簡易檢索 / 詳目顯示

研究生: 官俊廷
Kuan, Chun-Ting
論文名稱: 在STAR實驗中尋找X(1835)衰變成質子與反質子
Searching for X(1835) decay to protons and antiprotons in the STAR experiment
指導教授: 邱奕儂
Chiu, I-Non
共同指導教授: 楊毅
Yang, Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 82
中文關鍵詞: 反質子氫X(1835)STAR實驗
外文關鍵詞: Antiprotonic hydrogen, X(1835), STAR experiment
相關次數: 點閱:82下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 北京頻譜合作團隊於2003 年透過北京電子正子對撞機首次在J/ψ介子衰變成1顆光子、1 顆質子與1 顆反質子之事件中由2 顆質子衰變模式重建的質量分布上大約1.859 GeV/c^2質量單位的位置發現1 個未知且接近數據邊界的訊號,第3代北京頻譜合作團隊(Beijing Spectrometer III)與CLEO合作組織的結果被認為這一結構是由X(1835)導致,但結果依然有爭議。某些理論指出X(1835)可能為一種質子與反質子的束縛態(Protonium)。因此,在該質量區間研究反質子氫可能將會為探索新物理提供一條途徑。這項研究將演示利用位於相對論性重離子對撞機(RHIC)上的STAR 探測器於質心能量為200 GeV 的2018年Zr+Zr和Ru+Ru粒子對撞數據中尋找來自J/ψ → e^+e^-X(p ̄p)事件的X(1835)衰變為2顆質子的進展。

    The Beijing Spectrometer (BES) collaboration first discovered an unknown near threshold signal at about 1.859 GeV/c^2 in the mass distribution for the 2 protons decay mode in J/ψ decaying to one photon, one proton, and one antiproton in the Beijing Electron–Positron Collider during 2003. The results from Beijing Spectrometer III (BESIII) and CLEO collaborations suggested this structure as X(1835), however, the results are still controversial. Some theories indicated that X(1835) might be a pp bound state (Antiprotonic hydrogen). Therefore, studying the antiprotonic hydrogen in this mass region might provide a way to explore new physics. This study will present the progress of the search for X(1835) decaying to 2 protons in J/ψ decaying to e^+e^-X(p ̄p) channel using the Zr+Zr and Ru+Ru collisions at 200 GeV data collected in 2018 by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).

    Abstract in Chinese i Abstract in English ii Acknowledgements iii Contents iv List of Tables vii List of Figures viii 1 Introduction 1 2 Theoretical overview 3 2.1 Particle and Antiparticle 3 2.2 The exotic atom - Protonium 4 2.3 The study of unknown resonance X(1835) 4 3 Experimental instrument 9 3.1 Relativistic Heavy Ion Collider (RHIC) 9 3.2 Solenoid Tracker at RHIC (STAR) experiment 12 3.2.1 Magnet 12 3.2.2 Time Projection Chamber 13 3.2.3 Time-of-Flight (ToF) 16 3.2.4 Barrel Electromagnetic Calorimeter (BEMC) 18 4 Data analysis 20 4.1 Data Set 22 4.2 Basic Selections 23 4.3 Main Object 23 4.4 Analysis Procedure 24 4.5 Particle Identification 25 4.5.1 Protons Identification 26 4.5.2 Electrons Identification 28 4.6 Mass distributions 31 4.6.1 J/ψ decay to dielectron and X(p ̄p) 31 4.6.2 X(1835) decay to protons and antiprotons 34 4.6.3 Branching ratio of J/ψ → e^+e^-X(p ̄p) 37 4.7 Efficiency Correction 38 4.7.1 PID efficiency 39 4.7.2 TPC, ToF, and BEMC Efficiency 43 4.8 J/ψ Kinematic Acceptance 46 4.9 Corrected Mass Distributions 48 4.9.1 J/ψ decay to dielectron and X(p ̄p) 48 4.9.2 X(1835) decay to protons and antiprotons 49 4.9.3 J/ψ decay to dielectron 51 4.10 Upper limit of branching ratio of J/ψ → e^+e^-X(p ̄p) 52 4.10.1 The number of J/ψ → e^+e^-X(p ̄p) and its statistical uncertainty 52 4.10.2 Systematic Uncertainty of the number of J/ψ → e^+e^-X(p ̄p) 53 4.10.3 Result 57 5 The unknown structure in a mass distribution 59 5.1 η meson decay to dielectron 59 5.2 Data analysis 62 6 Conclusion and Future works 65 References 66

    [1] J. Z. Bai et al., “Observation of a near threshold enhancement in the mass spectrum from radiative J/ψ → γp¯p ,” Phys. Rev. Lett., vol. 91, p. 022001, 2003.
    [2] S. Navas et al., “Review of particle physics,” Phys. Rev. D, vol. 110, p. 030001, 2024.
    [3] B. J. Liu, “Recent BES results on hadron spectroscopy,” Chinese Physics C, vol. 34, no. 6, p. 638, 2010.
    [4] M. Ablikim et al., “Observation of a resonance in J/ψ → γπ^+π^−η′,” Phys. Rev. Lett., vol. 95, p. 262001, 2005.
    [5] B. Q. Ma, Protonium: Discovery and prediction. arXiv:2406.19180, 2024.
    [6] C. D. Anderson, “The positive electron,” Phys. Rev., vol. 43, p. 491, 1933.
    [7] O. Chamberlain et al., “Observation of antiprotons,” Phys. Rev., vol. 100, p. 947, 1955.
    [8] J. Jaros, S. Nagamiya, and H. Steiner, “Owen chamberlain,” Physics Today, vol. 59, no. 8, pp. 70–72, 2006.
    [9] C. J. Batty, “Antiprotonic-hydrogen atoms,” Rep. Prog. Phys., vol. 52, p. 1165, 1989.
    [10] E. Fermi and C. N. Yang, “Are mesons elementary particles,” Phys. Rev., vol. 76, p. 1739, 1949.
    [11] N. Zurlo et al., “Evidence for the production of slow antiprotonic hydrogen in vacuum,” Phys. Rev. Lett, vol. 97, p. 153401, 2006.
    [12] K. Abe et al., “Observation of B± → p¯pK± ,” Phys. Rev. Lett, vol. 88, p. 181803, 2002.
    [13] K. Abe et al., “Observation of ¯B 0 → p¯pD(∗)0 ,” Phys. Rev. Lett, vol. 89, p. 151802, 2002.
    [14] J. L. Rosner, “Low-mass baryon-antibaryon enhancements in B decays,” Phys. Rev. D, vol. 68, p. 014004, 2003.
    [15] B. S. Zou and H. C. Chiang, “One-pion-exchange final-state interaction and the p¯p near threshold enhancement in J/ψ → γp¯p decays,” Phys. Rev. D, vol. 69, p. 034004, 2004.
    [16] B. Kerbikov, A. Stavinsky, and V. Fedotov, “Model-independent view on the low-mass proton-antiproton enhancement,” Phys. Rev. C, vol. 69, p. 055205, 2004.
    [17] X. H. Liu, Y. J. Zhang, and Q. Zhao, “A possible mechanism for producing the threshold enhancement in J/ψ → γp¯p,” Phys. Rev. D, vol. 80, p. 034032, 2009.
    [18] M. L. Yan and S. Li, “Baryonium with a phenomenological Skyrmion-type potential,” Phys. Rev. D, vol. 72, p. 034027, 2005.
    [19] S. Jin and X. Shen, “Highlights of light meson spectroscopy at the BESIII experiment,” Natl. Sci. Rev, vol. 8, no. 11, p. nwab198, 2021.
    [20] A. Datta and P. J. O' Donnell, “A new state of baryonium,” Phys. Lett. B, vol. 567, p. 273–276, 2003.
    [21] M. R. Pahlavani, J. Sadeghi, and R. Morad, “Binding energy of a holographic deuteron and tritium in anti-de-sitter space/conformal field theory (AdS/CFT),” Phys. Rev. C, vol. 82, p. 025201, 2010.
    [22] M. García-León, Principles of Particle Accelerators. Springer Cham Switzerland, 2019.
    [23] L. Evans and P. Bryant, “LHC Machine,” JINST, vol. 3, p. S08001, 2008.
    [24] M. Harrison et al., “ RHIC project overview,” Nucl. Instrum. Methods Phys. Res. A, vol. 499, p. 235–244, 2003.
    [25] M. Abdulhamid et al., “Results on elastic cross sections in proton-proton collisions at √s= 510 GeV with the STAR detector at RHIC ,” Phys. Lett. B, vol. 852, p. 138601, 2024.
    [26] S. Nagaitsev, “Electron-Ion Collider status: Design and construction,” BNL, NY, US, p. 14, 2024.
    [27] T. Ullrich, “Requirements and R & D for detectors at the future Electron-Ion Collider,” Nucl. Instrum. Methods Phys. Res. A, vol. 1039, p. 167041, 2022.
    [28] C. Alice, “A large-area SiPM readout plane for the ePIC-dRICH detector at the EIC: Realisation and beam test results,” Nucl. Instrum. Methods Phys. Res. A, vol. 1068, p. 169669, 2024.
    [29] K. H. Ackermann, “STAR detector overview,” Nucl. Instrum. Methods Phys. Res. A, vol. 499, p. 624–632, 2003.
    [30] M. A. Green, “A large superconducting thin solenoid for the STAR experiment at RHIC,” IEEE Trans. Appl. Supercond, vol. 3, no. 1, pp. 104–106, 1993.
    [31] M. Anderson et al., “The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC,” Nucl. Instr. and Meth. A, vol. 499, pp. 703–712, 2003.
    [32] J. W. Harris, “Results from the STAR experiment,” Nucl. Phys. A, vol. 698, no. 1 - 4, pp. 64–77, 2002.
    [33] H. Bethe, J. Ashkin, and E. Segré, “Experimental nuclear physics,” J. Wiley, NY, US, p. 253, 1953.
    [34] H. Bichsel, “A method to improve tracking and particle identification in TPCs and silicon detectors,” Nucl. Instrum. Methods Phys. Res. A, vol. 562, no. 1, pp. 154–197, 2006.
    [35] J. K. Adkins et al., “Measurements of dielectron production in Au + Au collisions at √sNN = 200 GeV from the STAR experiment,” Phys. Rev. C, vol. 92, p. 024912, 2015.
    [36] W. J. Llope et al., “The TOFp/pVPD time-of-flight system for STAR,” Nucl. Instrum. Methods Phys. Res. A, vol. 522, pp. 252–273, 2004.
    [37] L. Adamczyk et al., “Measurement of the W → eν and Z/γ∗ → e^+e^- production cross sections at mid-rapidity in proton-proton collisions at √s = 500 GeV,” Phys. Rev. D, vol. 85, p. 092010, 2012.
    [38] M. Beddo et al., “The STAR barrel electromagnetic calorimeter,” Nucl. Instrum. Methods Phys. Res. A, vol. 499, pp. 725–739, 2003.
    [39] B. I. Abelev et al., “Inclusive π_0, η, and direct photon production at high transverse momentum in p + p and d + Au collisions at √ =200 GeV ,” Phys. Rev. C, vol. 81, p. 064904, 2010.
    [40] G. J. Marr et al., “Ion Collider Precision Measurements With Different Species,” 10th Int. Particle
    Accelerator Conf., vol. IPAC'19, pp. 28–32, 2019.
    [41] M. Ablikim et al., “Observation of J/ψ Electromagnetic Dalitz Decays to X(1835), X(2120), and X(2370),” Phys. Rev. Lett., vol. 129, p. 022002, 2022.
    [42] T. Nakada, “Study of event mixing and its application to the extraction of resonance signals,” Nucl. Instrum. Methods Phys. Res., vol. 225, pp. 367–377, 1984.
    [43] X. Luo and T. Nonaka, “Efficiency correction for cumulants of multiplicity distributions based on track-by-track efficiency,” Phys. Rev. C, vol. 99, p. 044917, 2019.
    [44] J. Goh et al., “CMS RPC efficiency measurement using the tag-and-probe method,” JINST, vol. 14, no. 10, p. C10020, 2019.
    [45] R. Brun et al., “GEANT: detector description and simulation tool,” CERN, vol. CERN-W-5013, 1993.
    [46] L. Adamczyk et al., “J/ψ polarization in p + p collisions at √s = 200 GeV in STAR,” Phys. Lett. B, vol. 739, p. 180–188, 2014.
    [47] A. Hayrapetyan et al., “Observation of the rare decay of the meson to four muons,” Phys. Rev. Lett., vol. 131, p. 091903, 2023.
    [48] A. Kupść, “What is interesting in η and η'meson decays,” AIP Conference Proceedings, vol. 950, no. 1, pp. 165–179, 2007.
    [49] F. Ambrosino et al., “Observation of the rare η → e^+e^-e^+e^- decay with the KLOE experiment,”Phys. Lett. B, vol. 702, pp. 324–328, 2011.
    [50] R. Abegg et al., “Measurement of the branching ratio for the decay η → μ^+μ^- ,” Phys. Lett. D, vol. 50, no. 1, pp. 92–103, 1994.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE