| 研究生: |
陳慶益 Chen, Ching-Yi |
|---|---|
| 論文名稱: |
水熱法於圖案氮化鎵層成長氧化鋅連續膜之技術開發及其於光電元件之應用 Hydrothermal Growth of ZnO films on Patterned GaN Layers and Their Applications in Optoelectronic Devices |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 水熱法 、氧化鋅 、氮化鎵 、圖案基板 、成長機制 、發光二極體 、紫外光感測器 |
| 外文關鍵詞: | hydrothermal growth, ZnO, GaN, patterned substract, growth mechanism, light emitting diode, UV photodetector |
| 相關次數: | 點閱:141 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在利用水熱(hydrothermal, HT)成長方式於具蜂巢狀蝕刻孔洞陣列的圖案p型氮化鎵層(patterned p-GaN layer, PGL)上磊晶成長高品質單晶氧化鋅(ZnO)連續膜,探討其成長機制與其應用於n-ZnO/p-GaN異質結構發光二極體(heterojunction light emitting diodes, HJ-LEDs)和UV光感測器(ultraviolet photodetectors, UV-PDs)之應用與光電特性探討。主要研究內容可分為三大部份:
第一部分研究集中於有關使用HT成長方法於D5-L3 (接於D與L後之數字,分別表示D與L之尺寸,單位皆為μm)、d為0.2、0.5、1及1.5 μm的PGL進行磊晶成長ZnO連續膜之研究。實驗結果顯示,使用d =1 μm的PGL於蝕刻垂直洞壁所裸露的m-plane面積可提供較適化的ZnO晶體成核與磊晶成長,因此可成長出較高品質ZnO單晶膜。針對ZnO連續膜的可能成長機制與形成ZnO連續膜所使用的HT溶液中硝酸鋅(zinc nitrate hexahydrate, Zn(NO3)2·6H2O, ZNH)和六甲基四胺(hexamethylenetetramine, C6H12N4, HMT)之濃度為另一探討目標。實驗結果顯示,僅當["ZNH" ]" ≥ 75 mM" 以及["ZNH" ]"+" ["HMT" ]" ≥ 150 mM" 時,HT溶液可提供充足的ZnO分子於已終止側向磊晶成長(lateral epitaxial growth, LEG)的平坦六方塊外側m-plane上形成ZnO二次成長晶粒並產生新的梯級晶面,再度誘發LEG進行並且加速六方塊膜的連結與封口,應為形成ZnO連續膜的核心成長機制。
第二部份旨在探討於分別使用D5-L1、D3-L1及D2-L1的PGL以及90與70oC的HT製程溫度對於磊晶成長ZnO連續膜之影響。研究結果顯示,使用D2-L1的PGL在一階段3×-3× HT溶液及90 oC製程溫度下,可最有效磊晶成長出最佳品質ZnO單晶膜(~3.97 μm) 。宜注意,上述”3×”係表示3倍標準溶液濃度(1倍標準溶液濃度為25 mM)。此一結果可歸因D2-L1的PGL蝕刻孔洞於相同基板面積下,裸露出最大的洞壁m-plane面積及最小的洞底c-plane面積。然而由於ZnO晶體沿著c-軸/a-軸的相對成長速率隨著HT製程溫度的下降而降低,使用D2-L1及70 oC製程溫度、一階段15 h所得ZnO連續膜厚度可薄至1.8 μm。實驗亦發現,當 ZnO連續膜於N2氛圍下以500 oC進行30 min的熱退火處理後,可將近能帶輻射/深能階輻射的比值(NBE/DLE)由未退火前的0.26提高至16.02,除可修復ZnO連續膜內部原子鍵結達到降低膜內缺陷外,亦強化ZnO連續膜對於UV光之敏感度。
第三部份則旨在利用第二部份研究於D2-L1_70 oC、D2-L1_90 oC、D5-L1_70 oC、D5-L1_90 oC及無圖案p-GaN_70 oC所分別製作的n-ZnO/p-GaN異質結構元件,分別命名為試片-A、B、C、D及E,分別探討其在發光二極體和UV感測器應用之光電特性。於發光二極體的光電特性部份,從電致發光(EL)光譜分析顯示出分別在413 nm有一明顯的紫-藍光發射訊號以及在387 nm有一較弱的紫外光發射訊號。五種元件中以試片-A具有最強的EL光發射強度以及最佳UV光響應特性(JUV/Jdark=508倍、上升/下降時間分別為4/<1秒@V=-1 V及以365 nm波長與3 mW/cm2功率照射),主要應可歸之於試片-A使用D2-L1的PGL上以70 oC製程溫度進行15 h的HT成長製程,形成ZnO連續膜的膜厚最薄(~1.8 μm),具有最小的串聯電阻及最佳的整流特性,並於相同面積下,ZnO與PGL所裸露m-plane有最大的接合面積。
本研究利用HT成長方法於PGL上磊晶成長高品質單晶ZnO連續膜,除釐清二次成長晶粒並產生新的梯級晶面,再度誘發LEG進行並且加速六方塊膜的連結與封口,應為ZnO薄膜的成長機制外,於薄膜材料品質方面,相較於直接在c-plane GaN層上所成長出包覆較多晶界及缺陷的ZnO奈米柱膜,具有較高品質的晶體結構,且所製備異質結構元件亦展現出較佳的光電特性。本研究所開發於PGL成長ZnO連續膜的技術,與傳統MOCVD或MBE等磊晶技術相比,具有製成簡易與低成本之優勢,預期未來如能進一步提升水熱法之操作穩定性,將有助於進一步擴展本技術於光電科技產業之應用。
In this study, high-quality single crystalline ZnO film were grown on PGL by hydrothermal growth (HTG) method, and its applications on light emitting diodes (LEDs) and ultraviolet photodetectors (UV-PDs) with ZnO film/p-GaN heterojunctions (HJs) were demonstrated. In experiments, PGLs with depth of etching holes (d= 1-μm) in a honey comb array were used as a template for epitaxial growth ZnO crystal. It is found that a more efficient and epitaxial growth of a higher quality ZnO single-crystal film due to the exposed m-planes on the vertical walls of etching holes provide much better nucleation and making possible epitaxial growth of ZnO crystals. For case with "ZNH ≥ 75 mM" and "ZNH+HMT ≥ 150 mM" , sufficient ZnO molecules could cuase strong, secondary growth on the outer side of the hexagonal {101 ̅0} m-plane to initiate further lateral growth. The occurrence of