| 研究生: |
劉凱綺 Liu, Kai-Chi |
|---|---|
| 論文名稱: |
建築工程碳足跡評估方法之研究 The Study of Carbon Footprint Verification Method for Construction Work |
| 指導教授: |
楊詩弘
Yang, Shih-Hong 楊士賢 Yang, Shi-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 261 |
| 中文關鍵詞: | 碳足跡盤查方法 、生命週期評估 、建築工程 、減碳策略 、碳足跡資料庫 |
| 外文關鍵詞: | Carbon footprint verification method, Life cycle assessment, Construction engineering, Carbon reduction strategy, Carbon footprint database |
| 相關次數: | 點閱:262 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
國際能源總署 ( IEA ) 在第26屆聯合國氣候峰會(COP26)期間舉行座談會,並直指建築部門是目前全球最大的碳排放來源,揭露2020年高達37%的碳排放來自建築業直接或間接的碳排放,其中28%是建築能源使用部分的溫室氣體排放,而有10%則是來自於建造施工時所產生的碳排放,換句話說,建築部門具有相當的減排潛力。傳統的建築節能政策通常只聚焦於前者 28% 的使用碳排,卻忽略了後者蘊含碳排於全球溫室氣體排放占比 9%的建材製造及運輸與施工作業,此原因在於建築節能部分擁有悠久的研究累積,而工程及建材減碳部分缺乏足夠的研究成果,因此,本研究旨在透過實際盤查建築工程案例之碳排放,建立系統化的碳足跡盤查方法,作為國內營建單位自行實施碳足跡盤查之依據,使各單位得以運用並了解自身碳排放源之架構,以執行相應的減碳行動,同時盤查之數據顯示了應將盤查主力著重在哪些工項上及材料上,以提高盤查效率、減少人力消耗,此亦輔助工程主管機關於規劃設計階段即可以預估、掌握施工階段的碳排狀況,以朝向減碳目標調整策略,最後由本案之盤查經驗經分析與統整,得出現有盤查方法之問題與成因,針對盤查方法提出後續改善建議。
本研究屬調查性質論文,依循「ISO 14067:2018產品碳足跡量化要求與指引」執行建築工程碳足跡評估,本案之評估邊界為原料取得階段至營建施工階段,綜合研究結果顯示,建築工程碳足跡主要集中於原料取得階段,換言之影響工程碳足跡的關鍵因素為材料,其中鋼構工程之資材碳排占工程總資材碳排之89.65%,為主要熱點工項,因此執行減碳時,首先應聚焦於主結構之建材的選用及構造形式的設計,並推動低碳材料與工法的研發。而關於碳足跡評估方法,由於建築高度分工的產業型態,工程項目繁雜,本研究建議應區分出適用於製造業及營建業的盤查方法與依循標準,並放鬆對於佐證資料之數據品質的要求,本研究亦綜整建構適應於建築工程碳足跡評估之步驟流程,並提出數據調查架構,補足碳足跡評估標準提供之框架所缺乏的細節,以利盤查作業進行。
During the 26th United Nations Climate Change Conference (COP26), the International Energy Agency (IEA) held a forum where they pointed out that the construction sector is currently the largest source of carbon emissions globally. They revealed that in 2020, a staggering 37% of carbon emissions were directly or indirectly attributed to the construction industry. Of this, 28% came from greenhouse gas emissions related to building energy use, while 10% originated from carbon emissions during the construction phase. In other words, the construction sector holds significant potential for emission reductions. Traditional building energy-saving policies usually focus only on the 28% related to energy use, overlooking the remaining carbon emissions, which account for 9% of global greenhouse gas emissions and stem from the manufacturing, transportation, and construction activities of building materials. This oversight is primarily due to the extensive research accumulated in building energy efficiency, whereas research on reducing carbon in construction and materials has been lacking. Therefore, this study aims to establish a systematic carbon footprint verification method by conducting a verification of carbon emissions in actual construction projects. This method will provide a framework for domestic construction units to verify their own carbon footprint, enabling them to understand and manage their carbon emission sources, and implement corresponding carbon reduction actions. The verification data also highlights the specific construction items and materials that should be focused on to improve efficiency and reduce labor consumption. Additionally, this data assists construction authorities in estimating and managing carbon emissions during the planning and design phases, allowing them to adjust strategies toward carbon reduction goals. Lastly, this study summarizes the issues and causes within the current verification methods and provides recommendations for future improvements.
This study is an investigative paper that follows the " ISO 14067:2018_Greenhouse gases -Carbon footprint of products -Requirements and guidelines for quantification " to assess the carbon footprint of construction projects. The life cycle assessment scope for this project covers the stages from raw material acquisition to construction. The comprehensive research results indicate that the carbon footprint of construction projects is mainly concentrated in the raw material acquisition stage, meaning that materials are the key factors influencing the project's carbon footprint. Specifically, the carbon emissions from materials used in steel structure engineering account for 89.65% of the total material carbon emissions in the project, making it the primary hotspot for carbon emissions. Therefore, when implementing carbon reduction measures, the focus should first be on the selection of materials for the main structure and the design of construction forms, as well as promoting the development of low-carbon materials and construction methods.
Regarding the carbon footprint verification methods, due to the highly specialized nature of the construction industry and the complexity of construction projects, this study recommends distinguishing between the verification methods and standards applicable to the manufacturing and construction industries. It also suggests relaxing the requirements for data quality in supporting documentation. Additionally, this study has synthesized and established a set of step-by-step procedures tailored for the carbon footprint assessment of construction projects and proposed a data survey framework to supplement the details lacking in the existing carbon footprint assessment standards, thereby facilitating the verification process.
博碩士論文
[1] 張又升,建築物生命週期二氧化碳減量評估,國立成功大學建築學系博士論文,2002。
[2] 周明慧,營造業之產業特質及產品異質性探討,國立中央大學營建管理學系碩士論文,2004。
[3] 李育明,生命週期評估簡介,國立臺北大學自然資源與環境管理研究所教授,2008。
[4] 林宏霖,工程規設階段之碳盤查及其減碳策略- 以潛盾工程為例,國立台北科技大學土木與防災學系碩士論文,2013。
[5] 溫善政,建築物施工暨營運階段碳足跡探討- 以嘉創中心為例,中華大學營建管理學系碩士論文,2013。
[6] 張登瑞,建築工程發包策略模式與問題之探討-以建設公司為例,國立臺灣大學土木工程學系碩士論文,2014。
[7] 翁以欣,台灣建材碳足跡資料庫盤查方法之研究,國立成功大學建築學系碩士論文,2015。
[8] 吳冠伋,開發設計導向之永續運輸基礎設施管理(STIM)碳足跡評估工具-公路橋梁系統,國立成功大學土木工程學系碩士論文,2018。
[9] 張和忠,溫室氣體盤查與減量評估- 以某半導體封測廠為例,國立中央大學環境工程學系碩士論文, 2019。
[10] 陳偉恩,新建建築工程碳排放評估之研究-以國立臺北科技大學精勤樓為例,國立台北科技大學建築系碩士論文,2020。
[11] 岳含潤,基於矩陣擴增法發展營建材料碳足跡分析架構- 以水泥與瀝青混凝土材料為例, 國立成功大學土木工程學系碩士論文,2021。
[12] 林家倫,以營建產品複合生命週期資料庫量化建築工程碳足跡- 以成大校舍工程為例,國立成功大學土木工程學系碩士論文,2022。
[13] 楊敬緯,基於複合生命週期產品碳足跡分析建立營建產品碳足跡係數資料庫:以道路工程為例,國立成功大學土木工程學系碩士論文,2022。
[14] 丁柏豪,精進道路工程碳足跡產品類別規則: 應用複合生命週期產品碳足跡資料庫量化道路工程碳足跡,國立成功大學土木工程學系碩士論文,2023。
研究報告
[15] 蕭江碧、黃正義、林利國,建築施工用水管理制度之研究,內政部建築研究所,2011。
[16] 蔡文豪、陳昭堯、吳文樵、陳啟明,研訂公共工程計畫相關審議基準及綠色減碳指標計算規則,行政院公共工程委員會,2012。
[17] 陳一昌、許書耕、胡智超、黃榮堯、蔡宗益、陳昭秀、蔡紀震,交通運輸工程節能減碳規劃設計手冊研究與編訂,交通部運輸研究所,2013。
期刊著作
[18] 林憲德、張又升、歐文生、楊煦照、劉漢卿,台灣建材生產耗能與二氧化碳排放之解析,土木水利期刊 ▪️ 第一期,2002。
[19] 張嘉宏、王朝民、許國榮,邁向綠色消費-探討產品類別規則訂定之可適性,環保技術e報▪️ 第九十一期,2011。
[20] 林金美,產品碳足跡管理發展與趨勢-專題:產品碳足跡評估標準發展動態,綠機會通訊 ▪️ 第二十八期,2012。
[21] 王翰祥、陳介豪,營造產業發展概況,台灣地區2014房地產年鑑,2014。
[22] 鄭恆志、黃品萱、蔡維哲、鄒萬祥、陳衍舜,工程碳足跡評估及盤查實務-以加勁路堤為例,土木水利期刊 ▪️ 第四十一卷 ▪️ 第一期,2014。
[23] 盧怡靜、呂穎彬,ISO 14040 生命週期評估的下一步,永續產業發展季刊 ▪️ 第六十六期,2014。
[24] 低碳建築聯盟,低碳建築聯盟會訊 ▪️ 第三期,2015。
規則指引
[25] 行政院環保署,碳足跡產品類別規則訂定、引用及修訂指引,2020。
國際標準
[26] BSI,BS EN15978:2011- Sustainability of construction works - Assessment of environmental performance of buildings- Calculation method,2011。
[27] ISO,ISO 14067:2018- Greenhouse gases - Carbon footprint of products - Requirements and guidelines for quantification,2018。
[28] ISO,ISO 15392- Sustainability in buildings and civil engineering works - General principles,2019。
[29] ISO,ISO 21931-2- Sustainability in buildings and civil engineering works - Framework for methods of assessment of the environmental, social and economic performance of construction works as a basis for sustainability assessment - Part 2: Civil engineering works,2019。
[30] ISO,ISO 21931-1- Sustainability in buildings and civil engineering works - Framework for methods of assessment of the environmental, social and economic performance of construction works as a basis for sustainability assessment - Part 1: Buildings,2022。