簡易檢索 / 詳目顯示

研究生: 蔡明峰
Tsai, Ming-Fong
論文名稱: 奈米金屬材料之合成與生醫治療應用
Metal Nano-Materials Synthesis and Biomedical Therapy Applications
指導教授: 葉晨聖
Yeh, Cheng-Sheng
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 150
中文關鍵詞: 伽凡尼取代反應回填中空結構十六烷基三甲基溴化銨(CTAB)金屬轉換第二近紅外光窗口棒狀核殼結構癌症光熱治療四氧化三鐵奈米粒子照光斷鍵cage抗癌藥物MTX藥物釋放
外文關鍵詞: galvanic replacement reaction, backfilled into hollowed structures, Cetyltrimethylammonium bromide (CTAB), metal conversion, second NIR window, rod-in-shell, photothermal cancer therapy, Fe3O4 nanoparticles, photo cleavage cage, anti-cancer drug MTX, drug release.
相關次數: 點閱:150下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從兩種金屬之間的氧化還原電位之差,伽凡尼取代反應為已知不可逆的過程,可由經由反應合成出不同形貌的中空奈米結構,在伽凡尼取代反應下,導致連續性的腐蝕,且同時在過度的氧化之下,而導致中空結構的塌陷;我們展示實心銀奈米結構以伽凡尼取代反應,經由中空的框架轉換成實心金奈米結構,且在沒有任何形態破壞中的的生長,我們報導了各種形狀,如圓盤,十面體,棒,三角板,球,和箔片,從厚度<10奈米到5 mm與 4 mm2面積,直接經由反應將銀組成的材料,成功的轉換成金的材料,而能夠成功的轉換,全有賴於金屬前驅物可降低還原速率,於第一階段溶出初始的銀(伽凡尼取代反應),接著金開始回填到中空的結構中,十六烷基三甲基溴化銨(CTAB)界面活性劑,為此實驗中一個關鍵的參數,與金屬鹽前驅物相互作用形成阻礙金屬還原的錯合物,此外,我們證明將固體銀箔以及銅箔(厚度10 mm),成功的轉換成具有閃亮金屬光澤的金箔。
    利用近紅外光(NIR)的雷射輻射能,作為癌症的光熱治療,是一種新興的治療方式;在我們所知的近紅外光區域,具有兩處生物的透明窗口,波長位置分別位於650-950 nm(第一近紅外光窗口)和1000-1350 nm(第二近紅外光窗口),可經由組織傳送得到最佳的低散射與能量的吸收,如此可提供組織最大輻射穿透及減少自體螢光。到目前為止,經由不斷努力的結果,得到多種的方法,使奈米材料的吸收波長位移到近紅外區域的650-950 nm,作為光誘導治療研究。然而,在近紅外區域具有吸收且小於100奈米的材料,在第二近紅外光區具有吸收的材料更少。在這個報告中我們使用金奈米棒,設計作為小於100奈米的棒狀核殼(撥浪鼓狀)的結構,此結構訂製成感應第一和第二的近紅外光窗口,做為進行熱療為基礎的治療。在體外實驗部分的結果,清楚地顯示以近紅外光熱,能夠很有效率的破壞癌細胞,且顯示出大量的細胞受損範圍,超越雷射光照射的範圍。具有這種顯著現象的棒狀核殼結構,是一種很有前途的熱療劑,可使用一個連續波長為808 nm(第一窗口)的近紅外光或波長為1064 nm(第二窗口)的近紅外光之二極體雷射活化產生光熱,使體內的腫瘤實體脫落。我們量身定制的棒狀核殼結構,藉由改變金奈米棒(核)與金銀合金奈米殼之間的間隙距離,所產生的紫外光-可見光-近紅外光光譜,進行評估所使用的波長為1064 nm之二極體雷射的治療效果。而在第一個近紅外窗口,所使用的波長為808 nm二極體雷射光將實體腫瘤脫落,棒狀核殼奈米粒子表現出比金奈米棒更有效的抗癌療效。
    利用熱裂解反應的方式來合成超順磁性,且形貌為斜截八面體的四氧化三鐵奈米粒子,接著再進一步以配位體交換的方法來進行表面改質,將末端為胺基的PEG分子包覆上四氧化三鐵奈米粒子,接著以前面PEG包覆所外露的胺鍵,藉由EDC/ NHS的前驅合成方式鍵結修飾上開關分子cage(2 - 硝基苯基甘氨酸),然後再以EDC/ NHS的前驅合成方式鍵結修飾上抗癌藥物MTX,形成Fe3O4@ PEG-cage-MTX奈米粒子(構想圖3-1),在Fe3O4@PEG-cage-MTX的奈米粒子上所修飾的開關分子cage與MTX分子,開關分子cage經紫外光照射後,會導致Fe3O4@PEG-cage與MTX分子間的鍵結斷裂,而MTX藥物分子即可藉由還原葉酸載體(RFC)傳輸到腫瘤細胞,產生胞吞作用,因此,失去與MTX藥物分子連結的Fe3O4@PEG-cage奈米顆粒,在無外部磁場作用下,將隨著血液進行循環,而抗癌藥物MTX經由還原葉酸載體(RFC)為路徑而達到胞吞作用,通過惡性腫瘤細胞膜而進入細胞開始引起細胞毒性,導致細胞的死亡。

    Based on the difference in the redox potentials between two metal species, the galvanic replacement reaction is known to create an irreversible process to generate hollow nanostructures in a wide range of shapes. In the context of galvanic replacement reaction, continuing etching leads to the general collapse of the hollow structures because of the excess amount of oxidizing agent. We demonstrate the growth of solid nanostructures from a hollow frame-like architecture in the course of a galvanic replacement reaction without any morphology destruction. We report the successful composition transformation of solid Ag with a wide range of shapes, such as plate, decahedron, rod, prism, sphere, and foil, from as thin as <10 nm up to 5 mm and with an area of 4 mm2, to their solid Au counterparts using straightforward chemical reactions. The successful conversion process relies on a decrease in the reduction rate of the metallic precursor to initiate dissolution of Ag in the first stage (a galvanic replacement reaction), then a subsequent backfilling of Au into the hollowed-out structures. Cetyltrimethylammonium bromide (CTAB) surfactant, a key parameter, interacts with metal salt precursor to form a complex species that retards metal reduction. In addition, we demonstrate conversion of solid nano-Ag to solid nano-Pd as well as of Cu foil (10 mm thick) to shiny Au foil.
    Photothermal cancer therapy using near-infrared (NIR) laser radiation is an emerging treatment. In the NIR region, two biological transparency windows are located in 650 950 nm ( first NIR window) and 1000 1350 nm (second NIR window) with optimal tissue transmission obtained from low scattering and energy absorption, thus providing maximum radiation penetration through tissue and minimizing auto fluorescence. To date, intensive e ff ort has resulted in the generation of various methods that can be used to shift the absorbance of nanomaterials to the 650 950 nm NIR regions for studying photo- induced therapy. However, NIR light absorbers smaller than 100 nm in the second NIR region have been scant. We report that a Au nanorod (NR) can be designed with a rod-in-shell (rattle-like) structure smaller than 100 nm that is tailored to be responsive to the first and second NIR windows, in which we can perform hyperthermia-based therapy. In vitro performance clearly displays high efficacy in the NIR photothermal destruction of cancer cells, showing large cell-damaged area beyond the laser-irradiated area. This marked phenomenon has made the rod-in-shell structure a promising hyperthermia agent for the in vivo photothermal ablation of solid tumors when activated using a continuous-wave 808 m ( first NIR window) or a 1064 nm (second NIR window) diode laser. We tailored the UV-vis-NIR spectrum of the rod-in-shell structure by changing the gap distance between the Au NR core and the Au/Ag nanoshell, to evaluate the therapeutic effect of using a 1064 nm diode laser. Regarding the first NIR window with the use of an 808 nm diode laser, rod-in-shell particles exhibit a more effective anticancer efficacy in the laser ablation of solid tumors compared to Au NRs.
    The thermal decomposition reaction to synthesis super-paramagnetic Fe3O4 truncated octahedral nanoparticles, further approach to ligand exchange for surface modification, the amine-terminated PEG molecules coated with Fe3O4 nanoparticles (NPs). Follow through formation of amide bonds by EDC / NHS conjugation with cage molecular(2-nitrophenyl glycine), and then conjugation with anti-cancer drug MTX to formulated Fe3O4@PEG-cage-MTX NPs. The cage and MTX molecular on the Fe3O4@PEG-cage-MTX NPs that MTX drug molecular would through RFC transferred for tumor cells endocytosis, and cage molecular after irradiation with UV light would cleavage Fe3O4@PEG bond with MTX (Scheme 1). Thus, disconnect bonding of the Fe3O4@PEG NPs without external magnetic field to attract, would circulation with blood. Anticancer drug MTX were through to malignant tumor membranes, could lead to cytotoxicity after endocytosis via reduced folate carrier (RFC) pathway.

    摘 要 ….I Abstract III 謝 誌 ….VI 目 錄 VIII 表 目 錄 XI 圖 目 錄 XII 第一章 緒論 1 1.1 何謂奈米科學 1 1.2 金屬奈米粒子的基本性質 3 1.3 金屬奈米粒子的表面電漿共振 5 1.4 金屬奈米粒子的製備 5 1.4.1氧化還原反應 6 1.4.2伽凡尼取代反應(Galvanic Replacement Reaction) 7 1.5 金屬奈米粒子的穩定性 9 1.6 金屬奈米粒子的表面修飾 10 1.7 奈米科技與生物醫學的結合 11 1.8 金屬奈米粒子應用於癌細胞治療 13 1.8.1典型癌症治療方式 14 1.8.2光熱癌細胞治療法 15 1.8.3適用於光熱治療方法之金奈米材料 16 1.9 磁性奈米粒子 20 1.10氧化鐵磁性奈米粒子 21 1.11磁性奈米粒子的製備方法 22 1.12磁性奈米粒子在生物醫學的應用 23 1.12.1典型癌症治療方式..……………………………………………… 25 1.13功能化設計之複合型奈米材料 25 第二章 以一鍋式伽凡尼置換反應將銀奈米材料從實心到中空再回填成實心金奈米材料的轉換過程 27 2.1研究動機與目的 28 2.2 實驗與步驟 29 2.2.1藥品 29 2.2.2儀器 29 2.2.3銀奈米圓盤的合成及轉換成為金奈米圓盤 30 2.2.4銀奈米十面體的合成及轉換為金奈米十面體 32 2.2.5金奈米棒(Au NRs)的合成,並以銀殼包覆金奈米棒(Au NR@Ag),隨後將其轉換成長為金奈米棒 33 2.2.6金奈米圓球(13 nm Au NPs)的合成,並以銀殼包覆金奈米圓球(Au NP@Ag),隨後將其轉換成長為金奈米粒子 34 2.2.7將銀箔(或銅箔)轉換成金箔 35 2.3 結果與討論 36 2.3.1銀奈米材料轉換成金奈米材料的結構形貌、組成、及光譜分析 36 2.3.2轉換銀奈米十面體粒子、銀殼包覆金奈米棒(核殼)、銀奈米三角板、及銀殼包覆金奈米圓球(核殼)成為金的奈米十面體粒子、奈米棒、奈米三角板、及奈米球 41 2.3.2-1銀奈米十面體粒子 41 2.3.2-2銀殼包覆金奈米棒 42 2.3.2-4銀殼包覆金奈米圓球 42 2.4 結論 43 第三章 以金奈米棒設計作為第一及第二生物近紅外光窗口的光吸收劑進行體內光熱治療 70 3.1研究動機與目的 71 3.2實驗與步驟 73 3.2.1藥品 73 3.2.2儀器 74 3.2.3金奈米棒的製備 75 3.2.4合成銀殼包覆金奈米棒 76 3.2.5合成棒狀核殼結構奈米粒子 76 3.2.6棒狀核殼奈米粒子修飾聚乙二醇 77 3.2.7光熱轉換下的升溫曲線 77 3.2.8細胞的培養 78 3.2.9細胞毒性分析 78 3.3結果與討論 78 3.3.1棒狀核殼結構奈米粒子的合成與鑑定 78 3.3.2棒狀核殼結構奈米粒子對紫外光-可見光-近紅外光的理論模擬 80 3.3.3在體外和體內的毒性評價實驗 82 3.3.4在體外和體內的光熱研究 84 3.4結論 87 第四章 發展具有光照發射、主動標靶、與磁場控制,隨插即用功能化四氧化三鐵奈米粒子 104 4.1研究動機與目的 105 4.2實驗部分 109 4.2.1 藥品 109 4.2.2 儀器 110 4.2.3 Fe3O4奈米粒子的合成 112 4.2.4 Fe3O4奈米粒子的表面修飾 113 4.2.5 Fe3O4@PEG奈米粒子與Cage分子的鍵結修飾 113 4.2.6 Fe3O4@PEG-cage與Methotrexate (MTX)的修飾鍵結 114 4.2.7 Methotrexate的硫醇化合成(SH-MTX) 114 4.2.8 Fe3O4@PEG-EDA奈米粒子與SH-MTX的修飾鍵結 114 4.2.9生物體外Fe3O4@ PEG-cage-MTX奈米粒子經光裂解抗癌藥物MTX的HeLa Cells的胞吞研究 114 4.2.10光照Fe3O4@PEG-cage- MTX奈米粒子的細胞活性評估 115 4.2.11使用雷射共軛焦掃描式電子顯微鏡觀察加入Fe3O4@PEG-cage- MTX奈米粒子後HeLa Cells的細胞影像 115 4.3 結果與討論 116 4.3.1超順磁性的Fe3O4@oleic acid奈米粒子的合成與修飾到Fe3O4@PEG-cage-MTX奈米粒子的鑑定 116 4.3.2 Fe3O4@oleic acid修飾到Fe3O4@PEG-S=S-MTX的合成與鑑定 118 4.3.3在生物體外和生物體內的光切割MTX藥物投遞評估 119 4.3.4生物體內的光動治療腫瘤小鼠 121 4.3.5 Fe3O4@PEG -cage-MTX奈米粒子的生物分佈 122 4.4 結論 123 第五章 參考文獻 137 自 述 ….148 附 錄 ….149

    Koga, K.; Ikeshoji, T.; Sugawara, K.; Phys. Rev. Lett., 2004, 92, 1155071-1155074.
    2. Vitos, L.; Johansson, B.; Kollár, J.; Phys. Rev. B., 2000, 62, R11957- R11960.
    3. Schimid, G.; “Clusters and Colloids”, From Theory to Application, VCH: New York, 1994.
    4. Link, S.; Wang, Z. L.; El-Sayed, M. A.; J. Phys. Chem. B., 1999, 103, 3529-3533.
    5. Alexandridis, P.; Chem. Eng. Technol., 2011, 34, 15–28.
    6. Sardar, R.; Funston, A. M.; Mulvaney, P.; Murray R. W.; Langmuir, 2009, 25, 13840–13851.
    7. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., J Phys Chem B. 2005, 109, 13857-13870.
    8. Reetz, M. T.; Helbig, W., J. Am. Chem. Soc. 2002, 116, 7401-7402.
    9. Sun, Y.; Mayers, B.; Xia, Y., Adv. Mater. 2003, 15, 641-646.
    10. Marek, G.; Jorge, P. J.; Paul, M.; Luis, M. L. M.; Chem. Soc. Rev., 2008, 37, 1783-1791.
    11. Nair, L. S.; Laurencin, C. T.; Polym, P.; Sci. 2007, 32, 762–798.
    12. Seal, B. L.; Otero, T. C.; Panitch, A.; Mater. Sci. Engin. R. Rep., 2001, 34, 147–230.
    13. Langer, R.; Peppas, N. A.; Bioengin. Food and Na. Prod. 2003, 49, 2990– 3006.
    14. Kuo, Y. C.; Jen, C. P.; Chen, Y. H.; Su, C. H.; Tsai, S. H.; Yeh, C. S., J. Nanosci. Nanotechno., 2006, 6, 95-100.
    15. Shieh, D. B.; Su, C. H.; Chang, F. Y.; Wu, Y. N.; Su, W. C.; Hwu, J. R.; Chen, J. H.; Yeh, C. S., Nanotechnology, 2006, 17, 4174-4182.
    16. Iijima, S., Nature, 1991, 354, 56-58.
    17. New, R. R. C., Oxford University Press: Oxford, U.K.: 1990.
    18. (a) El-Sayed, M. A.; Accounts Chem. Res., 2001, 34, 257-264; (b) Link, S.; El-Sayed, M. A., J. Phys. Chem. B, 1999, 103, 8410-8426.
    19. Kennedy, L. C.; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A.; Small., 2011, 17,169-183.
    20. Urbanska, K.; Romanowska-Dixon, B.; Matuszak, Z.; Oszajca, J.; Nowak-Sliwinska, P.; Stochel, G., Acta Biochimica Polonica, 2002, 49, 387-391.
    21. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., J. Phys. Chem. B, 2006, 110, 7238-7248.
    22. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., J. Am. Chem. Soc., 2006, 128, 2115-2120.
    23. Loo, C.; Lin, A.; Hirsch, L.; Lee, M. H.; Barton, J.; Halas, N.; West, J.; Drezek, R., Technol. Cancer Res. Treat., 2004, 3, 33-40.
    24. Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R., Nano Letters, 2005, 5, 709-711.
    25. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L., Nano Letters, 2007, 7, 1929-1934.
    26. Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N., Accounts Chem. Res., 2008, 41, 1587-1595.
    27. Chen, J. Y.; Wang, D. L.; Xi, J. F.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. Y.; Zhang, H.; Xia, Y. N.; Li, X. D., Nano Letters, 2007, 7, 1318-1322.
    28. Blakemore, R. P.; Frank, R. B;. Sci Am, 1971, 245, 58-65.
    29. E. J. W. Verwey and E. L. Heilmann, J. Chem. Phys., 1947, 15, 174-180.
    30. (a)Reynolds, C. H.; Annan, N.; Beshah, K.; Huber, J.H.; Shaber, S. H.; Lenkinski, R. E.; Wortman, J. A.; J. Am. Chem. Soc., 2000, 122, 8940-8945. (b) Lübbe, A. S.; Bergemann, C.; Riess, H.; Cancer Res., 1996, 56, 4686-4693. (c)Chan, D. C. K.; Kirpotin, D.; Bunn, P. A.; J. Magn. Magn. Mater., 1993, 122, 374-378. (d)Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E.; J. Mater. Chem., 2004; 14, 2161-2175. (e)Dyal, A.; Loos, K.; Noto, M.; Chang, S.W.; Spagnoli, C.; Shafi KVPM, U.; A, Cowman, M.; Gross, R. A.; J. Am. Chem. Soc., 2003, 125, 1684-1685.
    31. (a)Shen, L.; Laibinis, P. E.; Hatton, T. A.; Langmuir, 1999, 15, 447-453. (b) Sun, S.; Zeng, H.; J. Am. Chem. Soc., 2002, 124, 8204-5. (c)Knag, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve. P.; Chem Mater, 1996, 8, 2209-2211. (d) Mann, S.; Hannington, J. P.; J. Colloid Interface Sci, 1988, 122, 326-335. (e) Chan, D. C. K.; Kirpotin, D. B.; Bunn, P. A.; J. Mag.n Magn. Mater., 1993, 122, 374-378. (f)Zhang, Y.; Kohler, N.; Zhang, M.; Biomaterials, 2002, 23, 1553-1561. (g)Harris, L. A.; Goff, J. D.; Carmichael, A. Y.; Riffle, J. S.; Harburn, J. J.; Pierre, T. G. S.; Saunders, M.; Chem. Mater., 2003, 15, 1367-77.
    32. Suzuki, M.; Shinkai, M.; Yanase, M.; Ito, A.; Honda, H.; Kobayashi, T.; Jpn. J. Hyperthermic Oncol, 1999, 15, 79-87.
    33. Kim, J.; Park, S.; Lee, J. E.; Jin, S. M.; Lee, J. H.; Lee, I. S.; Yang, I.; Kim, J. S.; Kim, S. K.; Cho, M. H.; Hyeon, T., Angew Chem Int Ed Engl, 2006, 45, 7754-8.
    34. Tsai, M. F.; Chang, S. H.; Cheng, F. Y.; Shanmugam, V.; Cheng, Y. S.; Su, C. H.; Yeh, C. S.; ACS NANO, 2013, 7, 5330–5342.
    35. E. Gonz´alez, J. Arbiol and V. F. Puntes, Science, 2011, 334,1377 – 1380.
    36. M. McEachran, D. Keogh, B. Pietrobon, N. Cathcart, I. Gourevich, N. Coombs and V. Kitaev, J. Am. Chem. Soc., 2011, 133, 8066 – 8069.
    37. C. Liusman, S. Li, X. Chen, W. Wei, H. Zhang, G. C. Schatz, F. Boey and C. A. Mirkin, ACS Nano, 2010, 4, 7676 – 7682.
    38. Y. Vasquez, A. E. Henkes, J. C. Bauer and R. E. Schaak, J. Solid State Chem., 2008, 181, 1509 – 1523.
    39. S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley and Y. Xia, Acc. Chem. Res., 2008, 41, 1587 – 1595..
    40. S. E. Skrabalak, L. Au, X. Li and Y. Xia, Nat. Protoc., 2007, 2, 2182 – 2190.
    41. J. P´erez-Juste, L. M. Liz-Marz´an, S. Carnie, D. Y. C. Chan and P. Mulvaney, Adv. Funct. Mater., 2004, 14, 571 – 579.
    42. Y. Sun and Y. Xia, J. Am. Chem. Soc., 2004, 126, 3892 – 3901.
    43. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai and A. P. Alivisatos, Science, 2004, 304, 711 –714.
    44. Y. Sun, B. T. Mayers and Y. Xia, Nano Lett., 2002, 2, 481 – 485.
    45. N. R. Jana, L. Gearheart and C. J. Murphy, Adv. Mater., 2001, 13, 1389 – 1393.
    46. J. Rodriguez-Fernandez, J. P´erez-Juste, P. Mulvaney and L. M. Liz-Marz´an, J. Phys. Chem. B, 2005, 109, 14257 –14261.
    47. B. P. Khanal and E. R. Zubarev, J. Am. Chem. Soc., 2008, 130, 12634 – 12635.
    48. Y. C. Lee, S. J. Chen and C. L. Huang, J. Chin. Chem. Soc., 2010, 57, 325 – 331.
    49. S. H. Ciou, Y. W. Cao, H. C. Huang, D. Y. Su and C. L. Huang, J. Phys. Chem. C, 2009, 113, 9520 – 9525.
    50. N. R. Jana, Small, 2005, 1, 875 – 882.
    51. D. Aherne, D. M. Ledwith, M. Gara and J. M. Kelly, Adv. Funct. Mater., 2008, 18, 2005 – 2016.
    52. S. Hong, K. L. Shuford and S. Park, Chem. Mater., 2011, 23, 2011 – 2013.
    53. S. Hong, Y. Choi and S. Park, Chem. Mater., 2011, 23, 5375 –5378.
    54. J. An, B. Tang, X. Zheng, J. Zhou, F. Dong, S. Xu, Y. Wang, B. Zhao and W. Xu, J. Phys. Chem. C, 2008, 112, 15176 –15182.
    55. Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas and X. Zhu, Nano Lett., 2011, 11, 4475 – 4479.
    56. P. Sarkar, D. K. Bhui, H. Bar, G. P. Sahoo, S. Samanta, S. Pyne and A. Misra, Nanoscale Res. Lett., 2010, 5, 1611 – 1618.
    57. E. Hao, K. L. Kelly, J. T. Hupp and G. C. Schatz, J. Am. Chem. Soc., 2002, 124, 15182 –15183.
    58. C. Salzemann, J. Urban, I. Lisiecki and M. P. Pileni, Adv. Funct. Mater., 2005, 15, 1277 –1284.
    59. X. P. Sun, S. J. Dong and E. K. Wang, Angew. Chem., Int. Ed., 2004, 43, 6360 – 6363.
    60. D. Aherne, D. E. Charles, M. E. B. Fournet, J. M. Kelly and Y. K. Gun'ko, Langmuir, 2009, 25, 10165 – 10173.
    61. K. Torigoe and K. Esumi, Langmuir, 1992, 8, 59 – 63.
    62. S. Praharaj, S. K. Ghosh, S. Nath, S. Kundu, S. Panigrahi, S. Basu and T. Pal, J. Phys. Chem. B, 2005, 109, 13166 –13174.
    63. G. S. M´etraux, Y. C. Cao, R. Jin and C. A. Mirkin, Nano Lett., 2003, 3, 519 – 522.
    64. D. Aherne, M. Gara, J. M. Kelly and Y. K. Gun'ko, Adv. Funct. Mater., 2010, 20, 1329 – 1338.
    65. M. M. Shahjamali, M. Bosman, S. Cao, X. Huang, S. Saadat, E. Martinsson, D. Aili, Y. Y. Tay, B. Liedberg, S. C. J. Loo, H. Zhang, F. Boey and C. Xue, Adv. Funct. Mater., 2012, 22, 849 – 854.
    66. L. Gou and C. J. Murphy, Chem. Mater., 2005, 17, 3668 – 3672.
    67. T. K. Sau and C. J. Murphy, Langmuir, 2004, 20, 6414 –6420.
    68. K. G. Stamplecoskie and J. C. Scaiano, J. Am. Chem. Soc. 2010, 132, 1825–1827 .
    69. Hofmeister, H. Encyclopedia of Nanoscience and Nanotechnology, ed. H. S. Nalwa, ISBN 1-58883-001-2, 3, pp. 431-452.
    70. A. Sánchez-Iglesias, I. Pastoriza-Santos, J. Perez-Juste, B. Rodriguez-Gonalez, F. J. Garcia de Abajo and L. M. Liz-Marzan, Advanced Materials 2006, 18, 2529–2534 .
    71. C. L. Johnson, E. Snoeck, M. Ezcurdia, B. Rodriguez-Gonzalez, I. Pastoriza-Santos, L. M. Liz-Marzan and M. J. Hytch, Nat. Mater. 2008, 7, 120-124.
    72. Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotechnol. 2009 , 4, 710 – 711.
    73. Welsher, K.; Sherlock, S. P.; Dai, H. Proc. Natl. Acad. Sci. U. S.A. 2011 , 108, 8943 – 8948.
    74. Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.;Wang, Q.; Dai, H. Angew Chem. Int. Ed. 2012 , 51, 9818 – 9821.
    75. Shi, S.; Zhu, X.; Zhao, Z.; Fang, W.; Chen, M.; Huang, Y.; Chen, X. J. Mater. Chem. B 2013 , 1, 1133 – 1141.
    76. Chu, M.; Peng, J.; Zhao, J.; Liang, S.; Shao, Y.; Wu, Q. Biomaterials 2013 , 34, 1820 – 1832.
    77. Liu, H.; Liu, T.; Wu, X.; Li, L.; Tan, L.; Chen, D.; Tang, F. Adv. Mater. 2012 , 24, 755 – 761.
    78. Cheng, L.; Yang, K.; Chen, Q.; Liu, Z. ACS Nano 2012 , 6, 5605 – 5613.
    79. Chu, M.; Pan, X.; Zhang, D.; Wu, Q.; Peng, J.; Hai, W. Biomaterials 2012 , 33,
    7071 – 7083.
    80. Zhou, F.; Wu, S.; Song, S.; Chen, W. R.; Resasco, D. E.; Xing, D. Biomaterials 2012 , 33, 3235 –3242.
    81. Melancon, M. P.; Zhou, M.; Li, C. Acc. Chem. Res. 2011 , 44, 947 – 956.
    82. Liu, H.; Chen, D.; Li, L.; Liu, T.; Tan, L.; Wu, X.; Tang, F. Angew. Chem., Int. Ed. 2011 , 50, 891 – 895.
    83. Lee, S. M.; Park, H.; Yoo, K. H.. Adv. Mater. 2010 , 22, 4049 –4053.
    84. Gobin, A.; Lee, M.; Halas, N.; James, W.; Drezek, R.; West, J. Nano Lett. 2007 , 7, 1929 – 1934.
    85. Hirsch, L.; Sta ff ord, R.; Bankson, J.; Sershen, S.; Rivera, B.; Price, R.; Hazle, J.; Halas, N.; West, J. Proc. Natl. Acad. Sci. U.S.A. 2003 , 100, 13549 – 13554.
    86. Bakueva, L.; Gorelikov, I.; Musikhin, S.; Zhao, X. S.; Sargent, E. H.; Kumacheva, E.
    Adv. Mater. 2004 , 16, 926 – 929.
    87. Semonin, E.; Johnson, J. C.; Luther, J. M.; Midgett, A. G.; Nozik, A. J.; Beard, M. C. J. Phys. Chem. Lett. 2010 , 1, 2445 – 2450.
    88. Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zhang, N. Nat. Nanotechnol. 2011 , 6, 28 – 32.
    89. Huang, X.; Tang, S.; Liu, B.; Ren, B.; Zheng, N. Adv. Mater. 2011 , 23, 3420 –3425.
    90. Zhang, Z.; Wang, L.; Wang, J.; Jiang, X.; Li, X.; Hu, Z.; Ji, Y.; Wu, X.; Chen, C. Adv. Mater. 2012 , 24, 1418 – 1423.
    91. Gormley, A. J.; Larson, N.; Sadekar, S.; Robinson, R.; Ray, A.; Ghandehari, H. Nano Today 2012 , 7, 158 – 167.
    92. Choi, W.; Kim, J. Y.; Kang, C.; Byeon, C. C.; Kim, Y. H.; Tae, G. ACS Nano 2011 , 5, 1995 – 2003.
    93. Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y. ACS Nano 2011 , 5, 1086 – 1094.
    94. Park, J. H.; Maltzahn, G. V.; Ong, L. L.; Centrone, A.; Hatton, T. A.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Adv. Mater. 2010 , 22, 880 – 885.
    95. Shiotani, A.; Akiyama, Y.; Kawano, T.; Niidome, Y.; Mori, T.; Katayama, Y.; Niidome, T. Bioconjugate Chem. 2010 , 21, 2049 – 2054.
    96. Maltzahn, G. V.; Park, J. H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Cancer Res. 2009 , 69, 3892 – 3900.
    97. Hu ff , T.; Tong, L.; Zhao, Y.; Hansen, M.; Cheng, J.; Wei, A. Nanomedicine 2007 , 2, 125 – 132.
    98. Hunag, X.; El-Sayed, I.; Qian, W.; El-Sayed, M. J. Am. Chem. Soc. 2006 , 128, 2115 – 2120.
    99. Perez-Juste, J.; Liz-Marzan, L. M.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Adv. Funct. Mater. 2004 , 14, 571 – 579.
    100. Payne, E. K.; Shuford, K. L.; Park, S.; Schatz, G. C.; Mirkin, C. A. J. Phys. Chem. B 2006 , 110, 2150 – 2154.
    101. Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mul-vaney, P. Chem. Rev. 2005 , 249, 1870 – 1901.
    102. Kang, S. K.; Kim, Y.; Hahn, M. S.; Choi, I.; Lee, J.; Yi, J. Curr. Appl. Phys. 2006 , 651, e114 – e120.
    103. Wijaya, A.; Scha ff er, S. B.; Pallares, I. G.; Hamad-Schi ff erli, K. ACS Nano 2009 , 3, 80 – 86.
    104. Jana, N.; L.Gearheart, R.; Murphy, C. J. J. Phys. Chem. B 2001 , 105, 4065 – 4067.
    105. Liu, M.; Guyot-Sionnest, P. J. Phys. Chem. B 2004 , 108, 5882 – 5888.
    106. Park, K.; Drummy, L. F.; A Vaia, R. J. Mater. Chem. 2011 , 21, 15608 – 15618.
    107. Xiang, Y.; Wu, X.; Liu, D.; Li, Z.; Chu, W.; Feng, L.; Zhang, K.; Zhou, W.; Xie, S. Langmuir 2008 , 24, 3465 – 3470.
    108. Prodan, E.; Radlo ff , C.; Halas, N. J.; Nordlander, P. A. A Science 2003 , 302, 419 – 422.
    109 Bardhan, R.; Mukherjee, S.; Mirin, N. A.; Levit, S. D.; Nordlander, P.; Halas, N. J. J. Phys. Chem. C 2010 , 114, 7378 – 7383.
    110. Advances in FDTD Computation Electrodynamics: Photo-nics and Nanotechnology; Ta fl ove, A., Ed.; Artech House: Boston, MA, 2013.
    111. Jian, Z.; Jun, L. J.; Wu, Z. J. Plasmonics 2011 , 6, 527 – 534.
    112. Chemical Rubber Company Handbook of Chemistry and Physics, 79th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL,1998.
    113. Wichterle, O.; Lim D. Nature 1960, 185, 117 – 118.
    114. Parker,L. L.; Kurutz, J. W.; Kent. S. B. H., Kron, S. J. Angew Chem. 2006, 118, 6470 –6473.
    115. Brieke, C.; Rohrbach, F.; Gottschalk, A.; Mayer, G.; Heckel, A. Angew Chem. Int. Ed. 2012, 51, 8446 – 8476.
    116. Shigeri, Y.; Tatsu Y.; Yumoto, N. Pharm. & Thera. 2001, 91, 85–92.
    117. Rajagopalan, P. T. R.; Zhang, Z.; McCourt, L.; Dwyer, M.; Benkovic, S. J.; Hammes, G. G. PNAS 2002,99, 13481–13486.
    118. Goodsell, D. S. The Oncologist 1999, 4, 340-341.
    119. Moscow, J. A. Leuk Lymphoma,1998,3, 215-224
    120. Serra M. .Annals of Oncology, 2004,15, 151-160.
    121. Tobio, M.; Gref, R.; Sanchez, A.; Langer, R.; Alonso, M. J. Pharm. Res. 1998, 15, 270-275.
    122. Faraasen, S.; Vörös, J.; Csùcs, G.; Textor, M.; Merkle, H. P.; Walter, E. Pharm. Res. 2003, 20, 237-246.
    123. Hashizaki, K.; Taguchi, H.; Itoh, C.; Sakai, H.; Abe, M.; Saito, Y.; Ogawa, N. Chem. Pharm. Bull. 2003, 51, 815-820.
    124. Pankhurst, Q. A.; Thanh, N. T. K.; Jones, S. K.; Dobson, J. Acc. Chem. Res. 2011, 44, 947-956. J. Phys. D: Appl. Phys. 2009, 42, 1-15.
    125. Jain, T. K.; Morales, M. A.; Sahoo, S. K.; Leslie-Pelecky, D. L.; Labhasetwar, V.; Mol. Pharm. 2005, 2, 194–205.
    126. Yoo, D.; Jeong, H.; Preihs, C.; Choi, J. S.; Shin,T. H.; Sessler, J. L.; Cheon, J. w. Angew. Chem. Int. Ed. 2012, 51, 12482 –12485.
    127. Huang, C. C.; Tsai, C. Y.; Sheu, H. S.; Chuang, K. Y.; Su, C. H.; Jeng, U. S.; Cheng, F. Y.; Su, C. H.; Lei, H. Y.; Yeh, C. S. ACS Nano 2011, 5 , 3905–3916.
    128. Lao, L.L.; Ramanujan, R.V. J. Mater. Sci. Mater. Med. 2004, 15, 1061-1064.
    129. Ren, Y.; Zhang, H.; Chen, B.; Cheng, J.; Cai, X.; Liu, R.; Xia, G.; Wu, W.; Wang, S.; Ding, J.; Gao, C.; Wang, J.; Bao, W.; Wang, L.; Tian, L.; Song, H.; Wang, X..; Int. J. Nanomedicine 2012, 7, 2261-2269.
    130. Lai, C. W.; Wang, Y. H.; Lai, C. H.; Yang, M. J.; Chen, C. Y.; Chou, P. T.; Chan, C. S.; Chi, Y. Chen, Y. C.; Hsiao, J. K. small 2008, 4, 2, 218-224.
    131. Banerjee, S. S.; Chen, D. H. Nanotechnology 2009, 20, 1-9.
    132. Naqvi, S.; Samim, M.; Abdin, M.; Ahmed, F. J.; Maitra, A.; Prashant, C.; Dinda, A. K. Int. J. Nanomedicine 2010, 5, 983-989.
    133. Singh, N.; Jenkins, G. J. S.; Asadi, R.; Doak, S. H. Nano Rev. 2010, 1, 1-15.
    134. Kunzmann, A.; Andersson, B.; Thurnherr, T.; Krug, H.; Scheynius, A.; Fadeel, B. Biochimica et Biophysica Acta 2011, 1810, 361–373.
    135. Wilkinson, K.; Hammarström, B. E.; Ahlinder, L.; Guldevall, K.; Pazik, R.; Kępiński L.; Kvashnina, K. O.; Butorin, S. M.; Brismar, H.; Önfelt, B.; Österlund, L.; Seisenbaeva, G. A.; Kessler. V. G. Nanoscale 2012, 4, 7383-7393.
    136. Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P.; Mahmoudi, M.; Chem. Soc. Rev. 2012, 41, 2323–2343.
    137. Liu, G.; Gao, J.; Ai, H.; Chen, X.; small 2013, 9, 1533–1545.
    138. Bulte, J. W. M.; Douglas, T,; Witwer, B.; Zhang, S. C.; Strable, E.; Lewis, B. K.; Zywicke, H.; Miller, B.; Gelderen, P. V.; Moskowitz, B. M.; Duncan, I. D.; Frank, J. A.; Nature Biotechnology 2001, 19, 1141-1147.
    139. Veranth, J. M.; Kaser, E. G.; Veranth, M. M.; Koch, M.; Yost, G. S. Part. Fibre Toxicol. 2007, 4, 1-18.
    140. Häfeli, U. O.; Riffle, J. S.; Shekhawat, L. H.; Baranauskas, A. C.; Mark, F.; Dailey, J. P.; Bardenstein, D. Mol. Pharmaceutics 2009, 6 , 1417-1428.
    141. Ankamwar, B.; Lai, T. C.; Huang, J. H.; Liu, R. S.; Hsiao, M.; Chen, C. H.; Hwu, Y. K. Nanotechnology 2010, 21, 1-9.
    142. Valkoa, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J. Int J Biochem Cell Biol. 2007, 39, 44-84.
    143. Gupta, A. K.; Curtis, A. S. J. Mater. Sci. Mater. Med. 2004, 15, 493-496.
    144. Schulze, E.; Ferrucci, J. T. Jr.; Poss, K.; Lapointe, L.; Bogdanova, A.; Weissleder, R. Invest Radiol 1995, 30, 604-10.
    145. Arbab, A. S.; Wilson, L. B.; Ashari, P.; Jordan, E. K.; Lewis, B. K.; Frank, J. A. A NMR Biomed. 2005, 18, 383-389.
    146. Kadiiska, M. B.; Burkitt, M.J.; Xiang, Q. H.; Mason, R. P. J Clin Invest. 1995, 96, 1653-1657.
    147. Isom, H. C.; McDevitt, E. I.; Moon, M. S. Biochim Biophys Acta. 2009, 1790, 650-662.
    148. Sun, S.; Zeng, H.; Robinson, D.B.; Raoux, S.; Rice, P.M.; Wang, S.X.; Li, G. J. Am. Chem. Soc. 2004, 126, 273-279.
    149. Park, J.; An, K. J.; Hwang, Y. S.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwanga, N. M.; Hyeon, T. Nat. Mater. 2004, 3, 891-895.
    150. Sodum, R. S.; Chung, F. L. Cancer Res. 1988, 48, 320-323.
    151. Saito, G.; Swanson, J. A.; Lee, K. D. Adv. Drug Deliv. Rev. 2003, 55, 199-215.
    152. Brocchini, S.; Godwin, A.; Balan, S.; Choi, J. W.; Zloh, M.; Shaunak, S. Adv. Drug
    Deliv. Rev. 2008, 60, 3-12.

    下載圖示 校內:立即公開
    校外:2020-03-05公開
    QR CODE