發現,低TMGa流速可以充分壓制氮化鎵在圖形化基板的圖形頂端成長氮化鎵島狀物,因而改善氮化鎵晶體的磊晶品質。發光二極體的光電特性也在低TMGa起始流速下獲得改善。在1千伏機器放電的抗靜電能力測試下,以低初始成長速率生成的氮化鎵發光二極體的晶片,能夠有超過90%的通過率。
其次,為了改善氮化鎵系列發光二極體的光取出效率,我們使用氧化鋅-二氧化矽複合物(ZnO)x(SiO2)1-x組成步階式折射係數(SGRI)的微柱形多層結構,並將之與網狀形銦氧化錫ITO結合,應用在氮化鎵系列發光二極體上。我們以濺鍍沈積的方式去生長氧化鋅ZnO及二氧化矽SiO2,並控制鋅在鋅及矽中所佔的比例去形成步階式折射係數(SGRI)的微柱結構。三層步階式折射係數(SRGI)微柱結構改善了光在氮化鎵發光二極體裡的臨界角及Fresnel穿透率(ηFr),並使光能更好地耦合進微柱形結構,進而改善氮化鎵發光二極體的光取出效率。越多層的步階式折射係數(SGRI)微柱結構越能幫助光耦合進柱狀體,避免從柱狀體邊緣散失掉。在發光二極體上使用三層氧化鋅-二氧化矽複合物(ZnO)X(SiO2)1-X步階式折射係數(SGRI)微柱結構,改善了光輸出功率達12.2%(操作電流20mA,操作電壓為3.19V)。此外,在擁有氧化鋅-二氧化矽複合物(ZnO)X(SiO2)1-X步階式折射係數(SGRI)微柱體及網狀銦氧化錫的發光二極體上,我們藉由改善電流的散佈,更進一步改善光輸出功率達到15.3%。
另一方面,在這篇論文中,我們還使用氮化鋁/氮化鎵/氮化銦鎵多層量子井(MQWs)改善紫外光發光二極體的光輸出功率。相似於傳統氮化鋁鎵/氮化銦鎵多層量子井(MQWs)的紫外光發光二極體,氮化鋁/氮化鎵/氮化銦鎵多層量子井(MQWS)紫外光發光二極體在操作電流350mA的操作電壓範圍落在3.21~3.29V。當操作電流為350mA,在不同波長下,氮化鋁/氮化鎵/氮化銦鎵多層量子井(MQWs)紫外光發光二極體的光輸出功率都高於相對應的氮化鋁鎵/氮化銦鎵多層量子井(MQWs)紫外光發光二極體。在發光波長為375nm時,氮化鋁/氮化鎵/氮化銦鎵多層量子井(MQWS)紫外光發光二極體的光輸出功率甚至達到26.7%的改善,遠高於傳統的氮化鋁鎵/氮化銦鎵多層量子井(MQWS)紫外光發光二極體。然而,在發光波長為395nm時,氮化鋁/氮化鎵/氮化銦鎵多層量子井(MQWS)紫外光發光二極體的光輸出功率卻只達約2.43%的改善。更進一步的分析我們也發現,氮化鋁/氮化鎵/氮化銦鎵多層量子井(MQWs)相較於氮化鋁鎵/氮化銦鎵多層量子井(MQWs)擁有較少的凹陷缺陷,因而使氮化鋁/氮化鎵/氮化銦鎵多層量子井(MQWs)紫外光發光二極體在逆向偏壓-20V時有較少的逆向漏電流。在2千伏人體放電的抗靜電能力測試下,氮化鋁/氮化鎵/氮化銦鎵多層量子井(MQWs)紫外光發光二極體的通過率達85%,相較於氮化鋁鎵/氮化銦鎵多層量子井(MQWs)紫外光發光二極體的70%高出了15%之多。
In this dissertation, the nitride based epitaxy material was grown by metalorganic chemical vapor deposition (MOCVD). Improvements of quality, efficiency, brightness and electrostatic discharge (ESD) ability on InGaN/GaN LED devices have been investigated.
Firstly, in order to improve quality on GaN-based LED, we have studied the initial growth modes of GaN on patterned sapphire substrate (PSS) with different initial TMGa flow rates. The FWHM of the (102) XRD spectrum of GaN on PSS increased from 470 to 580 arcsec when the initial TMGa flow rate was increased from 80 to 200 sccm. A low TMGa flow rate sufficiently suppresses GaN island growth on the top of the pattern and hence improves GaN crystal quality. The electrical and optical characteristics of GaN-based LEDs on PSS with low initial TMGa were also improved. More than 90% of the GaN LED chips with low initial GaN growth rate can hold the 1-kV machine-mode elec- trostatic discharge level.
Secondly, in order to improve light-extraction on GaN-based LED, step graded-refractive index (SGRI) (ZnO)x(SiO2)1-x micropillar multilayers have been introduced and demonstrated on GaN-based LEDs combined with the mesh ITO. The SGRI (ZnO)x(SiO2)1-x micropillars were produced by controlling the Zn/Zn+Si ratio of co-sputtered ZnO and SiO2. The introduced three-layered SGRI (ZnO)x(SiO2)1-x micropillars improved both critical angle inside GaN LEDs and Fresnel transmittance coefficient (ηFr) as well as had better light coupling into the micropillars. Moreover, a high number of layers of the SGRI micropillars would aid the light coupled in the pillars to escape from the side wall of the pillar. LEDs with three-layered SGRI (ZnO)x(SiO2)1-x micropillars exhibited output power enhancements of 12.2% with a 20mA–Vf of 3.19 V. The output power of the mesh ITO LEDs with SGRI (ZnO)x(SiO2)1-x micropillars was further enhanced to 15.3% by improving the current spreading.
In addition, we demonstrate aluminum nitride / gallium nitride / indium gallium nitride (AlN/GaN/InGaN) multi-quantum-well (MQW) ultraviolet (UV) light-emitting diodes (LEDs) to improve light output power. Similar to conventional UV LEDs with AlGaN/InGaN MQWs, UV LEDs with AlN/GaN/InGaN MQWs have forward voltages (Vf’s) ranging from 3.21 V to 3.29 V at 350 mA . Each emission peak wavelength of AlN/GaN/InGaN MQW UV LEDs presents 350 mA output power greater than that of the corresponding emission peak wavelength of AlGaN/InGaN MQW UV LEDs. The output power enhancement at 375 nm emission wavelength of AlN/GaN/InGaN MQW UV LEDs could reach around 26.7% in magnitude, which is greater than that of conventional AlGaN/InGaN MQWs UV LEDs; however, at 395 nm emission wavelength, AlN/GaN/InGaN MQW UV LEDs only have an output power enhancement of around 2.43% in magnitude. Moreover, AlN/GaN/InGaN MQWs present less pits than AlGaN/InGaN MQWs, causing AlN/GaN/InGaN MQW UV LEDs to have less reverse leakage currents at −20 V. Furthermore, AlN/GaN/InGaN MQW UV LEDs have the 2-kV human body mode (HBM) electrostatic discharge (ESD) pass yield of 85%, which is 15% more than the 2-kV HBM ESD pass yield of AlGaN/InGaN MQW UV LEDs of 70%
[1] S.Nakamura, T.Mukai, and M.Senoh, “Candela-classhigh-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, p. 1687, 1994.
[2] S.J.Chang, W.C.Lai, Y.K.Su, J.F.Chen, C.H.Liu, and U.H.Liaw, “InGaN–GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 8, no. 2, p. 278, 2002.
[3] S.J.Chang, C.H.Kuo, Y.K.Su, L.W.Wu, J.K.Sheu, T.C.Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN–GaN and InGaN–AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 8, no. 4, p. 744, 2002.
[4] J. Zhang, H. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-con- tent AlGaN quantum well lasers,” Appl. Phys. Lett., vol. 97, no. 11, p.1115005, 2010.
[5] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Muka, “Ultra-high efficiency white light emitting diodes,” Jpn. J. Appl. Phys., vol. 45, p. 1084, 2006.
[6] F. A. Pounce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, vol. 386, p. 351, 1997.
[7] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, p. 1431, 2002.
[8] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W.Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, no. 2, p. 288, 2005.
[9] Z. H. Feng and K. M. Lau, “Enhanced luminescence from GaN-based blue LEDs grown on grooved sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, no. 9, p. 1812, 2005.
[10] Y.J.Lee,H.C.Kuo,T.C.Lu,S.C.Wang,K.W.Ng,K.M.Lau,Z.P. Yang, S. P. Chang, and S. Y. Lin, “Study of GaN-based light-emit- ting diodes grown on chemical wet-etching-patterned sapphire sub- strate with V-shaped pits roughening surfaces,” J. Lightw. Technol., vol. 26, no. 11, p. 1455, 2008.
[11] Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth, vol. 312, p. 1311, 2010.
[12] Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron, vol. 15, no. 4, p. 1066, 2009.
[13] Y. Li, S. You, M. Zhu, L. Zhao, and W. Hou, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett., vol. 98, p. 151102, 2011.
[14] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, no. 6, p. 855, 2004.
[15] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min and S. J. Park , “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, no. 4, p. 1512, 2006.
[16] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Electron. Dev., vol. 52, no. 10, p. 2346, 2005.
[17] J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett., vol. 88, no. 11, p. 113505, 2006.
[18] C. M. Tsai, J. K. Sheu, W. C Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, “Enhenced output power in GaN-based LEDs with naturally textured surfaced growtn by MOCVD,” IEEE Electron. Dev. Lett., vol. 26, no. 7, p. 464, 2005.
[19] C. H. Kuo, S. J Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B., vol. 106, p. 69, 2004.
[20] T. Kim, A. J. Danner, and K. D. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” IEEE Electron. Dev. Lett., vol. 41, no. 20, p. 1138, 2005.
[21] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett., vol. 84, no. 19, p. 3885, 2004.
[22] K. J. Byeon, J. Y. Cho, J. Kim, H. Park, and H. Lee, “Fabrication of SiNx-based photonic crystals on GaN-based LED devices with patterned sapphire substrate by nanoimprint lithography,” Opt. Express, vol. 20, no. 10, p. 11423, 2012.
[23] S. H. Kim, K. D. Lee, J. Y. Kim, M. K. Kwon, and S. J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnol. vol. 18, p. 055306, 2007.
[24] Y. C. Chen, J. B. Geddes, L. L. Yin, P. Wiltzius, and P. V. Braun, “X-ray computed tomography of holographically fabricated three-dimensional photonic crystals,” Adv. Mater., vol. 24, p. 2863, 2012.
[25] Y. C. Chen, J. B. Geddes, J. T. Lee, P. V. Braun, and P. Wiltzius, “Holographically fabricated photonic crystals with large reflectance,” Appl. Phys. Lett., vol. 91, no. 24, p. 241103, 2007.
[26] Y. K. Ee, R. A. Arif, and N. Tansu, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett., vol. 91, no. 22, p. 221107, 2007.
[27] Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. P. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses”, IEEE J. Sel. Topic on Quan. Electron., vol. 15, no. 4, p. 1218, 2009.
[28] Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures”, Opt. Express, vol. 17, no. 16, p. 13747, 2009.
[29] X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J., vol. 3, no.3, p. 489, 2011.
[30] J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater., vol. 20, p. 801, 2008.
[31] P. R. C. Kent and A. Zunger, “Carrier localization and the origin of luminescence in cubic InGaN alloys,” Appl. Phys. Lett., vol. 79, no. 13, p. 1977, 2001.
[32] M.-K. Kwon, I.-K. Park, S.-H. Beak, J.-Y. Kim, and S. J. Park, “Si delta doping in a GaN barrier layer of InGaN/GaN multi-quantum-well for an efficient ultraviolet light-emitting diode,” J. Appl. Phys., vol. 97, no. 10, p. 106109, 2005.
[33] A. Knauer, V. Kueller, S. Einfeldt, V. Hoffmann, T. Kolbe, J.-R. van Look, J. Piprek, M. Weyers, and M. Kneissl, “Influence of the barrier composition on the light output of InGaN multiple-quantum-well ultraviolet light emitting diodes,” Proc. SPIE, vol. 6797, p. 67970X, 2007.
[34] M. Asif Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, and A. Bykhovsky, “Piezoelectric doping in AlInGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 75, no. 18, p. 2806, 1999.
[35] M. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, no. 18, p.183507, 2007.
[36] J. Li, S. L. Shi, Y. J. Wang, S. J. Xu, D. G. Zhao, J. J. Zhu, H. Yang, and F. Lu, “Violet electroluminescence of AlInGaN–InGaN Multiquantum-well light-emitting diodes: quantum-confined Stark effect and heating effect,” IEEE Photon. Technol. Lett., vol. 19, no. 10, p. 789, 2007.
[37] M. Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, H.-C. zur Loye, G. Tamulaitis, A. Zukauskas, D. J. Smith, D. Chandrasekhar, and R. Bicknell-Tassius, “Lattice and energy band engineering in AlInGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 76, no. 9, p. 1161, 2000.
[38] Z.-H. Zhang, S. T. Tan, Z. Ju, W. Liu, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the Effect of Step-Doped Quantum Barriers in InGaN/GaN Light Emitting Diodes,” J. Disp. Technol., vol. 9, no. 4, p. 226, 2013.
[39] R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low threshold current density AlGaN cladding free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett., vol. 96, no. 23, p. 231113, 2010.
[40] Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self- screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett., vol. 104, no. 24, p. 243501, 2014.
[41] Y. Ji, W. Liu, T. Erdem, R. Chen, S. T. Tan, Z.-H. Zhang, Z. Ju, X. Zhang, H. Sun, X. W. Sun, Y. Zhao, S. P. DenBaars, S. Nakamura, and H. V. Demir, “Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (11 2 ̄ 2) semipolar versus (0001) polar planes,” Appl. Phys. Lett., vol. 104, no. 14, p. 143506, 2014.
[42] L.W.Wu, S.J.Chang, T.C.Wen, Y.K.Su, J.F.Chen, W.C.Lai, C.H.Kuo, C.H.Chen, and J.K.Sheu, “Influence of Si-Doping on the Characteristics of InGaN–GaN Multiple Quantum-Well Blue Light Emitting Diodes,” IEEE J. Quantum Electron., vol. 38, no. 5, p. 446, 2002.
[43] Z.-H. Zhang, S. T. Tan, Y. Ji, W. Liu, Z. Ju, Z. Kyaw, X. W. Sun, and H. V. Demir, “A PN-type quantum barrier for InGaN/GaN light emitting diodes,” Opt. Express, vol. 21, no. 13, p. 15676, 2013.
[1] Refer from “Veeco Company : MOCVD E300 system schematic diagram”.
[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys., vol.35, p. L74, 1996.
[3] Z. Fan, S. N. Mohammad, O. Aktas, A. E. Botchkarev, A. Salvador, and H. Morkoc, “Suppression of leakage currents and their effect on the electrical performance of AlGaN/GaN modulation doped field‐effect transistors,” Appl. Phys. Lett., vol. 69, p. 1229, 1996.
[4] Q. Chen, M. A. Khan, J. W. Wang, C. J. Sun, M. S. Shur, and H. Park, “High transconductance heterostructure field‐effect transistors based on AlGaN/GaN,” Appl. Phy. Lett., vol. 69, p. 794, 1996.
[5] G. Y. Xu, A. Salvador, W. Kim, Z. Fan C. Lu, H. Tang, H. Morkoc, G. Smith, and M. Estes, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures,” Appl. Phys. Lett., vol. 71, p. 2154, 1997.
[6] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI),” Jpn. J. Appl. Phy., vol. 28,p. L2112, 1998.
[7] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., vol. 31, p. L139, 1992.
[8] R. Juza and H. Hahn, “Crystal structures of Cu3N, GaN and InN - metallic amides and metallic nitrides V Announcement,” Anorg. Allegem. Chem., vol. 234, p. 282, 1940.
[9] H. P. Maruska and J. J. Tietjen, “The Preparation and Properties of Vapor-Deposited Single-Crystal-Line GaN,” Appl. Phys. Lett., vol. 15, p. 367, 1969.
[10] J. L. Vossen and W. Kern, “Thin Film Processes II,” New York , 1991.
[11] C. S. Chang, “The Study of Brightness, Reliability and ESD ability on Nitride-based LEDs”, NCKU, 2005.
[1] S.Nakamura, T.Mukai, and M.Senoh, “Candela-classhigh-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, p. 1687, 1994.
[2] S.J.Chang, W.C.Lai, Y.K.Su, J.F.Chen, C.H.Liu, and U.H. Liaw, “InGaN–GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 8, no. 2, p. 278, 2002.
[3] S.J.Chang, C.H.Kuo, Y.K.Su, L.W.Wu, J.K.Sheu, T.C.Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN–GaN and InGaN–AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 8, no. 4, p. 744, 2002.
[4] J. Zhang, H. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-con- tent AlGaN quantum well lasers,” Appl. Phys. Lett., vol. 97, no. 11, p.111105, 2010.
[5] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Muka, “Ultra-high efficiency white light emitting diodes,” Jpn. J. Appl. Phys., vol. 45, p. 1084, 2006.
[6] F. A. Pounce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, vol. 386, p. 351, 1997.
[7] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, p. 1431, 2002.
[8] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W.Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, no. 2, p. 288, 2005.
[9] Z. H. Feng and K. M. Lau, “Enhanced luminescence from GaN-based blue LEDs grown on grooved sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, no. 9, p. 1812, 2005.
[10] Y.J.Lee,H.C.Kuo,T.C.Lu,S.C.Wang,K.W.Ng,K.M.Lau,Z.P. Yang, S. P. Chang, and S. Y. Lin, “Study of GaN-based light-emit- ting diodes grown on chemical wet-etching-patterned sapphire sub- strate with V-shaped pits roughening surfaces,” J. Lightw. Technol., vol. 26, no. 11, p. 1455, 2008.
[11] Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth, vol. 312, p. 1311, 2010.
[12] Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron, vol. 15, no. 4, p. 1066, 2009.
[13] Y. Li, S. You, M. Zhu, L. Zhao, and W. Hou, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett., vol. 98, p. 151102, 2011.
[14] R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol., vol. 27, 2012.
[15] D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol., vol. 30, p. 041513, 2012.
[16] H.Zhao, G.Liu, J.Zhang, J.D.Poplawsky, V.Dierolf, and N.Tansu1, “Approaches for high internal quantum efficiency green InGaN light- emitting diodes with large overlap quantum wells,” Opt. Exp., vol. 19, p. 991, 2011.
[17] J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys., vol. 110, p. 113110, 2011.
[18] H. P. Zhao, G. Y. Liu, X.-H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Design and charac- teristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron., vol. 3, p. 283, 2009.
[19] J.H.Lee, D.Y.Lee, B.W.Oh, andJ.H.Lee, “ComparisonofInGaN- based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate,” IEEE Trans. Electron Devices, vol. 57, no. 1, p. 157, 2010.
[20] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-based LEDs with an SPS tunneling contact layer and an ITO transparent contact,” IEEE Photon. Technol. Lett., vol. 16, no. 4, p. 1002, 2004.
[21] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai, and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Electron Device Lett., vol. 52, no. 10, p. 2346, 2005.
[22] M.Ohring, Materials Science of Thin Films : Deposition and Structure, 2nd ed. New York: Academic, 2000.
[1] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, "Highly reliable nitride based LEDs with SPS+ITO upper contacts", IEEE J. Quan. Electron., vol. 39, p. 1439, 2003
[2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, “InGaN/GaN multiquantum well blue and green light emitting diodes”, IEEE J. Sel. Top. Quan. Electron., vol. 8, p. 278, 2002.
[3] Y. Li, S. You , M. Zhu , L. Zhao , W. Hou , T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett., vol. 98, p. 151102, 2011.
[4] P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9 nm semipolar (11-22) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett., vol. 100, p. 021104, 2012.
[5] Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode”, IEEE J. Sel. Topic on Quan. Electron., vol. 15, p. 1066, 2009.
[6] Y. K. Ee, X. H. Li, J. Biser, W. J. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire”, J. Crystal Growth, vol. 312, p. 1311, 2010.
[7] Y. F. Li, S. You, M. W. Zhu, L. Zhao, W. T. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel,, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire”, Appl. Phys. Lett., vol. 98, p. 151102, 2011
[8] R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices“, Semicond. Sci. Technol., vol. 27, p. 024001, 2012
[9] H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells”, Opt. Express, vol. 19, p. A991, 2011
[10] J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes”, J. Appl. Phys., vol. 110, p. 113110, 2011
[11] P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9 nm semipolar (11-22) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer”, Appl. Phys. Lett., vol. 100, p. 021104, 2012
[12] G. B. Lin, D. Meyaard, J. Cho, E. F. Schubert, H. Shim, and C. Sone, “Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency,” Appl. Phys. Lett., vol. 100, p. 161106, 2012.
[13] D. S. Meyaard, G. B. Lin, Q. F. Shan, J. H. Cho, E. F. Schubert, H. W. Shim, M. H. Kim, and C. S. Sone, “Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes”, Appl. Phys. Lett., vol. 99, p. 251115, 2011
[14] H. P. Zhao, G. Y. Liu, R. A. Arif, and N. Tansu, “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes”, Solid-State Electron., vol. 54, p. 1119, 2010.
[15] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, p. 855, 2004.
[16] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min and S. J. Park , “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, p. 1512, 2006.
[17] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Electron. Dev., vol. 52, p. 2346, 2005.
[18] J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett., vol. 88, p. 113505, 2006.
[19] C. M. Tsai, J. K. Sheu, W. C Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, “Enhenced output power in GaN-based LEDs with naturally textured surfaced growtn by MOCVD,” IEEE Electron. Dev. Lett., vol. 26, p. 464, 2005.
[20] C. H. Kuo, S. J Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater. Sci. Eng. B., vol. 106, p. 69, 2004.
[21] T. Kim, A. J. Danner, and K. D. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” IEEE Electron. Dev. Lett., vol. 41, p. 1138, 2005.
[22] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett., vol. 84, p. 3885, 2004.
[23] K. J. Byeon, J. Y. Cho, J. Kim, H. Park, and H. Lee, “Fabrication of SiNx-based photonic crystals on GaN-based LED devices with patterned sapphire substrate by nanoimprint lithography,” Opt. Express, vol. 20, p. 11423, 2012.
[24] S. H. Kim, K. D. Lee, J. Y. Kim, M. K. Kwon, and S. J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnol. vol. 18, p. 055306, 2007.
[25] Y. C. Chen, J. B. Geddes, L. L. Yin, P. Wiltzius, and P. V. Braun, “X-ray computed tomography of holographically fabricated three-dimensional photonic crystals,” Adv. Mater., vol. 24, p. 2863, 2012.
[26] Y. C. Chen, J. B. Geddes, J. T. Lee, P. V. Braun, and P. Wiltzius, “Holographically fabricated photonic crystals with large reflectance,” Appl. Phys. Lett., vol. 91, p. 241103, 2007.
[27] Y. K. Ee, R. A. Arif, and N. Tansu, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett., vol. 91, p. 221107, 2007.
[28] Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. P. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses”, IEEE J. Sel. Topic on Quan. Electron., vol. 15, p. 1218, 2009
[29] Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures”, Opt. Express, vol. 17, p. 13747, 2009.
[30] X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J., vol. 3, p. 489, 2011.
[31] J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater., vol. 20, p. 801, 2008.
[32] J. J. Kim, A. N. Noemaun, F. W. Mont, D. Meyaard, E. F. Schubert, D. J. Poxson, H. Kim, C. Sone, and Y. Park, “Elimination of total internal reflection in GaInN light-emitting diodes by graded-refractive-index micropillars,” Appl. Phys. Lett., vol. 93, p. 221111, 2008.
[33] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, "400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes", IEEE J. Sel. Top. Quan. Electron., vol. 8, p. 744, 2002.
[34] J. T. Chen, W. C. Lai, C. H. Chen, Y. Y. Yang, J. K. Sheu, and L. W. Lai, “Electroluminescence of ZnO nanocrystal in sputtered ZnO-SiO2 nanocomposite light-emitting devices.” Opt. Express, vol. 19, p. 11873, 2011.
[35] C. H. Kuo, C. M. Chen, C. W. Kuo, C. J. Tun, and C. J. Pan, “Improvement of near-ultraviolet nitride-based light emitting diodes with mesh indium tin oxide contact layers”, Appl. Phys. Lett., vol. 89, p. 201104, 2006.
[1] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Mukai, “Ultra-high efficiency white light emitting diodes,” Jpn. J. Appl. Phys., vol. 45, no. 41, p. L1084, 2006.
[2] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High Dislocation Densities in High-Efficiency Gan-Based Light-Emitting-Diodes,” Appl. Phys. Lett., vol. 66, no. 10, p. 1249, 1995.
[3] T. Wang, Y. H. Liu, Y. B. Lee, Y. Izumi, J. P. Ao, J. Bai, H. D. Li, and S. Sakai, “Fabrication of high performance of AlGaN/GaN-based UV light-emitting diodes,” J. Cryst. Growth, vol. 235, no. 1-4, p.177, 2002.
[4] D. D. Koleske, A. J. Fischer, A. A. Allerman, C. C. Mitchell, K. C. Cross, S. R. Kurtz, J. J. Figiel, K. W. Fullmer, and W. G. Breiland, “Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence,” Appl. Phys. Lett., vol. 81, no. 11, p. 1940, 2002.
[5] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Luminescences from localized states in InGaN epilayers,” Appl. Phys. Lett., vol. 70, no. 21, p. 2822, 1997.
[6] P. R. C. Kent and A. Zunger, “Carrier localization and the origin of luminescence in cubic InGaN alloys,” Appl. Phys. Lett., vol. 79, no. 13, p. 1977, 2001.
[7] M.-K. Kwon, I.-K. Park, S.-H. Beak, J.-Y. Kim, and S. J. Park, “Si delta doping in a GaN barrier layer of InGaN/GaN multi-quantum-well for an efficient ultraviolet light-emitting diode,” J. Appl. Phys., vol. 97, no. 10, p. 106, 2005.
[8] A. Knauer, V. Kueller, S. Einfeldt, V. Hoffmann, T. Kolbe, J.-R. van Look, J. Piprek, M. Weyers, and M. Kneissl, “Influence of the barrier composition on the light output of InGaN multiple-quantum-well ultraviolet light emitting diodes,” Proc. SPIE, vol. 6797, p. 67970X, 2007.
[9] M. Asif Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, and A. Bykhovsky, “Piezoelectric doping in AlInGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 75, no. 18, p. 2806, 1999.
[10] M. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, no. 18, p. 183507, 2007.
[11] J. Li, S. L. Shi, Y. J. Wang, S. J. Xu, D. G. Zhao, J. J. Zhu, H. Yang, and F. Lu, “Violet electroluminescence of AlInGaN–InGaN Multiquantum-well light-emitting diodes: quantum-confined Stark effect and heating effect,” IEEE Photon. Technol. Lett., vol. 19, no. 10, p. 789, 2007.
[12] M. Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, H.-C. zur Loye, G. Tamulaitis, A. Zukauskas, D. J. Smith, D. Chandrasekhar, and R. Bicknell-Tassius, “Lattice and energy band engineering in AlInGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 76, no. 9, p. 1161, 2000.
[13] Z.-H. Zhang, S. T. Tan, Z. Ju, W. Liu, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the Effect of Step-Doped Quantum Barriers in InGaN/GaN Light Emitting Diodes,” J. Disp. Technol., vol. 9, no. 4, p. 226, 2013.
[14] R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold- current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett., vol. 96, no. 23, p. 231113, 2010.
[15] Z.-H. Zhang, W. Liu, Z. Ju, S. T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X. W. Sun, and H. V. Demir, “Self- screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers,” Appl. Phys. Lett., vol. 104, no. 24, p. 243501, 2014.
[16] Y. Ji, W. Liu, T. Erdem, R. Chen, S. T. Tan, Z.-H. Zhang, Z. Ju, X. Zhang, H. Sun, X. W. Sun, Y. Zhao, S. P. DenBaars, S. Nakamura, and H. V. Demir, “Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (11 2 ̄ 2) semipolar versus (0001) polar planes,” Appl. Phys. Lett., vol. 104, no. 14, p. 143506, 2014.
[17] L.W.Wu, S.J.Chang, T.C.Wen, Y.K.Su, J.F.Chen, W.C.Lai, C.H.Kuo, C.H.Chen, and J.K.Sheu, “Influence of Si-Doping on the Characteristics of InGaN–GaN Multiple Quantum-Well Blue Light Emitting Diodes,” IEEE J. Quantum Electron., vol. 38, no. 5, p. 446, 2002.
[18] Z.-H. Zhang, S. T. Tan, Y. Ji, W. Liu, Z. Ju, Z. Kyaw, X. W. Sun, and H. V. Demir, “A PN-type quantum barrier for InGaN/GaN light emitting diodes,” Opt. Express, vol. 21, no. 13, p. 15676, 2013.
[19] K. Anazawa, S. Hassanet, K. Fujii, Y. Nakano, and M. Sugiyama, “Growth of strain-compensated InGaN/AlN multiple quantum wells on GaN by MOVPE,” J. Cryst. Growth, vol. 370, p. 82, 2013.
[20] H. Z. Ronald A Arif, Y.-K. Ee, and N. Tansu, “Spontaneous Emission and Characteristics of Staggered InGaN Quantum-Well Light-Emitting Diodes,” IEEE J. Quantum Electron., vol. 44, no. 6, p. 573, 2008.
[21] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, and E. Zanoni, “A Review on the Physical Mechanisms That Limit the Reliability of GaN-Based LEDs,” IEEE Trans. Electron. Dev., vol. 57, no. 1, p. 108, 2010.
[22] S. Tomiya, T. Hino, S. Goto, M. Takeya, and M. Ikeda, “Dislocation related issues in the degradation of GaN- based laser diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 6, p. 1277, 2004.
[23] S. N. Lee, H. S. Paek, J. K. Son, H. Kim, K. K. Kim, K. H. Ha, O. H. Nam, and Y. Park, “Effects of Mg dopant on the degradation of InGaN multiple quantum wells in AlInGaN-based light emitting devices,” J. Electroceram., vol. 23, no. 2, p. 406, 2009.