簡易檢索 / 詳目顯示

研究生: 庫馬迪內
Dinesh, Kumar
論文名稱: (Na₀.₅₂K₀.₄₄₂₅Li₀.₀₃₇₅)(Nb₀.₈₈Sb₀.₀₈Ta₀.₀₄)(NKLNS-xTa)NKN基高壓電性能陶瓷材料的合成與特性研究,以及壓縮型壓電加速度計的設計與模擬
The Synthesis and Characterizations of (Na 0.52 K 0.4425Li0.0375) (Nb 0.88 Sb 0.08 Ta 0.04) (NKLNS-xTa) (NKN based Ceramics Materials with high Piezoelectric, Qm and Design & Simulation of Compression Type Piezo accelerometer
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 智慧半導體及永續製造學院 - 半導體製程學位學程
Program on Semiconductor Manufacturing Technology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 107
外文關鍵詞: Piezoelectric Ceramic, NKN Base, d33, Harmonic Simulation, Resonance Frequency, Solid-State Reaction Method, g33, Ꜫ33T/Ꜫ0, Qm, Ansys, Kp
相關次數: 點閱:38下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this study, Lead-free (Na 0.52 K 0.4425Li0.0375) (Nb 0.88 Sb 0.08 Ta 0.04) (NKLNS-xTa) piezoelectric ceramic with high piezoelectric properties is developed by a process called solid-state reaction method. The piezo-electric properties are discussed by changing the sintering temperature (1050-1110 ℃), and special attention was paid to the composition design through which the dielectric and piezoelectric properties of the (Li, Ta, Sb) modified NKN systems were significantly promoted.
    The best composition ratios for (Na 0.52 K 0.4425 Li 0.0375) (Nb 0.88 Sb 0.08)-xTa (NKLNS-xTa) (x=0.04). The better piezoelectric properties, the d33=348 pC/N, d31=141.68 (pC/N) Kp = 48% and kt = 47%, and tanδ = 0.036, Qm=59.74 and dielectric constant (Ꜫ33T/Ꜫ0) = 2324 (at 1 kHz) When doped 0.1 mole %MnCO3, the piezo-electric and dielectric properties were improved and exhibited d33 = 364 pC/N, d31=143 (pC/N) Kp = 0.44%, Kt=0.45 Qm =126, tanδ = 0.032 ,Ꜫ33T/Ꜫ0 = 2400 (at 1 kHz).As 0.1 mole% MnCO3 doped NKN ceramics, the piezoelectric and dielectric properties can be improved and have the values of d33 = 364 pC/N, Kp = 0.44%, g33= 17.13 (mV.m/N), g15 = 16.2 (mV.m/N), g31= 6.73 (mV.m/N), Qm = 126, Ꜫ33T/Ꜫ0 = 2400 (at 1 kHz).
    In addition, the high g value of ceramics composition (Na0.48K0.48Li0.04) NbO3 (NKLN) is developed. Before doped 0.1 mole % MnCO3, the piezo-electric and dielectric properties are d33 = 136 pC/N, Kp = 0.48%, Qm =59,Ꜫ33T/Ꜫ0 =410(at 1 kHz) tanδ = 0.031.With doping of 0.1 mole % MnCO3 optimum piezoelectric properties are the D33=167 pC/N, Kp = 42% and kt = 44%, g33= 40.7 (mV.m/N), g15 = 36(mV.m/N), g31= 13.6(mV.m/N), Qm = 90, Ꜫ33T/Ꜫ0 =465(at 1 kHz) and tanδ = 0.029. at 1090-1110℃ sintering temperature for 4 hours.
    Later, this improved high g ceramic composition was used to make a ring shape of ceramic with a mechanical structure to assemble the accelerometer. A mechanical based structure was simulated using an ANSYS workbench software to achieve the optimum structure dimensions with high output voltage The properties obtained from the analysis result as g33= 40.7(mV.m/N), g15 = 36(mV.m/N), and g31=13.6 (mV.m/N). The modal Analysis in ANSYS shows that deformation is at 4th mode of Harmonic simulation 17365Hz and Harmonic Analysis shows the resonance frequency at 17 KHz.

    ABSTRACT II TABLE OF CONTENTS III LIST OF FIGURES VIII LIST OF TABLES XII CHAPTER 1: - INTRODUCTION 1 1.1 INTRODUCTION OF PIEZOELECTRIC ACCELEROMETER 1 1.2 RESEARCH BACKGROUND AND MOTIVATION 1 1.3 THESIS STRUCTURE 2 CHAPTER 2: - BASIC THEORY, HISTORY, & LITERATURE REVIEW 3 2.1 PIEZOELECTRIC MATERIALS 3 2.2 HISTORY AND DISCOVERY OF PIEZOELECTRIC MATERIALS 3 2.3 PIEZOELECTRIC EFFECT AND PRINCIPLE 4 2.3.1DIRECT PIEZOELECTRIC EFFECT 4 2.3.2 INVERSE PIEZOELECTRIC EFFECT 5 2.4 PIEZOELECTRIC CRYSTALS 6 2.4.1 PIEZOELECTRIC SINGLE CRYSTALS 6 2.4.1.1 CHARACTERISTICS OF PIEZOELECTRIC SINGLE CRYSTALS 6 2.4.2 PIEZOELECTRIC POLY CRYSTALS 7 2.4.2.1 STRUCTURE OF PIEZOELECTRIC POLY CRYSTALS 7 2.4.2.2 PROPERTIES OF PIEZOELECTRIC POLY CRYSTALS 7 2.4.3 PIEZOELECTRIC COMPOSITE MATERIALS 8 2.5 PIEZOELECTRIC CRYSTAL STRUCTURE 8 2.5.1 ORIGIN OF PIEZOELECTRIC CRYSTALS 8 2.5.2 LATTICE AND CRYSTAL SYSTEM 9 2.6 TOLERANCE FACTOR 11 2.7 PIEZOELECTRIC CHARACTERISTIC PARAMETERS 12 2.7.1 OPERATIONAL DIRECTIONS AND MODE OF PIEZOELECTRIC MATERIALS 12 2.7.2 PIEZOELECTRIC EQUATIONS 14 2.8 FERROELECTRIC EFFECT 15 2.9 DIELECTRIC PRINCIPLE 18 2.9.1 DIELCTRIC EFFECT 18 2.9.2 DIELECTRIC LOSS 20 2.10 SODIUM POTASSIUM ALUMINATE BASED LEAD FREE CERAMIC MATERIALS 23 2.11 DIFFERENT TYPES OF ACCELEROMETER GAUGE STRUCTURE 26 2.11.1 TYPES OF ACCELEROMETER GAUGE STRUCTURE 26 2.11.2 INTRODUCTION TO PIEZOELECTRIC ACCELEROMETER 29 CHAPTER 3: - EXPERIMENTAL METHODS 32 3.1 PRODUCTION OF PIEZOELECTRIC CERAMIC RAW MATERIALS 32 3.1.1 PREPARATION OF NKLNS-xTa 32 3.1.2 PREPARATION OF NKLNS-xTa CERAMIC POWDER WITH HIGH VOLTAGE CONSTANT(g) 32 3.1.3 PREPARATION OF CERAMIC BLOCKS 33 3.2 MEASUREMENT AND ANALYSIS OF CERAMIC BODY PROPERTIES 35 3.2.1 XRD ANALYSIS 35 3.2.2 SEM ANALYSIS 36 3.2.3 DENSITY MEASUREMENT 37 3.2.4 DIELECTRIC CONSTANT TEMPERATURE CURVE MEASUREMENT 37 3.2.5 MEASUREMENT OF PIEZOELECTRIC COEFFICIENT AND PIEZOELECTRIC PROPERTIES 38 3.2.6 MEASUREMENT OF ELASTIC COEFFICIENT AND STIFFNESS COEFFICIENT 43 3.2.7 PIEZOELECTRIC COEFFICIENT 44 3.2.8 FERROELECTRIC HYSTERESIS CURVE MEASUREMENT 45 3.2.9 ACCELERATION GAUGE MEASUREMENT SYSTEM 46 CHAPTER 4: - EXPERIMENTAL AND PERFORMANCE DATABASE ANALYSIS 47 4.1 IMPACT OF DIFFERENT X ON NKLNS-xTa 47 4.1.1 XRD OF NKLNS-xTa WITH DIFFERENT Ta CONTENTS 47 4.1.2 SEM AT DIFFERENT -xTa CONTENTS PARTICLE SIZE AND DENSITY OF NKLN-xTa 49 4.13 DIFFERENT DIELECTRIC PIEZOELECTRIC AND FERROELECTRIC PROPERTIES OF NKLNS-xTa 50 4.14 XRD OF NKLNS-xTa IN TWO STEP SINTERING PROCESS 54 4.2 EFEECT OD DOPING MnCO3 TO NKLNS-0.04Ta 54 4.2.1 XRD ANALYSIS OF NKLNS-0.04Ta + X MOLE % OF MnCO3 55 4.2.2 SEM, PARTICLE SIZE DISTRIBUTION OF NKLNS-0.04Ta + X MOLE % OF MnCO3 56 4.2.3 DIELECTRIC PIEZOELECTRIC AND FERROELECTRIC PROPERTIES OF NKLNS-0.04Ta + X MOLE % OF MnCO3 58 4.3 NKLNS-0.04Ta + 0.1 MOLE % OF MnCO3 61 4.3.1 XRD OF NKLNS-0.04Ta + 0.1 MOLE % OF MnCO3 61 4.3.2 SEM WITH CHANGING SINTERING TEMPERATURE PARTICLE SIZE DISTRIBUTION OF NKLNS-0.04Ta + 0.1 MOLE % OF MnCO3 62 4.3.3 PIEZOELECTRIC PROPERTIES OF NKLNS-0.4 Ta + 0.1 MOLE % OF MnCO3 WITH CHANGING TEMPERATURE 65 4.4 EFFECT OF DOPING MnCO3 ON NKLN 66 4.4.1 XRD OF NKLN + 0.1 MOLE % OF MnCO3 66 4.4.2 SEM, PARTICLE SIZE DISTRIBUTION OF NKLNS-0.04Ta + 0.1 MOLE % OF MnCO3 67 4.4.3 DIELECTRIC PIEZOELECTRIC AND FERROELECTRIC PROPERTIES OF NKLN+ X MOLE % OF MnCO3 69 4.5 CHANGING OF SINTERING TEMPERATURE OF NKLN + X MOLE % OF MnCO3 73 4.5.1 XRD OF NKLN + 0.1 MOLE % OF MnCO3 WITH SBANGING SINTERING TEMPERATURE 73 4.5.2 SEM, PARTICLE SIZE DISTRIBUTION AND DENSITY OF NKLN + 0.1 MOLE % OF MnCO3 75 4.5.3 PIEZOELECTRIC PROPERTIES OF NKLN + 0.1 MOLE % OF MnCO3 WITH DIFFERENT SINTERING TEMPERATURE 76 4.6 PIEZOELECTRIC ACCELEROMETER 78 4.6.1 STRUCTURAL DESIGN OF COMPRESSION TYPE PIEZOACCELEROMETER 78 4.6.2 CALCULATIONS OF PIEZOELECTRIC COEFFICIENT MATRIX FOR PIEZO MATERIAL80 4.6.3 ANALYSIS SIMULATION ANALYSIS OF COMPRESSION TYPE PIEZOACCELEROMETER 85 CHAPTER 5: CONCLUSION AND FUTURE RECOMMENDATIONS 89 5.1 CONCLUSION 89 5.1.1 (Na 0.52 K 0.4425 Li 0.0375) (Nb 0.92 Sb 0.08 Ta 0.04) O3 PIEZOELECTRIC CERAMICS. 89 5.1.2 (Na 0.48 K 0.48 Li 0.04) (Nb) O3 Piezoelectric Ceramics 89 5.1.3 ANSYS Simulation of (Na 0.52 K 0.4425 Li 0.0375) (Nb 0.92 Sb 0.08 Ta 0.04) O3 PIEZOELECTRIC CERAMICS IN COMPRESSION TYPE ACCELEROMETER 89 FUTURE prospectus 90 References 91

    [1] J. Curie and P Curie, “Development par compression de l’electricite polaire dans les cristaux hemiedres a faces inclines,” Bulletin de mineralogie, vol 3, no. 4. pp 90-93,1880
    [2] S. Roberts, “Dielectric and piezoelectric properties of barium titanate”, Physical Review, vol 71, no 12, P.890,1947
    [3] Zhu Chuanche, “Electronic and Optoelectronic Materials”, Beijing National Defence Industry Press,2007
    [4] Yinglang, “Electronic Ceramics: piezoelectric ceramics”, Quanxin Science and technology Brain book,1994
    [5] W. Kanzig, “Solid State Physics vol.4’’, Seitz and D. Turnbull, Eds. New York: Academics, pp.1-197,1957
    [6] Hearting, “Ferroelectric thin film for Electronic application”, Journal of Vacuum Science & Technology
    [7] F. Seitz. Turnbull and H. Ehrenreich, Solid State Physics, Academic press ,1968
    [8] H. Jaffe, “Piezoelectric Ceramics” Journal of the American Ceramic Society, Vol. 41, no.11, pp. 494-498,1958
    [9] C.A-Paz De Araújo. CUchiaro. Scott and J.F. Scott, “Fatigue free ferroelectric Capacitors and platinum Electrodes”, Nature, Vol. 374, pp 627-629,1995
    [10] Qiu Bixiu, “Electronic Ceramic Materials”, Quanxin Science and Technology Books,1997
    [11] L. Jin, F. Li, and S. Zhang, “Decoding the fingerprint of Ferroelectric Loops: Comprehension of material properties and structures”, Journal of American Ceramic Society, Vol 97, no. 1, pp. 1-27,2014
    [12] A.M. Badr, H.A. Elsheikh, and I.M. Ashraf, “Impact of Temperature and Frequency on the dielectric properties insight into the nature of charge transports in the TI2S layer single crystal”, Journal of modern physics, Vol 2011,2011
