| 研究生: |
洪肇崑 Hung, Chao-Kun |
|---|---|
| 論文名稱: |
以微波溶熱法合成超小奈米顆粒之二氧化鈦於染料敏化太陽能電池之應用 Synthesis of ultrafine TiO2 nanoparticles by microwave-assisted solvothermal processes for dye-sensitized solar cells. |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 超小奈米顆粒二氧化鈦 、微波溶熱 、漿料 、發展晶面 、DSSC |
| 外文關鍵詞: | ultrafine TiO2, microwave-assisted solvothermal, DSSC |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用溶膠凝膠法搭配微波溶熱法合成超小奈米顆粒二氧化鈦,以2-戊醇(2PEN)、3-戊醇(3PEN) 、辛醇(OCT)分別作為反應溶劑,用以合成不同晶粒大小與發展晶面的二氧化鈦超小晶粒。將溶熱反應後的膠體溶液以異丙醇(IPA)或正丙醇(NPA)進行溶劑置換並製成漿料,網印製成DSSC之工作電極,比較二氧化鈦晶粒尺寸及發展晶面對於DSSC光電轉換效率的影響。本研究發現溶熱反應中選用的溶劑種類會影響二氧化鈦的晶粒大小與發展晶面。選用長碳鏈的醇類因為沸點高,所以反應過程中壓力較小,使較多晶核析出,加上空間阻隔效應,因此合成的二氧化鈦晶粒也越小;若是使用二級醇則容易形成烷氧自由基,此自由基會與{001}面上的Ti4+鍵結,抑制晶體往[001]方向成長,因此形成{001}的發展晶面。此外,在製備漿料時,分散溶劑種類也可改變超小顆粒二氧化鈦晶粒之分散性。本研究比較二氧化鈦晶粒發展晶面、晶粒尺寸以及晶粒於漿料中的分散性,對於DSSC光電轉換過程中電子壽命、染料吸附量、開路電壓等性質的影響。研究結果顯示,以超小奈米顆粒二氧化鈦作為工作電極,因為具有高比表面積,染料吸附能力佳,增加光捕獲率,且顆粒緊密堆積利於電子傳遞,延長電子壽命,可以提升DSSC的光電流。其中以辛醇為反應溶劑,正丙醇為分散溶劑的參數,因為晶粒均勻分散於漿料中,使得量子侷限效應相對顯著,因而表現較高的VOC,也是所有參數中電性表現最佳的樣品,在14 m的膜厚下,不需疊加散射層,光電轉換效率即可達10.04 %。
In this study, we used a clean and time-effective process to synthesize ultrafine TiO2 nanoparticles via sol-gel microwave-assisted solvothermal method and for the use of dye-sensitized solar cells (DSSC). TiO2 crystallite size and the major exposed crystallite facet can be tailored by using different solvents. The results revealed that using 2-pentanol (2PEN) and 3-pentanol (3PEN) had similar crystallite size; however the later exhibited preferred (001) facet that allowed a longer electron lifetime and led to a relatively higher Jsc performance.
The ultrafine crystallite size of 10 nm derived by octanol (OCT) devoted to an obviously high Jsc among all the samples. In addition, OCT derived TiO2 crystallites dispersed in isopropanol (OI) and in n-propanol (ON) showed different degree of aggregation that also gave apparent effect of their DSSC performances. ON showed good dispersion and led to a quantum confinement effect. This effect resulted in a higher theoretic open circuit voltage (Voc) for the DSSC made of ON photoelectrode and showed the best power conversion efficiency up to 10.04 % with a film thickness of 14 m.
[1] H. Tsubomura, M. Matsumura, Y. nomura, and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature, 261, 402-403 (1976).
[2] B. O'Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature., 353(6346), 737–740 (1991).
[3] F. D. Rossi, T. Pontecorvo, and T. M. Brown, “Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting,” Applied. Energy., 156, 413-422 (2015).
[4] W. K. Ping, and H. Teng, “Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination,” Physical Chemistry Chemical Physics., 11(41), 9489-9496 (2009).
[5] M. Baghbanzadeh, L. Carbone, P. D. Cozzoli, and C. O. Kappe, “Microwave- assisted synthesis of colloidal inorganic nanocrystals,” Angewandte Chemie International Edition., 50(48), 11312-11359 (2011).
[6] S. Komarneni, R. K. Rajha, and H. Katsuki, “Microwave-hydrothermal processing of titanium dioxide,” Materials Chemistry and Physics., 61(1), 50-54 (1999).
[7] P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. H. Baker, and M. Grätzel, “Enhance the performance of Dye-Sensitized Solar Cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals,” The Journal of Physical Chemistry B., 107(51), 14336-14341 (2003).
[8] S. Ito, T. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Film., 516(14), 4613-4619 (2008).
[9] 蔡晴羽,快速二氧化鈦漿料製程開發及其於染料敏化太陽能電池電極之應用研究,國立成功大學碩士論文 (2014)。
[10] 戴妤娟,以微波溶熱法製備奈米級二氧化鈦及其光催化性質研究,國立成功大學碩士論文 (2012)。
[11] P. S. Shen, Y. C. Tai, P. Chen, and Y. C. Wu, “Clean and time-effective synthesis of anatase TiO2 nanocrystalline by microwave-assisted solvothermal method for dye-sensitized solar cells,” Journal of Power Sources., 247, 444-451 (2014).
[12] U. Diebold, “The surface science of titanium dioxide,” Surface science reports., 48(5), 53-229 (2003).
[13] 陳富亮,最新奈米光觸媒應用技術,林斯頓國際,46-47 (2003)。
[14] G. Li, C. P. Richter, R. L. Milot, L. Cai, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, and V. S. Batista, “Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solarcells,” Dalton Transactions., 45, 10078-10085 (2009).
[15] S. Kambe, S. Nakade, Y. Wada, T. Kitamura, and S. Yanagida, “Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes,” Journal of Materials Chemistry., 12(3), 723–728 (2002).
[16] Z. B. Qin, L. Tan, Z. Q. Liu, S. Chen, J. H. Qin, J. J. Tang, and N. Li, “One-pot synthesis of ultrafine TiO2 nanoparticles with enhanced thermal conductivity for nanofluid applications,” Advanced Powder Technology., 27, 299–304 (2016).
[17] T. Liu, W. Chen, X. Liu, J. Zhu, and L. Lu, “Well-dispersed ultrafine nitrogen-doped TiO2 with polyvinylpyrrolidone (PVP) acted as N-source and stabilizer for water splitting,” Journal of Energy Chemistry., 25, 1–9 (2016).
[18] M. Bhogaita, S. Yadav, A. U. Bhanushali, A. A. Parsola, and R. P. Nalini, “Synthesis and characterization of TiO2 thin films for DSSC prototype,” Materials Today: Proceedings., 3, 2052–2061 (2016)
[19] J. Livage, M. Henry, and C. Sanchez, “Sol-gel chemistry of transition metal oxides,” Progress in solid state chemistry., 18(4), 259-341 (1988).
[20] 張天益,利用溶膠-凝膠法製備鋯鈦酸鉛陶瓷塊材與薄膜之研究,國立成功大學碩士論文 (2007)。
[21] W. J. Dawson, “Hydrothermal synthesis of advanced ceramic powders,” American Ceramic Society Bulletin., 67(10), 1673-1678 (1988).
[22] V. K. LaMer, and R. H. Dinegar, “Theory, production and mechanism of formation of monodispersed hydrosols,” Journal of the American Chemical Society., 72(11), 4847-4854 (1950).
[23] T. Sugimoto, “Underlying mechanisms in size control of uniform nanoparticles,” Journal of colloid and interface science., 309(1), 106-118 (2007).
[24] T. Sugimoto, “Preparation of monodispersed colloidal particles,” Advances in Colloid and Interface Science., 28, 65-108 (1987).