SLG stages during the HTgrowth process is a crucial link between hexagonal ZnO rings/prisms (or NRs/NWs) and continuous ZnO film. Effects of the diameter (D) and space (L) of PGL and HT process temperatures of 90 and 70 oC on the growth and quality of ZnO film were investigated. Our results show that the use of PGL with D2-L1 and 3×-3× HT solution at 90 °C HT process temperature could facilatate the epitaxial growth of ZnO single crystal film with the best quality. However, using D2-L1 and 70 °C HT process temperature, the thickness of ZnO films can be minimized to be about 1.8-μm. Furthermore, the ratio of near-band radiation / deep-level radiation (NBE / DLE) was seen being increased from 0.26 to 16.02 after annealing at 500 oC for 30 min in N2 ambient. Applications of the prepared ZnO film/p-GaN heterostructures in LEDs and UV-PDs and their photoelectric performance were sexamined and demonstrated. The EL spectra consisted of a dominant violet-blue emission peak centered at about 413 nm and UV emission peaks at about 387 nm. Among the five types of samples based on ZnO film on PGL, the sample-A exhibited the strongest integrated EL intensity and the UV sensitivity (JUV/Jdark) is 508-fold with a response time and recovery time of 4 seconds and of less than 1 second.
[1] S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in Materials Science, vol. 50, pp. 293-340, 2005.
[2] P. Villars, “Peardon’s Handbook of Crystallographic Data,” American Society for Metals, vol. 1, pp. 4787-4795, 1997.
[3] Z. L. Wang, “ Zinc oxide nanostructures: growth, properties and applications,” Journal of Physics, vol. 16, pp. 829-858, 2004.
[4] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “ Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 1897-1899, 2001.
[5] Y. C. Tu, S. J. Wang, G. Y. Lin, T. H. Lin, C. H. Hung, and F. S. Tsai, “Enhanced light output of vertical GaN-based LEDs with surface roughened by refractive-index-matched Si3N4/GaN nanowire arrays,” Applied Physics Express, vol. 7, pp. 042101-1-0402101-2, 2014.
[6] K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “ Surface-Enhanced Emission from Single Semiconductor Nanocrystal,” Physical Review Letters, vol. 89, pp. 117401-117405, 2002.
[7] Q. M. Fua, W. Cao, G. W. Li, Z. D. Lin, Z. Chen, C. B. Xu, and Y. F. Tu, “ Blue/green electroluminescence from a ZnO nanorods/p-GaN heterojunction light emitting diode under different reverse bias,” Application Surface Science, vol. 293, pp. 225-228, 2014.
[8] L. Zhang, Q. Li, L. Shang, Z. Zhang, R. Huang, and F. Zhao,” Electroluminescence from n-ZnO: Ga/p-GaN heterojunction light-emitting diodes with different interfacial layers,” Journal of Physics D: Applied Physics, vol. 45, pp. 485103-485109, 2012.
[9] G. C. Park, S. M. Hwang, S. M. Lee, J. H. Choi, K. M. Song, H. Y. Kim, H. S. Kim, S. J. Eum, S. B. Jung, J. H. Lim, and J. Joo, “ Hydrothermally Grown In-doped ZnO Nanorods on p-GaN Films for Color-tunable Heterojunction Light-emitting-diodes,” Scientific Reports, vol 5, pp. 10410-10420, 2015.
[10] Y. Shan, X. Chen, X. Yan, F. Yi, Z. Bai, X. Zheng, P. Lin, and Y. Zhang “ Low-voltage blue light emission from n-ZnO/p-GaN heterojunction formed by RF magnetron sputtering method,” Current Applied Physics, vol. 14, pp. 345-348, 2014.
[11] K. H. Baik, H. Kim, J. Kim, S. Jung, and S. Jang, “ Nonpolar light emitting diode with sharp near-ultraviolet emissions using hydrothermally grown ZnO on p-GaN, “ Applied Physics Letters, vol. 103, pp. 256-261, 2013.
[12] C. Baratto, R. Kumar, E. Comini, G. Faglia, and G. Sberveglieri, “ Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode,” The Optical Society, vol. 23, pp. 18937-18942, 2015.
[13] X. Li, J. Qi, Q. Zhang, Q. Wang, F. Yi, Z. Wang, and Y. Zhang, “ Saturated blue-violet electroluminescence from single ZnO micro/nanowire and p-GaN film hybrid light-emitting diodes,” Applied Physics Letters, vol. 102, pp. 221103-221110, 2013.
[14] C. F. Du, C. H. Lee, C. T. Cheng, K. H. Lin, J. K. Sheu, and H. C. Hsu, “ Ultraviolet/blue light emitting diodes based on single horizontal ZnO microrod/GaN heterojunction,” Nanoscale Research Letters, vol. 9, pp. 1-6, 2014.
[15] C. T. Lee, and J. T. Yan, “ Ultraviolet electroluminescence from ZnO-based n-i-p light emitting diodes,” IEEE Photonics Technology Letters, vol. 23, pp. 353-355, 2011.
[16] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “ Room-Temperature Ultraviolet Nanowires Nanolasers,” Science, vol. 292, pp. 1897-1899, 2001.
[17] Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ ZnO nanostructures for dye-sensitive solar cells,” Advanced Materials, Vol. 21, pp. 4087-4108, 2009.
[18] E. Guillen, L. M. Peter, and J. A. Anta, “ Electron transport and recombination in ZnO-based dye-sensitized solar cells,” The Journal of Physics Chemistry, vol. 115, pp. 22622-22632, 2011.
[19] W. C. Chang, Y. Y. Cheng, W. C. Yu, Y. C. Yao, C. H. Lee, and H. H. Ko, “ Enhancing performance of ZnO dye-sensitized solar cells by incorporation of multiwalled carbon nanotubes,” Nanoscale Research Letters, vol. 7, pp. 1-7, 2012.
[20] J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, “ Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells,” Nanotechnology, vol.17, pp. S304-S312, 2006.
[21] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials, vol. 4, pp. 455-459, 2005.
[22] Y. Ievskaya, R. L. Z. Hoye, A. Sadhanala, K. P. Musselmanb, and J. L. MacManus-Driscoll, “ Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: Improved interface quality and solar cell performance,” Solar Energy Materials & Solar Cells, vol. 135, pp. 43-48, 2015.
[23] M. L. Zhang, F. Jin, M. L. Zheng, J. Liu, Z. S. Zhao, and X. M. Duan, “ High efficiency solar cell based on ZnO nanowire array prepared by different growth methods,” Royal Society of Chemistry, vol. 4, pp. 10462-10466, 2014.
[24] M. Raja, N. Muthukumarasamy, D. Velauthapillai, R. Balasundaraprabhu, S. Agilan, and T. S. Senthil, “ Studies on bundle like ZnO nanorods for solar cell applications,” Solar Energy, vol. 106, pp. 129-135, 2014.
[25] S. Rackauskas, T. Talka, E. I. Kauppinen, and A. G. Nasibulin, “ Zinc oxide tetrapod synthesis and application for UV sensor,” Materials Physics and Machanics, vol. 13, pp. 175-180, 2014.
[26] R. J. Chung, H. Y. Wang, Y. C. Li, and P. H. Yeh, “ Preparation and sensor application of carbon coated zinc oxide nanorods array,” Journal of The Australian Ceramic Society, vol. 49, pp. 81-88, 2013.
[27] S. Sawyer, L. Qin, and C. Shing, “ Zinc oxide nanoparticles for ultraviolet photodetection,” International Journal of High Speed Electronics and Systems, vol. 20, pp. 183-194, 2011.
[28] O. Hayden, R. Agarwal, and C. M. Lieber, “ Nanoscale avalanche photodiodes for Highly sensitive and spatially resolved photon detection,” Nature Materials, vol. 5, pp. 352-356, 2006.
[29] P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, “ Individual β-Ga2O3 nanowires as solar cells,” Applied Physics Letters, vol. 88, pp. 153107-153110, 2006.
[30] J. Jiang, Y. Zhang, C. Chi, Y. Long, X. Han, B. Wu, B. Zhang, and G. Du, “ Exciton localization and ultralow onset ultraviolet emission in ZnO nanopencils-based heterojunction diodes,” Optics Express, vol. 24, pp. 20938-20946, 2016.
[31] W. Dai, X. Pan, S. Chen, C. Chen, W. Chen, H. Zhang, and Z. Ye, “ ZnO homojunction UV photodetector based on solution-grown Sb-doped p-type ZnO nanorods and pure n-type ZnO nanorods,” Royal Society of Chemistry, vol. 5, pp. 6311-6314, 2015.
[32] J. Zhang, S. Wang, M. Xu, Y. Wang, B. Zhu, S. Zhang, W. Huang, and S. dddfWu, “ Hierarchically porous ZnO architectures for gas sensor application,” Crystal Growth & Design, vol. 9, pp. 3532-3537, 2009.
[33] S. Tian, F. Yang, D. Zeng, and C. Xie, “ Solution-processed gas sensor based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties,” The Journal of Physical Chemistry C, vol. 116, pp. 10586-10591, 2012.
[34] H. Xu, X. Liu, D. Cui, M. Li, and M. Jiang, “ A novel method for improving the performance of ZnO gas sensor,” Sensors and Actuators B, vol. 114, pp. 301-307, 2006.
[35] P. Rai, H. M. Song, Y. S. Kim, M. K. Song, P. R. Oh, J. M. Yoon, and Y. T. Yu, “ Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application,” Materials Letters, vol. 68, pp. 90-93, 2012.
[36] C. Shao, Y. Chang, and Y. Long, “ High performance of nanostructured ZnO film gas sensor at room temperature,” Sensors and Actuators B, vol. 204, pp. 666-672, 2014.
[37] C. H. Lin, S. J. Chang, and T. J. Hsueh, “ A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Materials Research Express, vol. 3, pp. 095502-095509, 2016.
[38] G. S. Heo, I. G. Gim, J. W. Park, K. Y. Kim, and T. W. Kim, “ Effects of substrate temperature on properties of ITO-ZnO composition spread films fabricated by combinatorial RF magnetron sputtering,” Journal of Solid State Chemistry, vol. 182, pp. 2937-2940, 2009.
[39] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “ Graphene photonics and optoelectronics,” Nature Photonics, vol. 4, pp. 611-622, 2010.
[40] J. F. Wager, “ Transparent Electronics,” Applied Physics, vol. 300, pp. 1245-1246, 2003.
[41] B. Y. Oh, M. C. Jeong, T. H. Moon, W. Lee, and J. M. Myoung, “ Transparent conductive Al-doped ZnO films for liquid crystal displays,” Journal of Applied Physics, vol. 99, pp. 124505-124510, 2006.
[42] X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “ Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Applied Physics Letters, vol. 83, pp. 1875-1877, 2003.
[43] T. Minami, H. Nanto, and S. Takata, “ Highly Conductive and Transparent Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering,” Japanese Journal of Applied Physics, vol. 23, pp. L280-L282, 1984.
[44] A. Fulati, S. M. U. Ali, M. Riaz, G. Amin, O. Nur, and M. Willander, “ Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods,” Sensors, vol. 9, pp. 8911-8923, 2009.
[45] S. P. Chang, C. W. Li, K. J. Kuan, S. J. Chang, C. L. Cheng, T. J. Hsueh, and H. T. Hsueh, “ ZnO-Nanowire-Based Extended-Gate Field-Effect-Transistor pH Sensors Prepared on Glass Substrate,” Science of Advanced Materials, vol. 4, pp. 1174-1178, 2012.
[46] S. M. Al-Hilli, and M. Willander, “ ZnO nanorods as an intracellular semsor for pH measurements,” Journal of Applied Physics, vol. 102, pp. 084304-084310, 2007.
[47] R. C. Pawar, J. S. Shaikh, S. S. Suryavanshi, and P. S. Patil, “ Growth of ZnO nanodisk, nanospindles and nanoflowers for gas sensor: pH dependency,” Current Applied Physics, vol. 12, pp. 778-783, 2012.
[48] Y. S. Chiu, C. Y. Tseng, and C. T. Lee, “ Nanostructured EGFET pH Sensors With Surface-Passivated ZnO Thin-Film and Nanorod Array,” IEEE Sensors Journal, vol. 12, pp.930-934, 2011.
[49] M. H. Asif, S. M. Usman Ali, O. Nur, M. Willander, C. Brannmark, P. Stralfors, U. H. Englund, F. Elinder, and B. Danielsson, “ Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose,” Biosensors and Bioelectronics, vol. 25, pp. 2205-2211, 2010.
[50] S. W. Chung, J. Y. Yu, and J. R. Heath, “ Silicon nanowire devices,” Applied Physics Letters, vol. 76, pp. 2068-2072, 2000.
[51] A. Notargiacomo, L. Di Gaspare, G. Scappucci, G. Mariottini, E. Giovine, R. Leoni, and F. Evangelisti, “ A single electron transistor based on Si/SiGe wires,” Materials Science and Engineering: C, vol. 23, pp. 671-673, 2003.
[52] W. I. Park; Kim, S. J. Kim, and G. C. Yi, “ Fabrication and electrical characteristics of high-performance ZnO nanorod field transistors,” Applied Physics Letters, vol. 85, pp. 5052-5054, 2004.
[53] M. Esro, G. Vourlias, C. Somerton, W. I. Milne, and G. Adamopoulos, “ High-mobility ZnO thin film transistors based on solution-processed hafnium oxide gate dielectrics,” Advanced Functional Materials, vol. 25, pp. 134-141, 2015.
[54] X. Liu, L. Jiang, X. Zou, X. Xiao, S. Guo, C. Jiang, X. Liu, Z. Fan, W. Hu, X. Chen, W. Lu, W. Hu, and L. Liao, “ Scalable integration of indium zinc oxide/photosensitive-nanowire composite thin-film transistors for transparent multicolor photodetectors array,” Advanced Materials, vol. 26, pp. 2919-2924, 2014.
[55] D. Wan, X. Liu, L. Xu, C. Liu, X. Xiao, S. Guo, and L. Liao, “ The study for solution-processed alkali metal-doped indium–zinc oxide thin-film transistors,” IEEE Electron Device Letters, vol.37(1), pp. 50-52, 2016.
[56] K. Kim, S. Park, J. B. Seon, K. H. Lim, K. Char, K. Shin, and Y. S. Kim, “ Patterning of flexible transparent thin-film transistors with solution-processed ZnO using the binary solvent mixture,” Advanced Functional Materials, vol. 21, pp. 3546-3553, 2011.
[57] K. L. Foo, U. Hashim, K. Muhammad, and C. H. Voon, “ Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application,” Nanoscale Research Letters, vol. 9, pp. 429-439, 2014.
[58] K. H. Kim, K. Utashiro, Y. Abe, and M. Kawamura, “ Growth of zinc oxide nanorods using various seed layer annealing temperatures and substrate materials,” International Journal of Electrochemical Science, vol. 9, pp. 2080-2089, 2014.
[59] S. Bai, S. Wu, and J. Mater, “ Synthesis of ZnO nanowires by the hydrothermal method, using sol-gel prepared ZnO seed layer,” Journal of Materials Science: Materials in Electronics, vol. 22, pp. 339-344, 2011.
[60] J. S. Na, B. Gong, G. Scarel, and G. N. Parsons, “ Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hygrothermal cryatal synthesis and thin film atomic layer deposition,” Americal Chemical Society Nano, vol. 3, pp. 3191-3199, 2009.
[61] P. Yang, H. Yan, J. Johnson, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, ” Controlled growth of ZnO nanowires and their optical properties,” Advanced Functional Materials, vol. 12, pp. 323-331, 2002.
[62] T. Ma, M. Guo, M. Zhang, Y. Zhang, and X. Wang, “ Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays, Nanotechnology, vol. 18, pp. 035605-035610, 2007.
[63] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “ Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chemistry of Materials, vol. 17, pp. 1001-1006, 2005.
[64] Y. Sun, N. A. Fox, D. J. Riley, and N. R. Ashfold, “ Hydrothermal growth of ZnO nanorods aligned parallel to the substrate surface,” The Journal of Physucal Chemistry C, vol. 112, pp. 9234-9239, 2008.
[65] Y. Tak and K. Yong, “ Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” The Journal of Physics Chemistry B, vol. 109, pp. 19263-19269, 2005.
[66] C. Li, M. Furuta, T. Matsuda, T. Hiramatsu, H. Furuta, and T. Hirao, “ Effects of substrate on the structural, electrical and optical properties of Al-doped ZnO films prepared by radio frequency magnetron sputtering,” Thin Solid Films, vol. 517, pp. 3265-3268, 2009.
[67] A. S. Zoolfakar, R. A. Kadir, R. A. Rani, S. Balendhran, X. Liu, E. Kats, S. K. Bhargava, M. Bhaskaran, S. Sriram, S. Zhuiykov, A. P. O’Mullane, and K. K. Zadeh, “ Engineering electrodeposited ZnO films and their memristive switching performance,” Physical Chemistry Chemical Physics. Vol. 15, pp. 10376-10384, 2013.
[68] A. S. Zoolfakar, R. A. Rani, A. J. Morfa, S. Balendhran, A. P. O’Mullane, S. Zhuiykov, and K. K. Zadeh, “ Enhancing the current density of electrodeposited ZnO–Cu2O solar cells by engineering their heterointerfaces,” Journal of Materials Chemistry, vol. 22, pp. 21767-21775, 2012.
[69] J. J. Wu, and S. C. Liu, “ Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Advanced Materials, vol. 14, pp. 215-218, 2002.
[70] J. J. Wu, S. C. Liu, “ Catalyst-free growth and characterization of ZnO nanorods,” The Journal of Physics Chemistry B, vol. 106, pp. 9546-9551, 2002.
[71] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, “ Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy,” Applied Physics, vol. 81, pp. 3046-3048, 2002.
[72] T. Okada, B. H. Agung, and Y. Nakata, “ ZnO nanorods synthesized by Nano-particle-assisted pulse-laser depositon,” Applied Physics A, vol. 79, pp. 1417-1419, 2004.
[73] B. Q. Cao, M. Lorenz, A. Rahm, H. Wenckstern, C. Czekalla, J. Lenzner, G. Benndorf, and M. Grundmann, “ Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition,” Nanotechnology, vol. 18, pp. 455707:1-455707:45, 2007.
[74] D. Kim, H. Kang, J. M. Kim, and H. Kim, “ The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin film and comparison eith thermal ALD,” Applied Surface Science, vol. 257, pp. 3776-3779, 2011.
[75] B. Sang, A. Yamada, and M. Konagai, “ Textured ZnO thin films for solar cells growth by a two-step process with the atomic layer deposition technique,” The Japan Society of Applied Physics, vol. 37, pp. L206-L208, 1998.
[76] S. J. Lim, S. J. Kwon, and H. Kim, “ High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO,” Applied Physics Letters, vol. 91, pp. 183517-1-183517-3, 2007.
[77] S. J. Lim, S. Kwon, and H. Kim, “ ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor,” Thin Solid Films, vol. 516, pp. 1523-1528, 2008.
[78] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “ Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Applied Physics Letters, vol. 76, pp. 2011-2013, 2000.
[79] Y. C. Wang, I. C. Leu, and M. H. Hon, “ Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition,” Journal of Materials Chemistry, vol. 12, pp. 2439-2444, 2002.
[80] J. Cui, and U. J. J. Gibson, “ Enhanced nucleation, growth rate, and dopant incorporation in ZnO nanowires,” The Journal of Physics Chemistry B, vol. 109, pp. 22074-22077, 2005.
[81] R. Liu, A. A. Vertegel, E. W. Bohannan, T. A. Sorenson, and J. A. Switzer, “ Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold,” Chemistry of Materials, vol. 13, pp. 508-512, 2001.
[82] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “ Catalytic growth of zinc oxide nanowires by vapor transport,” Advanced Materials, vol. 13, pp. 113-116, 2001.
[83] H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, “ Periodic array of uniform ZnO nanorods by second-order self-assembly,” Applied Physics Letters, vol. 84, pp. 3376-3378, 2004.
[84] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “ Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 1897-1899, 2001.
[85] K. V. Gaurav, M. G. Gang, S. W. Shin, U. M. Patil, P. R. Deshmukh, G. L. Agawane, M. P. Suryawanshi, S. M. Pawar, P. S. Patil, C. D. Lokhands, and J. H. Kim, “ Gas sensing properties of hydrothermally grown ZnO nanorods with different aspects ratios,” Sensors and Actuators B: Chemical, vol. 190, pp.439-445, 2014.
[86] J. H. Zheng, Q. Jiang, and J. S. Lian, “ Synthesis and optical properties of ZnO nanorods on indium tin oxide substrate,” Applied Surface Science, vol. 258, pp. 93-97, 2011.
[87] J. J. Wu; Liu, and S. C. Liu, “ Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Advanced Materials, vol. 14, pp. 215-218, 2002.
[88] B. Liu, and H. C. Zeng, “ Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm,” Journal of The Americal Society, vol. 125, pp. 4430-4431, 2003.
[89] S. Xu, and Z. L. Wang, “ One-dimensional ZnO nanostructures: solution growth and functional properties,” Nano Research, vol. 4, pp. 1013-1098, 2011.
[90] L. Vayssieres, ” Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Advanced Materials, vol. 15, pp. 464-466, 2003.
[91] J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “ Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” National Institutes Health Public Access, vol. 10, pp. 596-601, 2013.
[92] Z. L. Wang, “ Zinc oxide nanostructures: growth, properties and applications,” Journal of Physics: Condensed Matter, vol. 16, pp. R829-R858, 2004.
[93] F. Li, Y. Ding, P. Gao, X. Xin, and Z. L. Wang, “ Single-crystal hexagonal disks and rings of ZnO: low-temperature, large-scale synthesis and growth mechanism,” Angewandte Chemie, vol. 43, pp. 5238-5242, 2004.
[94] J. A. Venables, G. D. T. Spiller, and M. Hanbucken, “ Nucleation and growth of thin film,” Reports on Progress in Physics, vol. 47, pp. 399-459, 1984.
[95] O. Dulub, U. Diebold, and G. Kresse, “ Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn,” Physics Review Letters, vol. 90, pp. 016102-1-016102-4, 2003.
[96] D. F. Liu, Y. J. Xiang, Z. X. Zhang, J. X. Wang, Y. Gao, L. Song, L. F. Liu, X. Y. Dou, X. W. Zhao, and S. D. Luo, “ Growth of ZnO hexagonal nanoprisms,” Nanotechnology, vol. 16, pp. 2469-2748, 2005.
[97] Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Materials Science and Engineering: R: Reports, vol. 47, pp. 1-47, 2004.
[98] J. A. Venables, G. D. T. Spiller, and M. Hanbucken, “ Nucleation and growth of thin film,” Reports on Progress in Physics, vol. 47, pp. 399-459, 1984.
[99] D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy, “ Lateral epitaxial overgrowth of ZnO in water at 90 oC,” Advanced Functional Materials, vol. 16, pp. 799-804, 2006.
[100] N. Yu, L. Du, H. Du, D. Hu, Z. Mao, Y. Wang, Y. Wu, and D. Liu, “Synthesis of ZnO film on p-GaN/Si(111) by one-step hydrothermal method,” Thin Solid Films, vol. 550, pp. 206-209, 2014.
[101] R. M. Ko, Y. R. Lin, S. J. Wang, S. M. Su, Y. C. Huang, and T. H. Yu, “Epitaxial growth of ZnO films on patterned c-plane GaN layer using hydrothermal method,” ECS Journal of Solid State Science and Technology, vol. 4, pp. N111-N116, 2015.
[102] O. Lupan, T. Paupore, B. Viana, I. M. Tiginyanu, V. V. Ursaki, and R. Cortes, “Expitaxial electrodeposition of ZnO nanowire arrays on p-GaN for efficient UV-light-emitting diode fabrication,” ACS Applied Materials & Interfaces, vol. 2, pp. 2083-2090, 2010.
[103] H. Li, J. Sang, C. Liu, H. Lu, and J. Cao, “Microstructure study of MBE-grown ZnO film on GaN/sapphire (0001) substrate,” Central European Journal of Physics, vol. 6, pp. 638-642, 2008.
[104] J. Dai, H. Liu, W. Fang, L. Wang, Y. Pu, Y. Chen, and F. Jiang, “Atmospheric pressure MOCVD growth of high-quality ZnO films on GaN/Al2O3 templates,” Journal of Crystal Growth, vol. 283, pp. 93-99, 2005.
[105] R. P. Wang, H. Muto, Y. Yamada, and T. Kusumori, “Effect of ZnO buffer layer on the quality of GaN films deposited by pulsed laser ablation,” Thin Solid Films, vol. 411, pp. 69-75, 2002.
[106] R. M. Ko, S. J. Wang, C. Y. Chen, C. H. Wu, Y. R. Lin, and H. M. Lo, “Hydrothermal growth of n-ZnO films on a patterned p-GaN epilayer and its application in heterojunction light-emitting diodes,” Japanese Journal of Applied Physics, vol. 56, pp. 04CH03-1-04CH03-6, 2017.
[107] R. A. Laudise, and A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide,”The Journal of Physical Chemistry, vol. 64, pp. 688-691, 1960.
[108] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals,”Journal of Crystal Growth, vol. 203, pp. 186-196, 1999.
[109] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” Journal of Materials Chemistry, vol. 14, pp. 2575-2591, 2004.
[110] W. B. Wu, G. D. Hu, S. G. Cui, Y. Zhou, and H. T. Wu, “Epitaxy of vertical ZnO nanorod arrays on highly (001)-oriented ZnO seed Monolayer by a hydrothermal route,” Cryatal Growth & Design, vol. 8, pp. 4014-4020, 2008.
[111] R. H. Zhang, E. B. Slamovich, and C. A. Handwerker, “Controlling growth rate anisotropy for formation of continuous ZnO thin films from seeded substrates,” Nanotechnology, vol. 24, pp. 195603-195614, 2013. & L. F. Xu, Y. Guo, Q. Liao, J. P. Zhang, and D. S. Xu, “Morphological control of ZnO nanostructures by electrodeposition,” Journal of Physical Chemistry B, vol. 109, pp. 13519-13522, 2005.
[112] S. P. Garcia, and S. Semancik, “Controlling the morphology of zinc oxide nanorods crystallized from aqueous solution: The effect of crystal growth modifiers on aspect ratio,” Chemistry Materials, vol. 19, pp. 4016-4022, 2007.
[113] S. Yamabi, and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions,” Journal of Materials Chemistry, vol. 12, pp. 3773-3778, 2002.
[114] D. Vernardou, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis, and N. Katsarakis, “PH effect on the morphology of ZnO nanostructures grown with aqueous chemical growth,” Thin Solid Films, vol. 515, pp. 8764-8767, 2007.
[115] S. M. Pintus, S. I. Stenin, A. I. Toropov, E. M. Trukhanov, and V. Yu. Karasyov, “ Morphological transformations of thin heteroepitaxial films,” Thin Solid Films, vol. 151, pp. 275-288, 1987.
[116] D. Pradhan, M. Kumar, Y. Ando, and K. T. Leung, “ Efficient field emission from vertically grown planar ZnO nanowalls on an ITO-glass substrate,” Nanotechnology, vol. 19, pp. 035603-035609, 2008.
[117] W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, “ ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy,” Advanced Materials, vol. 14, pp. 1841-1843, 2002.
[118] T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “ Exciton spectra of ZnO epitaxial layers on lattice-matched substrates grown with laser-molecular-beam epitaxy,” Applied Physics Letters, vol. 76, pp. 3549-3551, 2000.
[119] S. M. Mohammad, Z. Hassan, N. M. Ahmed, R. A. Tablib, N. M. Abd-Alghafour, and A. F. Omar, “ Hydrothermal growth and characterization of vertically well-aligned and dense ZnO nanorods on glass and silicon using a simple optimizer system,” American Institute of Physics, vol. 1733, pp. 020032-020036, 2016.
[120] M. Guo, P. Diao, and S. Cai, “ Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties,” Applied Surface Science, vol. 249, pp. 71-75, 2005.
[121] G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Ga-doped ZnO nanorod/p-Si heterojunction diode prepared using a hydrothermal method,” Nanoscale, vol. 6, pp. 1840-1847, 2014.
[122] G. Z. Jia, B. X. Hao, X. C. Lu, X. L. Wang, Y. M. Li, and J. H. Yao, “Solution growth of well-aligned ZnO nanorods on sapphire substrate,” ACTA Physica Polonica A, vol. 124, pp. 74-77, 2013.
[123] S. W. Shin, Y. B. Kwon, A. V. Moholkar, G. S. Heo, I. O. Jung, J. H. Moon, J. H. Kim, and J. Y. Lee, “Hydrothermal grown ZnO buffer layer for the growth of hughly (4 wt%) Ga-doped ZnO epitaxial thin films on MgAl2O4 (111) substrates,” Journal of Crystal Growth, vol. 322, pp. 45-50, 2011.
[124] H. Q. Le, G. K. L. Goh, and L. L. Liew, “Nanorod assisted lateral epitaxial overgrowth of ZnO films in water at 90 oC,” The Royal Society of Chemistry, vol. 16, pp. 69-75, 2014.
[125] J. H. Kim, E. M. Kim, D. Andeen, D. Thomson, S. P. DenBaars, and F. F. Lange, “Growth of heteroepitaxial ZnO thin films on GaN-buffered Al2O3 (0001) substrates by low-temperature hydrothermal synthesis at 90 oC,” Advanced Functional Materials, vol. 17, pp. 463-471, 2007.
[126] O. Lupan, T. Pauporte, and B. Viana, “Low-voltage UV-electroluminescence from ZnO/p-GaN light-emitting diodes,” Advanced Materials, vol. 22, pp. 3298-3302, 2010.
[127] C. H. Chen, S. J. Chang, S. P. Chang, M. J. Li, T. J. Hsueh, and C. L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Applied Physics Letters, vol. 95, pp. 223101-1-223101-3, 2009.
[128] L. Zhang, Q. Li, L. Shang, Z. Zhang, R. Huang, and F. Zhao, “Electroluminesence from n-ZnO: Ga/p-GaN heterojunction light-emitting diodes with different interfacial layers,” Journal of Physics D: Applied Physics, vol. 45, pp. 485103-1-485103-7, 2012.
[129] K. H. Baik, H. Kim, J. Kim, S. Jung, and S. Jang, “Nonpolar light emitting diode with sharp near-ultraviolet emissions using hydrothermal grown ZnO on p-GaN,” Applied Physics Letters, vol. 103, pp. 091107-1-091107-3, 2013.
[130] T. E. Cook, C. C. Fulton, W. J. Mecouch, K. M. Tracy, R. F. Davis, and E. H. Hurt, “Measurement of the band offsets of SiO2 on clean n- and p-type GaN(0001),” Journal of Applied Physics, vol. 93, pp. 3995-4004, 2003.
[131] M. Nawaz, E. Marstein, and A. Holt, “Design analysis of ZnO/c-Si heterojunction solar cell,” Photovoltaic Specialists Conference, vol. 35, pp. 002213-002218, 2010.
[132] L. H. Quang, C. S. Jin, E. Fitzgerald, and L. K. Ping, “ZnO nanorods grown on p-GaN using hydrothermal synthesis and its optoelectronic devices application,” Research Gate, vol. 56, pp. 523-546, 2010.
[133] C. H. Chen, S. J. Chang, S. P. Chang, M. J. Li, I. C. Chen, T. J. Hsueh, and C. L. Hsu, “Novel fabrication of UV photodetector based on nanowire/p-GaN heterojunction,” Chemical Physics Letters, vol. 476, pp. 69-72, 2009.
[134] H. Abdulgafour, Z. Hassan, F. Yam, and C. Chin, “Sensing devices based on ZnO hexagonal tube-like nanostructures grown on p-GaN heterojunction by wet thermal evaporation,” Thin Solid Films, vol. 540, pp. 212-220, 2013.
[135] L. Zhang, F. Zhao, C. Wang, F. Wang, R. Huang, and Q. Li, “Optoelectronic characteristics of UV photodetector based on GaN/ZnO nanorods pin heterostructures,” Electronic Materials Letters, vol. 11, pp. 682-686, 2015.
[136] P. Yang, H. Yan, J. Johnson, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, ” Controlled growth of ZnO nanowires and their optical properties,” Advanced Functional Materials, vol. 12, pp. 323-331, 2002.
[137] M. Guo, P. Diao, and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: dependence of morphology and alignment ordering upon preparing conditions,” Journal of Solid Chemistry, vol. 178, pp. 1864-1873, 2005.
[138] Y. R. Li, C. Y. Wan, C. T. Chang, Y. C. Huang, W. L. Tsai, C. H. Chou, K. Y. Wang, and H. C. Cheng, “Annealing effect on the photoluminescence characteristics of ZnO-nanowires and the improved optoelectronic characteristics of p-NiO/n-ZnO nanowire UV detectors,” Japanese Journal of Applied Physics, vol. 54, pp. 06FG05-1-06FG05-5, 2015.