簡易檢索 / 詳目顯示

研究生: 許景淳
Hsu, Ching-Chun
論文名稱: 上而下的控制可以調控空間線索對於雙重目標偵測歷程的影響
Top-down control modulates the cuing effect on the processes of detecting the redundant targets
指導教授: 楊政達
Yang, Cheng-Ta
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系認知科學碩士班
MS in Cognitive Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 39
中文關鍵詞: 注意力決策歷程系統性多因子技術
外文關鍵詞: attention, decision making, system factorial technology
相關次數: 點閱:82下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 眾所皆知地,選擇性注意力在決策歷程上扮演相當重要的角色。然而,過去研究很少探討人們在處理來自多重空間管道的訊息時,注意力是否也會影響到決策歷程。因此本研究結合線索派典及雙重目標偵測作業來探討此議題,並透過操弄線索的有效程度來調節受試者的注意力。結果發現受試者在線索有效性為50%的實驗一中表現出平行自我中止的策略,以及無限到有限的處理容量;而當實驗二將線索有效性轉為100%時,受試者的策略都轉換為序列自我中止的策略,且處理容量也轉變成有限容量。以上結果顯示,在偵測雙重目標時,注意力會影響到處理架構。此外,由於所有受試者實驗後皆回報他們並未察覺兩個實驗中的線索有效性不同,然而實驗結果顯示他們有受到線索有效性的影響,此結果意涵著受試者內隱學習到關於線索有效性的知識,並藉其調整自己的策略。本研究顯示了決策歷程的彈性,並強調了由上而下的控制在選擇策略時的重要性。

    Selective attention has been known to plays an important role in decision making. However, little is known about whether attention can affect the decision process of processing information from spatially independent channels. The current study is conducted to examine the aforementioned issue. We combined the cueing paradigm and the redundant-target detection task. The cue validity was manipulated to modulate the participants’ attention in two experiments. Results showed that when the cue was 50% valid in Experiment 1, the participants adopted parallel self-terminating processing with unlimited to limited capacity. When the cue turned to 100% valid in Experiment 2, all the participants altered to serial self-terminating processing with limited capacity. These results suggested that attention influence the process architecture while detecting the redundant targets. Since all the participants reported that they did not notice the difference of cue validity between the two experiments, the results indicated that the participants implicitly learned the validity and altered their strategy. This study demonstrated the flexibility of the decision mechanism and highlighted the importance of top-down control in selecting a decision strategy.

    Attention and Decision Making 1 Process Characteristics of a Decision Mechanism 4 General Method 6 Participants 6 Apparatus 6 Design, Stimuli, and Procedure 6 Data Analysis 9 Experiment 1 13 Results 13 Discussion 21 Experiment 2 22 Results 22 Discussion 30 General Discussion 31 The coactivation model versus relative saliency hypothesis 31 The top-down control versus bottom-up control 32 Implicit learning of cueing validity 32 Conclusion 34 Reference 35

    Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D., (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113, 700-765.
    Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28-71.
    Dzhafarov, E. N. (1999). Conditionally selective dependence of random variables on external factors. Journal of Mathematical Psychology, 43, 123-157.
    Eidels, A., Houpt, J. W., Altieri, N., Pei, L., & Townsend, J. T. (2011). Nice guys finish fast and bad guys finish last: Facilitatory vs. inhibitory interaction in parallel systems. Journal of Mathematical Psychology, 55, 176-190.
    Fiser, J., & Aslin, R. N. (2005). Encoding multielement scenes: Statistical learning of visual feature hierarchies. Journal of Experimental Psychology: General, 134, 521-537.
    Folk, C.L., Remington, R.W. and Johnston, J.C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030-1044.
    Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535-74
    Green, D.M. & Swets, J.A. (1966). Signal Detection Theory and Psychophysics. New York: Wiley.
    Grice, G. R., Canham, L., & Boroughs, J. M. (1984). Combination rule for redundant information in reaction time tasks with divided attention. Perception & Psychophysics, 35, 451-463.
    Grice, G. R., Canham, L., & Gwynne, J. W. (1984). Absence of a redundant-signals effect in a reaction time task with divided attention. Perception & Psychophysics, 36, 565-570.
    Horwitz, G. D., & Newsome, W. T. (2001). Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task. Journal of Neurophysiology, 86, 2543-58
    Kujala, J. V., & Dzhafarov, E. N. (2008). Testing for selectivity in the dependence of random variables on external factors. Journal of Mathematical Psychology, 52, 128-144.
    Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14(2), 247-279.
    Miller, J. (1986). Timecourse of coactivation in bimodal divided attention. Attention, Perception, & Psychophysics, 40(5), 331-343.
    Miller, J. (1991). Channel interaction and the redundant-targets effect in bimodal divided attention. Journal of Experimental Psychology: Human Perception and Performance, 17(1), 160-169.
    Miniussi, C., Girelli, M., & Marzi, C. A. (1998). Neural Site of the Redundant Target Effect: Electrophysiological Evidence. Journal of Cognitive Neuroscience, 10(2), 216-230.
    Mordkoff, J., & Yantis, S. (1991). An interactive race model of divided attention. Journal of Experimental Psychology: Human Perception and Performance, 17(2), 520-538.
    Mordkoff, J., & Yantis, S. (1993). Dividing attention between color and shape: Evidence of coactivation. Perception & Psychophysics, 53(4), 357-366.
    Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental
    Psychology, 32, 3-25.
    Ratcliff, R., & Rouder, J. N. (2000). A diffusion model account of masking in letter
    identification. Journal of Experimental Psychology: Human Perception and Performance, 26, 127-140.
    Schweickert, R., Giorgini, M., & Dzhafarov, E. (2000). Selective influence and response time cumulative distribution functions in serial-parallel task networks. Journal of Mathematical Psychology, 44, 504-535.
    Shadlen, M.N. & Newsome, W.T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86, 1916-1936.
    Smith, P. L., Ratcliff, R., & Wolfgang, B. J. (2004). Attention orienting and the time course of perceptual decisions: Response time distributions with masked and unmasked displays. Vision Research, 44, 1297-1320
    Smith, P. L., & Ratcliff, R. (2009). An integrated theory of attention and decision making in visual signal detection. Psychological Review, 116, 283–317.
    Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652-654.
    Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276-315.
    Theeuwes, J. (1991). Exogenous and endogenous control of attention: The effect of
    visual onsets and offsets. Perception & Psychophysics, 49, 83-90.
    Theeuwes, J. (1992). Perceptual selectivity for colour and form. Perception and
    Psychophysics, 51, 599-606.
    Theeuwes, J. (1994a). Stimulus-driven capture and attentional set: Selective search for colour and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20, 799-806.
    Theeuwes, J. (1994b). Endogenous and exogenous control of visual selection. Perception, 23, 429-440.
    Thompson, K. G., Hanes, D. P.,Bichop, N. P., & Schall, J. D. (1996). Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. Journal of Neurophysiology, 76, 4040-4055.
    Townsend, J. T. (1990). Serial vs. parallel processing: Sometimes they look like Tweedledum and Tweedledee but they can (and should) be distinguished. Psychological Science, 1, 46-54.
    Townsend, J. T. (2001). A clarification of self-terminating versus exhaustive
    variances in serial and parallel models. Perception & Psychophysics,
    63, 1101-1106.
    Townsend, J. T., & Ashby, F. G. (1983). The stochastic modeling of elementary psychological processes. New York, NY: Cambridge University Press.
    Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of elementary
    perception: An investigation of parallel, serial, and coactive theories. Journal
    of Mathematical Psychology, 39(4), 321-359.
    Townsend, J. T., & Thomas, R. D. (1994). Stochastic dependencies in parallel and serial models: Effects on systems factorial interactions. Journal of Mathematical Psychology, 38(1), 1-34.
    Ulrich, R., & Miller, J. (1997). Tests of race models for reaction time in experiments with asynchronous redundant signals. Journal of Mathematical Psychology, 41, 367-381.
    van Lamsweerde, A. E., & Beck, M. R. (2011). The change probability effect: Incidental learning, adaptability, and shared visual working memory
    resources. Consciousness and Cognition, 20, 1676-1689.
    Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic
    Bulletin & Review, 7(3), 424-465.
    Van Zandt, T., & Townsend, J. T. (1993). Self-terminating versus exhaustive
    processes in rapid visual and memory search: An evaluative review.
    Perception & Psychophysics, 53, 563-580.
    Wenger, M. J., & Gibson, B. S. (2004). Using hazard functions to assess changes in processing capacity in an attentional cuing paradigm. Journal of Experimental Psychology: Human Perception and Performance, 30, 708-719.
    Yang, C.-T. (2011). Relative saliency in change signals affects perceptual comparison and decision processes in change detection. Journal of Experimental Psychology: Human Perception & Performance, 37, 1708-1728.
    Yang, C.-T., Hsu, Y.-F., Huang, H.-Y., & Yeh, Y.-Y. (2011). Relative salience affects the process of detecting changes in orientation and luminance. Acta Psychologica, 138, 377-389.

    下載圖示 校內:2015-09-13公開
    校外:2016-09-13公開
    QR CODE