[25] H. Reiss, “The growth of uniform colloidal dispersions,” The Journal of Chemical Physics., 19(4), 482-487 (1951).
[26] M. Niederberger, and H. Cölfen, “Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly,” Physical chemistry chemical physics., 8(28), 3271-3287 (2006).
[27] P. W. Voorhees, “The theory of Ostwald ripening,” Journal of Statistical Physics., 38(1-2), 231-252 (1985).
[28] D. Fairhurst, and R. W. Lee, “Aggregation, Agglomeration-How to Avoid Aggravation When Formulating Particulate Suspensions,” Technology., 8(8), (2008).
[29] C. Ribeiro, C. M. Barrado, E. R. Camargo, E. Longo, and E. R. Leite, “Phase transformation in titania nanocrystals by the oriented attachment mechanism: The role of the pH value,” Chemistry–A European Journal., 15(9), 2217-2222 (2009).
[30] A. S. Barnard, and P. Zapol, “Predicting the Energetics, Phase Stability, and Morphology Evolution of Faceted and Spherical Anatase Nanocrystals,” The Journal of Physical Chemistry B., 108(48), 18435-18440 (2004).
[31] Y. W. Jun, M. F. Casula, J. H. Sim, S. Y. Kim, J. Cheon, and A. P. Alivisatos, “Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals,” Journal of the American Chemical Society., 125(51), 15981-15985 (2003).
[32] Y. W. Jun, J. S. Choi, and J. Cheon, “Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes,” Angewandte Chemie International Edition., 45(21), 3414-3439 (2006).
[33] G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz , and G. D. Will, “Modification of TiO2 for enhanced surface properties: finite Ostwald ripening by a microwave hydrothermal process,” Langmuir., 22(5), 2016-2027 (2006).
[34] Y. C. Wu, and Y. C. Tai, “Effects of alcohol solvents on anatase TiO2 nanocrystals prepared by microwave-assisted solvothermal method,” Journal of nanoparticle research., 15(6), 1-11 (2013).
[35] C. C. Wang, and J. Y. Ying, “Sol−Gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals,” Chemistry of Materials., 11(11), 3113-3120 (1999).
[36] C. S. Kim, B. K. Moon, J. H. Park, S. T. Chung, and S. M. Son, “Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route,” Journal of crystal growth, 254(3), 405-410 (2003).
[37] C. S. Kim, B. K. Moon, J. H. Park, B. C. Choi, and H. J. Seo, “Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant,” Journal of Crystal Growth, 257(3), 309-315 (2003).
[38] D. Chen, F. Huang, Y. B. Cheng, and R. A. Caruso, “Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells,” Advanced Materials., 21(21), 2206-2210 (2009).
[39] H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu, “Anatase TiO2 single crystals with a large percentage of reactive facets,” Nature., 453(7195), 638-641 (2008).
[40] X. H. Yang, H. G. Yang, and C. Li, “Controllable nanocarving of anatase TiO2 single crystals with reactive {001} facets,” Chemistry–A European Journal., 17(24), 6615-6619 (2011).
[41] Y. Gao, H. Wang, J. Wu, R. Zhao, Y. Lu, and B. Xin, “Controlled facile synthesis and photocatalytic activity of ultrafine high crystallinity TiO2 nanocrystals with tunable anatase/rutile ratios,” Applied Surface Science., 294, 36-41 (2014).
[42] 張育誠,研究微波加熱技術在奈米材料之合成、自組裝及分解機構,國立清華大學碩士論文 (2003)。
[43] 蘇裕勝,利用液相組合式合成法合成苯并米雜環分子庫,國立東華大學碩士論文 (2003)。
[44] 紀柏享、楊末雄、孫毓璋,微波消化之方法與應用,中國化學會,56卷,269-284 (1998)。
[45] J. A. Ayllón, A. M. Peiró, L. Saadoun, E. Vigil, X. Domènech, and J. Peral, “Preparation of anatase powders from fluorine-complexed titanium(IV) aqueous solution using microwave irradiation,” Journal of Materials Chemistry., 10(8), 1911-1914 (2000).
[46] J. A. Lewis, “Colloidal Processing of Ceramics,” Journal of the American Ceramic Society., 83(10), 2341-2359 (2000).
[47] J. N. Israelachvili, “Intermolecular and Surface Forces,” second edition, Academic Press (1992).
[48] H. C. Hamaker, “The London—van der Waals attraction between spherical particles,” physica., 4(10), 1058-1072 (1937).
[49] P. C. Hiemenz, “Principles of Colloid and Surface Chemistry,” second edition, Marcel Dekker (1986).
[50] D. H. Everett, “Basic Principles of Colloid Science,” Royal Society of Chemistry (1988).
[51] D. J. Shaw, “Introduction to Colloid and Surface Chemistry,” fourth edition, Butterworths (1992).
[52] R. G. Horn, “Surface Forces and Their Action in Ceramic Materials,” Journal of the American Ceramic Society., 73(5), 1117-1135 (1990).
[53] J. Jiang, G. Oberdörster, and P. Biswas, “Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies,” Journal of Nanoparticle Research., 11(1), 77-89 (2009).
[54] A. Zaban, S. Ferrere, and B. A. Gregg, “Relative energetics at the semiconductor/sensitizing dye/electrolyte interface,” The Journal of Physical Chemistry B., 102(2), 452-460 (1998).
[55] M. A. A. Sadatlu, and N. Mozaffari, “Synthesis of mesoporous TiO2 structures through P123 copolymer as the structural directing agent and assessment of their performance in dye-sensitized solar cells,” Solar Energy., 133, 24-34 (2016).
[56] L. Suhadolnik, I. Jerman, A. Kujan, K. Zagar, M. Krivec, and M. Ceh, “Morphological, optical and electrical characterization of titania-nanotubes-based dye-sensitized solar cells,” Solar Energy., 127, 232-238 (2016).
[57] M. B. Qadir, K. C. Sun, I. A. Sahito, A. A. Arbab, B. J. Choi, S. C. Yi, and S. H. Jeong, “Composite multi-functional over layer: A novel design to improve the photovoltaic performance of DSSC,” Solar Energy Materials and Solar Cells., 140, 141-149 (2016).
[58] S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Solar Energy Materials and Solar Cells., 90(9), 1176-1188 (2006).
[59] M. C. Wu, W. C. Chen, T. H. Lin, K. C. Hsiao, K. M. Lee, and C. G. Wu, “Enhanced open-circuit voltage of dye-sensitized solar cells using Bi-doped TiO2 nanofibers as working electrode and scattering layer,” Solar Energy., 135, 22-28 (2016).
[60] U. T. Pawar, S. A. Pawar, J. H. Kim, and P. S. Patil, “Dye sensitized solar cells based on hydrothermally grown TiO2 nanostars over nanorods,” Ceramics International., 42(7), 8038-8043 (2016).
[61] M. J. Jeng, Y. L. Wung, L. B. Chang, and L. Chow, “Particle size effects of TiO 2 layers on the solar efficiency of dye-sensitized solar cells,” International Journal of Photoenergy (2013).
[62] K. Park, Q. Zhang, D. Myers, and G. Cao, “Charge transport properties in TiO2 network with different particle sizes for dye sensitized solar cells,” ACS applied materials & interfaces., 5(3), 1044-1052 (2013).
[63] Y. Cui, L. Zhang, K. Lv, G. Zhou, and Z. S. Wang, “Low temperature preparation of TiO2 nanoparticle chains without hydrothermal treatment for highly efficient dye-sensitized solar cells,” Journal of Materials Chemistry A., 3(8), 4477-4483 (2015).
[64] X. Zhao, W. Jin, J. Cai, J. Ye, Z. Li, Y. Ma, J. Xie, and L. Qi, “Shape- and size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active {100} and {001} facets,” Advanced Functional Materials., 21(18), 3554-3563 (2011).
[65] X. Wu, Z. Chen, G. Q. Lu, and L. Wang, “Nanosized anatase TiO2 single crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of Dye‐Sensitized Solar Cells,” Advanced Functional Materials., 21, 4167–4172 (2011).
[66] W. Q. Fang, X. Q. Gong, and H. G. Yang, “On the unusual properties of anatase TiO2 exposed by highly reactive facets,” The Journal of Physical Chemistry Letters., 2(7), 725-734 (2011).
[67] J. D. Peng, C. M. Tseng, R. Vittal, and K. C. Ho, “Mesoporous anatase-TiO2 spheres consisting of nanosheets of exposed (001)-facetsfor [Co(byp)3]2+/3+ based dye-sensitized solar cells,” Nano Energy., 22, 136-148 (2016).
[68] X. Q. Gong, and A. Selloni, “Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface,” The Journal of Physical Chemistry B., 109(42), 19560-19562 (2005).
[69] F. D. Angelis, S. Fantacci, A. Selloni, M. K. Nazeeruddin, and M. Grätzel, “Time-dependent density functional theory investigations on the excited states of Ru (II)-dye-sensitized TiO2 nanoparticles: the role of sensitizer protonation,” Journal of the American Chemical Society., 129(46), 14156-14157 (2007).
[70] Q. Wang, J. E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” The Journal of Physical Chemistry B., 109(31), 14945-14953 (2005).
[71] W. T. Wu, S. H. Yang, C. M. Hsu, and W. T. Wu, “Study of graphene nanoflake as counter electrode in dye sensitized solar cells,” Diamond and Related Materials., 65, 91-95 (2016).
[72] I. A. Sahito, K. C. Sun, A. A. Arbab, M. B. Qadir, Y. S. Choi, and S. H. Jeong, “Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell,” Journal of Power Sources., 319, 90-98 (2016).
[73] X. Cui, W. Xu, Z. Xie, and Y. Wang, “High-performance dye-sensitized solar cells based on Ag-doped SnS2 counter electrodes,” Journal of Materials Chemistry A., 4, 1908–1914 (2016).
[74] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” Journal of the American Chemical Society., 115(14), 6382-6390 (1993).
[75] R. X. Dong, S. Y. Shen, H. W. Chen, C. C. Wang, P. T. Shih, C. T. Liu, R. Vittal, J. J. Lin, and K. C. Ho, “A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells,” Journal of Materials Chemistry A., 1(29), 8471-8478 (2013).
[76] C. Wu, L. Jia, S. Guo, S. Han, B. Chi, J. Pu, and L. Jian, “Open-Circuit Voltage Enhancement on the Basis of Polymer Gel Electrolyte for a Highly Stable Dye-Sensitized Solar Cell,” ACS applied materials & interfaces., 5(16), 7886-7892 (2013).
[77] M. Grätzel, “Photoelectrochemical cells,” Nature., 414(6861), 338-344 (2001).
[78] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry., 164(1), 3-14 (2004).
[79] M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorganic chemistry., 44(20), 6841-6851 (2005).
[80] 翁敏航、楊茹媛、管鴻、晁成虎,太陽能電池:原理、元件、材料、製程與檢測技術 (2012)。
[81] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, “Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells,” Progress in photovoltaics: research and applications, 15(7), 603-612 (2007).
[82] 陳恭世,奈米顆粒敏化奈米晶體二氧化鈦之光電效應研究,國立台灣大學碩士論文 (2005)。
[83] 陳韋先,暫態光電壓/光電流量測技術應用於染料敏化太陽能電池之研究,國立成功大學碩士論文 (2012)。
[84] X. Han, Q. Kuang, M. Jin, Z. Xie, and L. Zheng, “Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties,” Journal of the American Chemical Society., 131(9), 3152-3153 (2009).
[85] J. D. Peng, P. C. Shih, H. H. Lin, C. M. Tseng, R. Vittal, V. Suryanarayanan, and K. C. Ho, “TiO2 nanosheets with highly exposed (001)-facets for enhanced photovoltaic performance of dye-sensitized solar cells,” Nano Energy., 10, 212-221 (2014).
[86] J. Fan, W. Cai, and J. Yu, “Adsorption of N719 dye on anatase TiO2 nanoparticles and nanosheets with exposed (001) facets: equilibrium, kinetic, and thermodynamic studies,” Chemistry–An Asian Journal., 6(9), 2481-2490 (2011).
[87] F. Hao, X. Wang, C. Zhou, X. Jiao, X. Li, J. Li, and H. Lin, “Efficient light harvesting and charge collection of Dye-Sensitized Solar Cells with (001) faceted single crystalline anatase nanoparticles,” The Journal of Physical Chemistry C., 116, 19164-19172 (2012).
[88] H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, and G. Q. Lu, “Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets,” Journal of the American Chemical Society., 131(11), 4078-4083 (2009).
[89] G. Li, L. Li, J. B. Goates, and B. F. Woodfield, “High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry,” Journal of the American Chemical Society., 127(24), 8659–8666 (2005).
[90] T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baran, and H. Ratajczak, “IR-analysis of H-bonded H2O on the pure TiO2 surface,” Journal of Molecular Structure., 700(1), 175-181 (2004).
[91] J. Soria, J. Sanz, I. Sobrados, J. M. Coronado, M. D. H. Alonso, and F. Fresno, “Water−hydroxyl interactions on small anatase nanoparticles prepared by the hydrothermal route,” The Journal of Physical Chemistry C, 114(39), 16534-16540 (2010).
[92] S. K. Dhungel, and J. G. Park, “Optimization of paste formulation for TiO2 nanoparticles with wide range of size distribution for its application in dye sensitized solar cells,” Renewable Energy, 35(12), 2776-2780 (2010).
[93] H. Li, Z. Xie, Yu. Zhang, and J. Wang, “The effects of ethyl cellulose on PV performance of DSSC made of nanostructured ZnO pastes,” Thin Solid Films, 518(24), e68-e71 (2010).
[94] K. Fan, M. Liu, T. Peng, L. Ma, and K. Dai, “Effects of paste components on the properties of screen-printed porous TiO2 film for dye-sensitized solar cells,” Renewable Energy, 35(2), 555-561 (2010).
[95] D. Vorkapic, and T. Matsoukas, “Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides,” Journal of the American Ceramic Society., 81(11), 2815-2820 (1998).
[96] D. Vorkapic, and T. Matsoukas, “Solvent Effects in the Deaggregation of Titania Nanoparticles,” KONA Powder and Particle Journal., 18(0), 102-107 (2000).
[97] J. Lin, Y. U. Heo, A. Nattestad, Y. Yamauchi, S. X. Dou, and J. H. Kim, “Mesoporous Hierarchical Anatase for Dye-sensitized Solar Cells Achieving Over 10% Conversion Efficiency,” Electrochimica Acta., 153, 393-398 (2015).
[98] J. Miao, and B. Liu, “Anatase TiO2 microspheres with reactive {001} facets for improved photocatalytic activity,” RSC Advances., 3(4), 1222-1226 (2013).
[99] R. Menzel, A. Duerrbeck, E. Liberti, H. C. Yau, D. McComb, and M. S. P. Shaffer, “Determining the Morphology and Photocatalytic Activity of Two-Dimensional Anatase Nanoplatelets Using Reagent Stoichiometry,” Chemistry of Materials., 25(10), 2137-2145 (2013).
[100] W. Zhao, H. Bala, J. Chen, Y. Zhao, G. Sun, J. Cao, and Z. Zhang, “Thickness-dependent electron transport performance of mesoporous TiO2 thin film for dye-sensitized solar cells,” Electrochimica Acta., 114, 318– 324 (2013).
[101] C. D. M. Donega, “Synthesis and properties of colloidal heteronanocrystals,” Chemical Society Reviews., 40(3), 1512-1546 (2011).
校內:2021-08-01公開