    [13] H. Jaffe, “Piezoelectric Ceramics”, Journal of American Ceramic Society, Vol.41, no. 11, pp 494-498,1958
    [14] Y. Guo, K.I. Kakimoto and H. Ohsato, “Phase transitional behavior and piezoelectric properties of (Na 0.5 K0.5) NbO3-LiNbO3 Ceramic”, Applied Physics Letters, Vol. 85, p.4121,2004
    [15] Z.Y. Shen, K. Wang, and J.F.Li, “Combined effect of Li Content and Sintering Temperature on polymorphic phase boundary and electrical properties of Li/Ta co-doped (Na, K) NbO3 lead-free piezoceramic”, Applied Physics A, Vol 97, pp-911-917 2009
    [16] D. Lin, K.W. Kwok and H.L.W. Chan, Microstructure, “phase transition and electrical properties of (K 0.5 N 0.5)-xLix (Nb1-yTay) O3 lead-free piezoceramics”, Journal of Applied physics vol.102, p. 034102,2007
    [17] X. Pang, J. Qiu K, Zhu, and B. Shao, “Impact of Sintering condition on piezoelectric properties of “(Na 0.4425 Na 0.52 Li 0.0375) (Nb 0.8925 Sb 0.07 Ta 0.0375) O3 lead-free piezoelectric ceramics”, Journal of Applied Material Science: Materials in Electronics, vol.22, pp 1783-1787,2011
    [18] J. Zhang, Y. Qin, Y. Gao, W. Yao, M. Zhao and D. Damjanovic, “Improvement of physical properties of KNN based Ceramics modified by two-step sintering”, Journal of American Ceramic Society, vol 97, pp 759-764,2014
    [19] X. Zhao, B. Zhang, L. Zhu, L. Zhao, and P. Zhao, “Study of polymorphic phase boundary in (Na, K, Li) (Nb, Ta, Sb) O3 Piezoelectric Ceramic”, Journal of Physics D: Applied physics vol. 47, p. 0651052014
    [20] J. Wu, D. Xiao, and J. Zhu, “Potassium sodium niobate free from lead-based piezo-electric materials: past present and future of phase boundaries”, Chem Rev, Vol.115, pp. 2559-95, Apr 8, 2015
    [21] A. Albarbar, S. Mekid, A. Starr, R. Pietruszkiewicz, “Suitability of MEMS accelerometer for condition monitoring: An Experimental Study”, Sensor 8(2),2008,784-799
    [22] R. Gao, L. Zhang, “Micromachined microsensors for manufacturing”, IEEE Instrumentation and Measurement Magazine 7(2),2004,20-26
    [23] G. Hu, B. Xu, X. Yan, J. Li, F. Gao, Z. Liu, Y. Zhang, H. Sun, “ Fabrication and electrical properties of Ba(Zr 0.2 Ti 0.8 )O3-(Ba 0.7 Ca 0.3)TiO3 ceramic using plate-like BaTiO3 particles as template ”, Journal of Material Science: Materials in Electronics 25(4) 2014,1817-1827
    [24] Xu. Jianlong, “Acceleration microsensors”,2002
    [25] W. Zhou, J., H. Yu, X. He, P. Peng, “Analytical Study of Temperature Coefficient of Bulk MEMS Capacitive Accelerometer Operating in close loop mode”, Sensors and Actuators A: physical 290,2019,239-247
    [26] M. Keshavarzi, J.Y. Hasani, “Design and optimization of fully differential capacitive MEMS accelerometer based on surface micromachining”, Microsystem Technologies 25(4),2019,1369-1377
    [27] S. Kavitha, R.J. Danial, K. Sumangala, “Design and analysis of MEMS Comb Drive Capacitive Accelerometer for SHM And Seismic applications”, Measurement 93,2016,327-339.
    [28] K.Y. Yang, M.K. Zhu, Y.D. Hou, H. Yan, H. Yan, H., “Compressive Type Accelerometer made by lead-free (Bi 0.5 Na 0.5) TiO3 based piezoceramics”, 2011 Symposium on Piezoelectricity, Acoustic Wave and Device Applications (AWADA), IEEE,2011, pp. 429-432
    [29] P. Piezotronics, “Sensing geometries for piezoelectric accelerometer”, https://www.pcb.com/sensors-for-measurement/accelerometers/sensing geometries.
    [30] Qu Yuan Fang, “Functional Ceramic Materials”, Beijing: Chemistry I., II., pp. 28-66,2003
    [31] Yongzie Zhao, “Influence of B Site non-stoichiometry on structural and electrical properties of KNLNS lead-free piezoelectric ceramics”, Journal of Materials Letters, Vol. 75, no. 15, p. 146-148,2012
    [32] K. Wang and F. Li, “Domain Engineering of lead-free Li modified (Na, K) NbO3 polycrystals with highly enhanced piezoelectricity”, Advanced Functional Materials, vol. 20, no. 12, pp. 1924-1929,2010
    [33] Q. Liu, F.Y. Zhu, B.P. Zhang, L. Li and J.F.Li, “Dielectric and Ferroelectric Properties of AgSbO3-modified (Na, K, Li) (Nb, Ta) O3 lead-free piezoceramics”, Journal of Material Science: Materials in Electronics, Vol. 26, PP. 9309-9315,2015
    [34] Q. Lou, J. Zheng, Z. Man, L. Zheng, C. Park, and G.Li, “Effect of Ba: Ti on ferroelectric properties of LiF doped BaTiO3 Ceramics”, Journal of Material Science: Materials in Electronics, Vol.30, pp. 6556-6563,2019
    [35] C. Yang, E. Sun, B. Yang, and W. Cao, “Theoretical Study on Local Domain Pinning Effect due to Defect Dipole Arrangement”, Journal of Physics D: Applied Physics, Vol. 51, no. 41, p. 415303,2018
    [36] Kim et al. Material Research Bulletin 96,121-125,2017
    [37] F. Rubio-Marcos, “Effect of Zno on Structure, microstructure and electrical properties of KNN modified piezoceramics”, Journal of European Ceramic Society, Vol. 29, No. 14, pp. 3045-3052,2009
    [38] Y. Liu et al., “Dielectric and Impedance Spectroscopy Analysis of lead-free (1-x) (K 0.44 Na 0.52 Li 0.04) (Nb 0.86 Ta 0.10 Sb 0.04)-xBaTiO3 Ceramics”, Ceramics International, Vol. 45, No. 10, pp. 13347-13353,2019
    [39] M. Miah, M, Khan and A.A. Hossein, “Synthesis and Enhancement of multiferroic Properties of x (Ba 0.95 Sr 0.05 TiO3) -(1-x) Bi (Fe 0.90 Dy 0.10) O3 Ceramics”, Journal of Magnetism and Magnetic Materials, Vol. 397, pp 39-50 ,2016
    [40] A. Mahmood, A. Naeem, and Y. Iqbal, “Dielectric and Impedance Spectroscopic Investigation of the Ba 0.3 Sr 0.7 Ti 0.873 Zr 0.09 Mn 0.03 O3 Ceramic Systems”, Ceramic International, Vol. 42, no. 4, pp. 4860-4865,2016
    [41] M. Saidi, A Chaouchi, S, S D’Astorg, M. Rguiti, and C. Courtois, “Dielectric and Ferroelectric properties and Impedance Spectroscopy Analysis of the (Na 0.535 K 0.480 Li 0.0580) (Nb 0.90 Ta 0.10) O3 based lead-free Ceramics”, Journal of Advanced Dielectric, vol. 5, no. 1, p.1550007,2015
    [42] M.K. Adak and D. Dhak, “Assessment on strong relaxation on BaTiO3 modified by Mn2+ and Pr3+, K+ at A and B sites Respectively”, Material Research Express, Vol. 6, no. 12, p. 125082,2019
    [43] S. Steinsvik, R. Bugge, J. Gjonnes, J. Tafto and T. Norby, “The Defect Structure of SrTiO3-xFexO3-y (x=0 - 0.8) Investigated by Electrical Conductivity Measurements and Electron Energy Loss Spectroscopy (EELS)”, Journal of Physics and Chemistry of Solids, Vol. 58, No. 6, pp. 969-976,1997
    [44] Y. Liu et al., “Dielectric and Impedance Spectroscopy Analysis of lead-free (1-x) (Na 0.52 K 0.44 Li 0.04) (Nb 0.86 Ta 0.10 Sb 0.04) O3-xBaTiO3 Ceramics”, Ceramics International, Vol. 45, no. 10, pp. 13347-13353,2019
    [45] C.M. Weng et. al., “Effect of post-annealing on electrical properties of CuF2-xH2O DOPED KNN Ceramics for linear ultrasonic motor”, Ceramics International, Vol. 44, No. 14, pp. 16173-16180,2018
    [46] L. Liu, H. Fan, L. Fang, X. Chen, H. Dammak, and M.P. Thi, “Effect of Na/K evaporation on electrical properties and intrinsic defects in Na 0.5 K 0.5 NbO3 Ceramics”, Materials Chemistry and Physics, Vol. 117, no. 1, pp. 138-141,2009
    [47] C.C. Tsai et. al., “Effect of BaTiO3 Template on the electric characteristics of (Ba, Ca) (Ti, Sn, Hf) based ceramics under reducing atmosphere for actuator applications”, Vol. 47, No. 5, pp. 7207-7217,2021
    [48] C.C. Tsai et. al., “Investigation of piezoelectric and anti-reduction properties of (Ba, Ca) (Ti, Sn, Hf) textured ceramic prepared under low oxygen partial pressure conditions at low sintering temperatures”, Journal of European Ceramic Society, Vol. 41, no. 4, pp. 2472-2481,2021
    [49] Shujun Zhang, Ru Xia, Thomas R. Shrout, Guo Zhong Zhang, Jinfeng Wang, “Characterization of lead-free (K0.5Na0.5) NbO3-LiSbO3 piezoceramics”, Solid State Communications, Vol. 141, No. 12, pp. 657-679,2007
    [50] Min-Ku Lee, Seung-Ho Han, Kyu-Hyun Park, Jin-Ju Park, Whung-Whoe Kim, Won-Ju Hwang, and Gyoung-Ja Lee, “Design Optimization of Bulk Piezoelectric Acceleration Sensor for Enhanced Performance”, Sensors 2019, 19, 3360
    [51] Miguel Alguero, Carlos Alemany, and Lorena Pardo, “Method for obtaining the full set of Linear Electric, Mechanical, and Electromechanical Coefficients and All Related Losses of a Piezoelectric Ceramic”, J. Ame. Ceramics Society 87[2] 209-15(2004)
    [52] Shun Zhang, Edward F. Alberta, E. Eitel, Clive A. Randall, and Thomas R. Shrout, “Elastic, Piezoelectric and Dielectric Characterization of Modified BiScO3 -PbTiO3 Ceramics”, IEEE TRANSACTION OF ULTRASONICS, VOL. 52, NO. 11, Nov 2005

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE