簡易檢索 / 詳目顯示

研究生: 蘇育霖
Su, Yu-Lin
論文名稱: 數值模擬應用於觸媒加熱之甲醇水蒸汽重組性能研究
Numerical simulation applied to methanol steam reforming using catalyst heating
指導教授: 吳鴻文
Wu, Horng-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 74
中文關鍵詞: 甲醇水蒸汽重組數值模擬重組觸媒噴霧氧化觸媒
外文關鍵詞: methanol steam reformer, simulation, reforming catalyst, spray, oxidation catalyst
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立三維甲醇水蒸汽重組反應器之數值模擬分析模式,並應用於本研究團隊實驗之模擬分析。本研究分為三部分,第一部分為模擬固定壁溫不含噴霧之甲醇水蒸汽重組反應,並與文獻及本研究團隊之實驗比對,以確定本研究模擬之準確性;第二部分為建立固定壁溫且含噴霧模型之甲醇水蒸汽重組器,並與實驗結果比較,驗證含噴霧重組器模型之準確性;第三部分為模擬實驗加熱殼管內溫度分佈,結合第一部分與第二部分之模擬經驗,建立含氧化觸媒殼管之重組反應器模型,並比較在不同氧氣對甲醇比(以下簡稱O2/C比)下溫度分佈的結果。
    由第一部分的模擬結果看出各成分濃度分佈與文獻趨勢相符,而在與本研究團隊實驗結果比對部分,發現模擬之氫氣濃度與實驗結果相誤差小於1 %,且甲醇轉換率在S/C比大於1時達99 %以上。第二部分模擬含噴霧重組器之結果部分,顯示出模擬的甲醇轉換率較實驗高約10 %左右。第三部分則可看出,在加熱殼管中以氣態甲醇為燃料的情況下,溫度隨著O2/C比上升而先升後降。

    This study builds numerical simulation of a three-dimensional methanol steam reforming reactor. The study includes three parts, the first part is to simulate the methanol steam reforming reaction of fixed wall temperature without spray, and then to the results with the literature and the experimental data of our research team to confirm the accuracy of this simulation. The second part is to build the methanol steam reforming reaction of fixed wall temperature with spray model, and then to compare the results with experimental data to verify this model. The third part is to simulate the temperature distribution of the heating shell tube of experiments. Combining experience of simulation in the first part and the second part builds the reforming reactor model with the shell tube and heating catalyst. In addition, the temperature distributions are investigated at different O2/C ratio.
    The simulation results of the first part show that the concentration distribution of each component matches with the literature’s trend. In the first part, the result of between simulation and experiment of the hydrogen concentration is less than 1 %, and the methanol conversion rate at S/C ratio is greater than 1 can up to 99 %. In the second part, the result of between simulation and experiment shows that the methanol conversion rate of simulated is higher than experimental about 10 %. In the third part, the temperature first rises and then drops with raising the O2/C ratio using a gaseous methanol as fuel in the heating shell tube.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 XII 第一章 緒論 1 1-1. 前言 1 1-2. 文獻回顧 4 1-3. 研究目的 6 第二章 理論基礎 8 2-1. 物理問題與模式說明 8 2-2. 基本假設 9 2-3. 統御方程式 9 2-3-1. 連續方程式 10 2-3-2. 動量方程式 10 2-3-3. 能量方程式 11 2-3-4. 成分傳輸方程式 12 2-4. 化學反應速率 13 2-5. 液滴蒸發模型 15 2-6. 數值方法 18 2-5-1. 離散(Discretization) 18 2-5-2. SIMPLEC運算法則 19 2-5-3. 鬆弛係數 20 2-5-4. 收斂標準 20 2-7. 網格 20 第三章 結果與討論 22 3-1. 網格獨立分析 22 3-2. 數值模擬計算與文獻【8, 10】的驗證 23 3-3. 無噴霧模擬結果與實驗結果比較 25 3-4. 含噴霧模擬結果與實驗結果分析 26 3-5. 含噴霧與加熱層對重組器性能的影響 28 第四章 結論與建議 31 4-1. 結論 31 4-2. 建議 32 參考文獻 33

    1. B. Hohlein, M. Boe, H.J. Bogild, P. Brockerhoff, G. Colsman, and B. Emonts, “Hydrogen from methanol for fuel cells in mobile system: development of a compact reformer,” J. Power Sources, 61 (1996), pp.143-147,.
    2. B. Emonts, J. Bøgild Hansen, S. Loegsgaard Jørgensen, B. Höhlein, R. Peters, “Compact methanol reformer test for fuel-cell powered light-duty vehicles,” J. Power Sources 71 (1998), pp.288-293.
    3. B. A. Peppley, J. C. Amphlett, L. M. Kearns, R. F. Mann, “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction work,”Applied Catalysis A:General, 179 (1999), pp.21-29.
    4. B. Emonts, J. Bøgild Hansen, H. Schmidt, T. Grube, B. Höhlein, R. Peters, A. Tschauder, “Fuel cell drive system with hydrogen grneration in test”, J. Power Sources 86 (2000), pp.228-236.
    5. R. Peters, H.G. Dusterward, and B. Hohlein, “Investigation of a methanol reformer concept considering the particular impact of dynamics and long-term stability for use in a fuel-cell-powered passenger car,” J. Power Sources 86 (2000), pp.507-514.
    6. R.F. Horng, “Transient behaviour of a small methanol reformer for fuel cell during hydrogen production after cold start”, Energy Conversion and Management 46 (2005), pp.1193-1207.
    7. A. Ersoz, H. Olgun, S. Ozdogan, “Reforming options for hydrogen production from fossil fuels for PEM fuel cells,” J. Power Sources, 154 (2006), pp. 67-73.
    8. R.F. Horng, C.R. Chen, T.S. Wu, C.H. Chan, “Cold start response of a small methanol reformer by partial oxidation reforming of hydrogen for fuel cell,” Applied Thermal Engineering 26 (2006), pp. 1115-1124.
    9. J.S. Suh, M.T. Lee, R. Greif, C.P. Grigoropoulos, “A study of steam methanol reforming in a microreactor,” J. Power Sources 173 (2007), pp.458-466.
    10. S. Fukahori, H. Koga, T. Kitaoka, M. Nakamura, H. Wariishi, “Steam reforming behavior of methanol using paper-structured catalysts: Experimental and computational fluid dynamic analysis,” J. Hydrogen Energy 33 (2008), pp.1661-1670.
    11. 陳彥璋,“燃料電池用之甲醇蒸汽重組器暫態模擬分析”,碩士論文,國立成功大學系統及船舶機電工程學系,2009。
    12. 林士傑,“利用氣衝式噴嘴進行甲醇霧化重組之數值模擬分析”,碩士論文,國立成功大學航空太空工程學系碩士論文,2009。
    13. 黃舜杰, “應用田口方法於甲醇水蒸汽重組器性能之參數研究”,碩士論文,國立成功大學系統及船舶機電工程學系,2013
    14. 于仁斌, “氣泡式噴墨頭液滴形成之數值模擬”,國立雲林科技大學機械工程系碩士班碩士論文,2007

    無法下載圖示 校內:2018-09-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE