簡易檢索 / 詳目顯示

研究生: 林懿
Lin, Yi
論文名稱: 以功能性磁振造影開發輔助溝通障礙族群之應用
Applications of fMRI on human communication
指導教授: 龔俊嘉
Kung, Chun-Chia
共同指導教授: 曹昱
Tsao, Yu
學位類別: 博士
Doctor
系所名稱: 醫學院 - 跨領域神經科學國際博士學位學程
TIGP on The Interdisciplinary Neuroscience
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 123
中文關鍵詞: 溝通障礙言語鏈功能性磁振造影
外文關鍵詞: fMRI, communication disorders, speech chain
相關次數: 點閱:104下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用口語是最快速且直接的溝通方式。在對話的過程中,人會經歷許多認知歷程,其中包含語音的知覺、語言的產出等等。如果任何一個與對話相關的認知歷程在過程中出現問題,則此人可能無法順利表達自己的思想;並且在嚴重時,可能會被診斷為溝通障礙。然,溝通障礙可以根據不同的認知歷程障礙分為不同的亞型,並且障礙的嚴重程度也可以被劃分為輕微到嚴重。此外,不同的溝通障礙亞型所需之治療以及幫助也是不同的。在此博士論文,我將針對兩種溝通障礙族群(聽力障礙以及語言障礙)的需求,結合功能性磁振造影(紀錄神經活動反應),反向推理的實驗策略,以及機器學習之算法,開發相對的應用工具。以下我將簡述此二應用工具之目標以及背景。(1) 部分但不是所有聽力障礙患者在經歷治療後(例如:植入人工耳蝸後),都可以一定程度上的恢復聽力。此外,術後康復情形也有不一的現象。因此,我嘗試使用大腦活動反應建立一個生物標誌預測和評估術後結果。 (2) 相反的,多數語言障礙的族群並沒有辦法藉由手術改善其所面臨之問題。對此,我使用開創性的手法,開發新的神經語言解碼策略,期待促進神經科學在醫學的應用。

    Speech communication is our firsthand, fast, and foremost way to exchange information. It comprises various types of cognitive processing, including sound perception, speech production, verbal working memory, and so on. If there is any problem in the relevant cognitive processing, one might fail to convey him/herself and in some serious cases be diagnosed with a communication disorder. Communication disorders range from mild to severe and can be categorized into different subtypes based on distinct cognitive processing impairments. Besides, distinct subgroups require varied treatments and assistants. In the present work, I targeted specific demands of the two main subgroups of communication disorders, i.e., hearing disorder and speech disorder. (1) Some but not all patients with hearing disorders can regain hearing abilities to some extent (e.g., via cochlear implant), but they showed varied degrees of rehabilitation, sometimes longer than six months. Therefore, a biomarker is required for predicting and evaluating the outcomes. (2) Moreover, the speech disorders patients whose communication problems cannot be solved by surgery require new technologies to help convey their thoughts. I demonstrated that these two needs (i.e., rehabilitation biomarker and thought decoder) can be fulfilled by combing the neuron activity signals acquired by functional Magnetic Resonance Imaging (fMRI) with reverse inference (i.e., inferring the engagement of cognition processes given the brain activation) and machine learning algorithms.

    Chapter 1. General Introduction 1 1.1 Speech chain and communication disorder 1 1.2 Individual difference 4 1.3 Reverse inference 5 1.4 Research aims 9 Chapter 2. Neural correlates of individual differences in predicting ambiguous sounds’ comprehension level 12 Chapter 2.1. Introduction: Hearing disorder 12 Chapter 2.2. Neural signatures in predicting comprehension level: Method 16 Chapter 2.3. Neural signatures in predicting comprehension level: Result 29 Chapter 2.4. Neural signatures in predicting comprehension level: Discussion 41 Chapter 2.5. Cognitive abilities and comprehension level: Method 45 Chapter 2.6. Cognitive abilities and comprehension level: Result and Discussion 50 Chapter 2.7. Post-training neural activities: Method 52 Chapter 2.8. Post-training neural activities: Result and Discussion 55 Chapter 2.9. Summary 60 Chapter 3. Neural decoding of speech with the semantic-based classification of brain activation 62 Chapter 3.1. Introduction: Speech disorder 62 Chapter 3.2. Method and materials 74 Chapter 3.3. Result 87 Chapter 3.4. Discussion 92 Chapter 3.5. Summary 95 Chapter 4. Conclusions 97 Reference 100 Supplementary 110

    Abrams, D. A., Ryali, S., Chen, T., Balaban, E., Levitin, D. J., & Menon, V. (2013). Multivariate activation and connectivity patterns discriminate speech intelligibility in Wernicke's, Broca's, and Geschwind's areas. Cerebral Cortex, 23(7), 1703-1714.
    American Speech-Language-Hearing Association. (1993). Definitions of communication disorders and variations.
    American Speech-Language-Hearing Association. (2015). Type, degree, and configuration of hearing loss. Audiology Information Series, 10802-10803.
    Anderson, A. J., Murphy, B., & Poesio, M. (2014). Discriminating taxonomic categories and domains in mental simulations of concepts of varying concreteness. Journal of Cognitive Neuroscience, 26(3), 658-681.
    Anderson, A. J., Binder, J. R., Fernandino, L., Humphries, C. J., Conant, L. L., Aguilar, M., ... & Raizada, R. D. (2017). Predicting neural activity patterns associated with sentences using a neurobiologically motivated model of semantic representation. Cerebral Cortex, 27(9), 4379-4395.
    Anderson, A. J., Kiela, D., Clark, S., & Poesio, M. (2017). Visually grounded and textual semantic models differentially decode brain activity associated with concrete and abstract nouns. Transactions of the Association for Computational Linguistics, 5, 17-30.
    Bishop, D. V. (1994). Is specific language impairment a valid diagnostic category? Genetic and psycholinguistic evidence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 346(1315), 105-111.
    Blamey, P., Artieres, F., Başkent, D., Bergeron, F., Beynon, A., Burke, E., ... & Lazard, D. S. (2013). Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients. Audiology and Neurotology, 18(1), 36-47.
    Blinowska, K., & Durka, P. (2006). Electroencephalography (eeg). Wiley encyclopedia of biomedical engineering.
    Boisvert, I., McMahon, C. M., Dowell, R. C., & Lyxell, B. (2015). Long-term asymmetric hearing affects cochlear implantation outcomes differently in adults with pre-and postlingual hearing loss. PloS one, 10(6), e0129167.
    Bonner, M. F., & Epstein, R. A. (2021). Object representations in the human brain reflect the co-occurrence statistics of vision and language. Nature Communications, 12(1), 1-16.
    Brookhouser, P. E. (1996). Sensorineural hearing loss in children. Pediatric Clinics of North America, 43(6), 1195-1216.
    Bruno, M. A., Bernheim, J. L., Ledoux, D., Pellas, F., Demertzi, A., & Laureys, S. (2011). A survey on self-assessed well-being in a cohort of chronic locked-in syndrome patients: happy majority, miserable minority. BMJ open, 1(1).
    Brumberg, J. S., Nieto-Castanon, A., Kennedy, P. R., & Guenther, F. H. (2010). Brain–computer interfaces for speech communication. Speech communication, 52(4), 367-379.
    Burge, J., Lane, T., Link, H., Qiu, S., & Clark, V. P. (2009). Discrete dynamic Bayesian network analysis of fMRI data. Human brain mapping, 30(1), 122–137
    Caria, A., Sitaram, R., & Birbaumer, N. (2012). Real-time fMRI: a tool for local brain regulation. The Neuroscientist, 18(5), 487-501.
    Cacciatore, F., Napoli, C., Abete, P., Marciano, E., Triassi, M., & Rengo, F. (1999). Quality of life determinants and hearing function in an elderly population: Osservatorio Geriatrico Campano Study Group. Gerontology, 45(6), 323-328.
    Chakrabarti, S., Sandberg, H. M., Brumberg, J. S., & Krusienski, D. J. (2015). Progress in speech decoding from the electrocorticogram. Biomedical Engineering Letters, 5(1), 10-21.
    Chang, C. C., & Lin, C. J. LIBSVM: A library forsupport vector machines [CP]. Software available at: http://www. csie. ntu. edu. tw.
    Chen, C. H., Suckling, J., Lennox, B. R., Ooi, C., & Bullmore, E. T. (2011). A quantitative meta‐analysis of fMRI studies in bipolar disorder. Bipolar disorders, 13(1), 1-15.
    Correia, J., Formisano, E., Valente, G., Hausfeld, L., Jansma, B., & Bonte, M. (2014). Brain-based translation: fMRI decoding of spoken words in bilinguals reveals language-independent semantic representations in anterior temporal lobe. Journal of Neuroscience, 34(1), 332-338.
    Courchesne, E., & Pierce, K. (2005). Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. International journal of developmental neuroscience, 23(2-3), 153-170.
    Davis, M. H., & Johnsrude, I. S. (2003). Hierarchical processing in spoken language comprehension. Journal of Neuroscience, 23(8), 3423-3431.
    Denes, P. B., Denes, P., & Pinson, E. (1993). The speech chain. Macmillan.
    de Klerk, C. C., Johnson, M. H., Heyes, C. M., & Southgate, V. (2015). Baby steps: investigating the development of perceptual–motor couplings in infancy. Developmental Science, 18(2), 270-280.
    Del Pinal, G., & Nathan, M. J. (2013). There and up again: On the uses and misuses of neuroimaging in psychology. Cognitive Neuropsychology, 30(4), 233-252.
    Del Pinal, G., & Nathan, M. J. (2017). Two kinds of reverse inference in cognitive neuroscience. In The human sciences after the decade of the brain (pp. 121-139). Academic Press. (n)
    Deshpande, A. K., Tan, L., Lu, L. J., Altaye, M., & Holland, S. K. (2016). fMRI as a preimplant objective tool to predict postimplant oral language outcomes in children with cochlear implants. Ear and hearing, 37(4), e263-e272.
    DÍAZ, C. M. C.(2015) REVERSE INFERENCE FALLACY, INDUCTIONISM AND GENERALIZACION IN SCIENCES. Unpublished manuscript.
    Dimitrijevic, A., Smith, M. L., Kadis, D. S., & Moore, D. R. (2019). Neural indices of listening effort in noisy environments. Scientific reports, 9(1), 1-10.
    Doehrmann, O., Ghosh, S. S., Polli, F. E., Reynolds, G. O., Horn, F., Keshavan, A., ... & Gabrieli, J. D. (2013). Predicting treatment response in social anxiety disorder from functional magnetic resonance imaging. JAMA psychiatry, 70(1), 87-97.
    Duffy, J. R. (2013). Motor speech disorders: Substrates, differential diagnosis, and management. St. Louis, MO: Elsevier.
    Eisner, F., McGettigan, C., Faulkner, A., Rosen, S., & Scott, S. K. (2010). Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations. Journal of Neuroscience, 30(21), 7179-7186.
    Erb, J., Henry, M. J., Eisner, F., & Obleser, J. (2012). Auditory skills and brain morphology predict individual differences in adaptation to degraded speech. Neuropsychologia, 50(9), 2154-2164.
    Erb, J., Henry, M. J., Eisner, F., & Obleser, J. (2013). The brain dynamics of rapid perceptual adaptation to adverse listening conditions. Journal of Neuroscience, 33(26), 10688-10697.
    Evans, S., & Davis, M. H. (2015). Hierarchical organization of auditory and motor representations in speech perception: evidence from searchlight similarity analysis. Cerebral cortex, 25(12), 4772-4788.
    Fernandino, L., Humphries, C. J., Seidenberg, M. S., Gross, W. L., Conant, L. L., & Binder, J. R. (2015). Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes. Neuropsychologia, 76, 17–26. https://doi.org/10.1016/j.neuropsychologia.2015.04.009
    Fu, Q. J., Zeng, F. G., Shannon, R. V., & Soli, S. D. (1998). Importance of tonal envelope cues in Chinese speech recognition. The Journal of the Acoustical Society of America, 104(1), 505-510.
    Gabrieli J. (2018). A Look Within Imaging technologies could find the best treatments for depression and addiction—and could even reshape education. Scientific American, 318(3), 54-59.
    Gallese, V., & Lakoff, G. (2005). The brain's concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive neuropsychology, 22(3-4), 455-479.
    Gainotti, G., Spinelli, P., Scaricamazza, E., & Marra, C. (2013). The evaluation of sources of knowledge underlying different conceptual categories. Frontiers in human neuroscience, 7, 40.
    Gaser, C., & Dahnke, R. (2016). CAT-a computational anatomy toolbox for the analysis of structural MRI data. Hbm, 2016, 336-348.
    Giraud, A. L., & Lee, H. J. (2007). Predicting cochlear implant outcome from brain organisation in the deaf. Restorative neurology and neuroscience, 25(3-4), 381-390.
    Glenberg, A. M., & Gallese, V. (2012). Action-based language: A theory of language acquisition, comprehension, and production. cortex, 48(7), 905-922.
    Grahn, J. A., & Schuit, D. (2012). Individual differences in rhythmic ability: Behavioral and neuroimaging investigations. Psychomusicology: Music, Mind, and Brain, 22(2), 105.
    Handjaras, G., Ricciardi, E., Leo, A., Lenci, A., Cecchetti, L., Cosottini, M., ... & Pietrini, P. (2016). How concepts are encoded in the human brain: a modality independent, category-based cortical organization of semantic knowledge. Neuroimage, 135, 232-242.
    Glymour, C., & Hanson, C. (2016). Reverse inference in neuropsychology. The British Journal for the Philosophy of Science, 67(4), 1139-1153.
    Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146-162.
    Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301-307.
    Hebart, M. N., Görgen, K., & Haynes, J. D. (2015). The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data. Frontiers in neuroinformatics, 8, 88.
    Herff, C., Heger, D., De Pesters, A., Telaar, D., Brunner, P., Schalk, G., & Schultz, T. (2015). Brain-to-text: decoding spoken phrases from phone representations in the brain. Frontiers in neuroscience, 9, 217.
    Hickok, G. (2012). Computational neuroanatomy of speech production. Nature reviews neuroscience, 13(2), 135-145.
    Hinvest, N. S., Elliott, R., McKie, S., & Anderson, I. M. (2011). Neural correlates of choice behavior related to impulsivity and venturesomeness. Neuropsychologia, 49(9), 2311-2320.
    Hoffman, P., & Ralph, M. A. L. (2013). Shapes, scents and sounds: quantifying the full multi-sensory basis of conceptual knowledge. Neuropsychologia, 51(1), 14-25
    Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
    Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., ... & Gabrieli, J. D. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences, 108(1), 361-366.
    Holden, L. K., Finley, C. C., Firszt, J. B., Holden, T. A., Brenner, C., Potts, L. G., ... & Skinner, M. W. (2013). Factors affecting open-set word recognition in adults with cochlear implants. Ear and hearing, 34(3), 342.
    Hötting, K., & Röder, B. (2009). Auditory and auditory-tactile processing in congenitally blind humans. Hearing research, 258(1-2), 165-174.
    Hutzler, F. (2014). Reverse inference is not a fallacy per se: Cognitive processes can be inferred from functional imaging data. Neuroimage, 84, 1061-1069.
    Huth, A. G., De Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532(7600), 453-458.
    Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron, 76(6), 1210-1224.
    Hung, S. M., Nieh, C. H., & Hsieh, P. J. (2016). Unconscious processing of facial attractiveness: Invisible attractive faces orient visual attention. Scientific Reports, 6(1), 1-8.
    Jeon, H. A., Lee, K. M., Kim, Y. B., & Cho, Z. H. (2009). Neural substrates of semantic relationships: common and distinct left-frontal activities for generation of synonyms vs. antonyms. Neuroimage, 48(2), 449-457.
    Kempen, G., & Huijbers, P. (1983). The lexicalization process in sentence production and naming: Indirect election of words. Cognition, 14, 185–209.
    Kim, A. (2006). Wilhelm Maximilian Wundt.
    Kohl, S. H., Veit, R., Spetter, M. S., Günther, A., Rina, A., Lührs, M., ... & Hallschmid, M. (2019). Real-time fMRI neurofeedback training to improve eating behavior by self-regulation of the dorsolateral prefrontal cortex: A randomized controlled trial in overweight and obese subjects. NeuroImage, 191, 596-609.
    Koush, Y., Meskaldji, D. E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E., ... & Scharnowski, F. (2017). Learning control over emotion networks through connectivity-based neurofeedback. Cerebral cortex, 27(2), 1193-1202.
    Kral, A. (2007). Unimodal and cross-modal plasticity in the ‘deaf’auditory cortex. International journal of audiology, 46(9), 479-493.
    Krueger, B., Joseph, G., Rost, U., Strau-Schier, A., Lenarz, T., & Buechner, A. (2008). Performance groups in adult cochlear implant users: speech perception results from 1984 until today. Otology & Neurotology, 29(4), 509-512.
    Lauterbur, P. C. (1973). Image formation by induced local interactions: examples employing nuclear magnetic resonance. nature, 242(5394), 190-191.
    Lazard, D. S., Lee, H. J., Gaebler, M., Kell, C. A., Truy, E., & Giraud, A. L. (2010). Phonological processing in post-lingual deafness and cochlear implant outcome. Neuroimage, 49(4), 3443-3451.
    Laureys, S., Pellas, F., Van Eeckhout, P., Ghorbel, S., Schnakers, C., Perrin, F., ... & Goldman, S. (2005). The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? Progress in brain research, 150, 495-611.
    Lenarz, M., Sönmez, H., Joseph, G., Büchner, A., & Lenarz, T. (2012). Long-term performance of cochlear implants in postlingually deafened adults. Otolaryngology--Head and Neck Surgery, 147(1), 112-118.
    Levelt, W. J. (1993). Speaking: From intention to articulation (Vol. 1). MIT press.
    Levelt, W. J. (1992). Accessing words in speech production: Stages, processes and representations. Cognition, 42(1-3), 1-22.
    Levelt, W. J., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and brain sciences, 22(1), 1-38.
    Mahowald, K., & Fedorenko, E. (2016). Reliable individual-level neural markers of high-level language processing: A necessary precursor for relating neural variability to behavioral and genetic variability. Neuroimage, 139, 74-93.
    Mansfield, P., & Grannell, P. K. (1973). NMR'diffraction'in solids?. Journal of Physics C: solid state physics, 6(22), L422.
    Martin, S., Brunner, P., Holdgraf, C., Heinze, H. J., Crone, N. E., Rieger, J., ... & Pasley, B. N. (2014). Decoding spectrotemporal features of overt and covert speech from the human cortex. Frontiers in neuroengineering, 7, 14.
    Mahon, B. Z. (2015). What is embodied about cognition?. Language, cognition and neuroscience, 30(4), 420-429.
    McGettigan, C., Evans, S., Rosen, S., Agnew, Z. K., Shah, P., & Scott, S. K. (2012). An application of univariate and multivariate approaches in FMRI to quantifying the hemispheric lateralization of acoustic and linguistic processes. Journal of cognitive neuroscience, 24(3), 636-652.
    McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive psychology, 18(1), 1-86.
    Meyer-Lindenberg, A. (2012). The future of fMRI and genetics research. NeuroImage, 62(2), 1286-1292.
    Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
    Mikolov, T., Le, Q. V., & Sutskever, I. (2013b). Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168.
    Miller, L. E., & Saygin, A. P. (2013). Individual differences in the perception of biological motion: links to social cognition and motor imagery. Cognition, 128(2), 140-148.
    Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K. M., Malave, V. L., Mason, R. A., & Just, M. A. (2008). Predicting human brain activity associated with the meanings of nouns. science, 320(5880), 1191-1195.
    Moore, D. R., & Shannon, R. V. (2009). Beyond cochlear implants: awakening the deafened brain. Nature neuroscience, 12(6), 686-691.
    Müller-Oerlinghausen, B., Berghöfer, A., & Bauer, M. (2002). Bipolar disorder. The Lancet, 359(9302), 241-247.
    Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M., & Gallant, J. L. (2009). Bayesian reconstruction of natural images from human brain activity. Neuron, 63(6), 902-915.
    Nathan, M. J., & Del Pinal, G. (2017). The future of cognitive neuroscience? Reverse inference in focus. Philosophy Compass, 12(7), e12427. (n)
    Nishida, S., & Nishimoto, S. (2018). Decoding naturalistic experiences from human brain activity via distributed representations of words. Neuroimage, 180, 232-242.
    Ogar, J., Slama, H., Dronkers, N., Amici, S., & Luisa Gorno-Tempini, M. (2005). Apraxia of speech: an overview. Neurocase, 11(6), 427-432.
    Okada, K., Rong, F., Venezia, J., Matchin, W., Hsieh, I. H., Saberi, K., ... & Hickok, G. (2010). Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. Cerebral Cortex, 20(10), 2486-2495.
    Pakulak, E., & Neville, H. J. (2010). Proficiency differences in syntactic processing of monolingual native speakers indexed by event-related potentials. Journal of cognitive neuroscience, 22(12), 2728-2744.
    Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., ... & Fedorenko, E. (2018). Toward a universal decoder of linguistic meaning from brain activation. Nature communications, 9(1), 1-13.
    Pereira, F., Botvinick, M., & Detre, G. (2013). Using Wikipedia to learn semantic feature representations of concrete concepts in neuroimaging experiments. Artificial intelligence, 194, 240-252.
    Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (Eds.). (2011). Statistical parametric mapping: the analysis of functional brain images. Elsevier.
    Pollicina, G, Weksler, A & Vetter, P, 2021.5. Decoding Semantic Sound Categories in Early Visual Cortex. [Poster presentation]. Vision Sciences Society, Online.
    Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data?. Trends in cognitive sciences, 10(2), 59-63.
    Poldrack, R. A. (2012). The future of fMRI in cognitive neuroscience. Neuroimage, 62(2), 1216-1220.
    Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron, 72(5), 692-697.
    Punch, J. L., Hitt, R., & Smith, S. W. (2019). Hearing loss and quality of life. Journal of communication disorders, 78, 33-45.
    Puschmann, S., & Thiel, C. M. (2017). Changed crossmodal functional connectivity in older adults with hearing loss. Cortex, 86, 109-122.
    Ramsey, N. F., Salari, E., Aarnoutse, E. J., Vansteensel, M. J., Bleichner, M. G., & Freudenburg, Z. V. (2018). Decoding spoken phonemes from sensorimotor cortex with high-density ECoG grids. NeuroImage, 180, 301-311.
    Reilly, S., Tomblin, B., Law, J., McKean, C., Mensah, F. K., Morgan, A., Goldfeld, S., Nicholson, J. M., & Wake, M. (2014). Specific language impairment: a convenient label for whom?. International journal of language & communication disorders, 49(4), 416–451. https://doi.org/10.1111/1460-6984.12102
    Roelofs, A., Meyer, A. S., & Levelt, W. J. (1998). A case for the lemma/lexeme distinction in models of speaking: Comment on Caramazza and Miozzo (1997). Cognition, 69(2), 219-230.
    Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland, J. L., Hodges, J. R., & Patterson, K. (2004). Structure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychological review, 111(1), 205.
    Rosemann, S., Gießing, C., Özyurt, J., Carroll, R., Puschmann, S., & Thiel, C. M. (2017). The contribution of cognitive factors to individual differences in understanding noise-vocoded speech in young and older adults. Frontiers in human neuroscience, 11, 294.
    Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R. (2004). BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Transactions on biomedical engineering, 51(6), 1034-1043.
    Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., KANWISHER, N. G., ... & Fedorenko, E. (2020). The neural architecture of language: Integrative reverse-engineering converges on a model for predictive processing. bioRxiv.
    Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. (2000). Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123(12), 2400-2406.
    Scott, S. K., Rosen, S., Lang, H., & Wise, R. J. (2006). Neural correlates of intelligibility in speech investigated with noise vocoded speech—a positron emission tomography study. The Journal of the Acoustical Society of America, 120(2), 1075-1083.
    Sharp, D. J., Turkheimer, F. E., Bose, S. K., Scott, S. K., & Wise, R. J. (2010). Increased frontoparietal integration after stroke and cognitive recovery. Annals of neurology, 68(5), 753-756.
    Shannon, R. V., Galvin III, J. J., & Baskent, D. (2002). Holes in hearing. Journal of the Association for Research in Otolaryngology, 3(2), 185-199.
    Smith, D. V., Davis, B., Niu, K., Healy, E. W., Bonilha, L., Fridriksson, J., ... & Rorden, C. (2010). Spatial attention evokes similar activation patterns for visual and auditory stimuli. Journal of cognitive neuroscience, 22(2), 347-361.
    Stehling, M. K., Turner, R., & Mansfield, P. (1991). Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science, 254(5028), 43-50.
    Stone, J. M., & Towse, J. (2015). A working memory test battery: Java-based collection of seven working memory tasks. Journal of Open Research Software, 3.
    Trauner, D. A., Ballantyne, A., Chase, C., & Tallal, P. (1993). Comprehension and expression of affect in language-impaired children. Journal of psycholinguistic research, 22(4), 445-452.
    Traxler, M. J., Long, D. L., Tooley, K. M., Johns, C. L., Zirnstein, M., & Jonathan, E. (2012). Individual differences in eye-movements during reading: Working memory and speed-of-processing effects. Journal of eye movement research, 5(1).
    Tzourio, N., El Massioui, F., Crivello, F., Joliot, M., Renault, B., & Mazoyer, B. (1997). Functional anatomy of human auditory attention studied with PET. Neuroimage, 5(1), 63-77.
    Vigliocco, G., Vinson, D. P., Martin, R. C., & Garrett, M. F. (1999). Is “count” and “mass” information available when the noun is not? An investigation of tip of the tongue states and anomia. Journal of Memory and Language, 40(4), 534-558.
    van Daal, J., Verhoeven, L., & van Balkom, H. (2004). Subtypes of severe speech and language impairments: psychometric evidence from 4-year-old children in The Netherlands. Journal of Speech, Language & Hearing Research, 47(6).
    Wang, N. Y. H., Wang, H. L. S., Wang, T. W., Fu, S. W., Lu, X., Tsao, Y., & Wang, H. M. (2019). Improving the Intelligibility of Electric and Acoustic Stimulation Speech Using Fully Convolutional Networks Based Speech Enhancement. arXiv preprint arXiv:1909.11912.
    Wang, X., Mitchell, T. M., & Hutchinson, R. (2003). Using machine learning to detect cognitive states across multiple subjects. CALD KDD project paper.
    Wang, S., Zhang, J., Wang, H., Lin, N., & Zong, C. (2020). Fine-grained neural decoding with distributed word representations. Information Sciences, 507, 256-272.
    Wang, J., Kim, M., Hernandez-Mulero, A. W., Heitzman, D., & Ferrari, P. (2017, March). Towards decoding speech production from single-trial magnetoencephalography (MEG) signals. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3036-3040). IEEE.
    Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107(3), 829-853.
    Wei, J., Chen, T., Li, C., Liu, G., Qiu, J., & Wei, D. (2018). Eyes-open and eyes-closed resting states with opposite brain activity in sensorimotor and occipital regions: multidimensional evidences from machine learning perspective. Frontiers in human neuroscience, 12, 422.
    Wiese, R. (1984). Language production in foreign and native languages: Same or different. Second language productions, 11-25.
    Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain connectivity, 2(3), 125-
    Xie, X., & Myers, E. (2018). Left inferior frontal gyrus sensitivity to phonetic competition in receptive language processing: A comparison of clear and conversational speech. Journal of cognitive neuroscience, 30(3), 267-280.
    Yi, H. G., Leonard, M. K., & Chang, E. F. (2019). The encoding of speech sounds in the superior temporal gyrus. Neuron, 102(6), 1096-1110.
    Zhang, A and Lipton, Z C. and Li, M and Smola, A J. (2020) Dive into Deep Learning
    Zotev, V., Phillips, R., Young, K. D., Drevets, W. C., & Bodurka, J. (2013). Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation. PloS one, 8(11).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE