| 研究生: |
曾品緁 Tseng, Pin-Chieh |
|---|---|
| 論文名稱: |
摺板結構金屬擴張網之吸音性能研究 A study on Sound absorption performance of expanded metal mesh with folding structure |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 共振吸音結構 、金屬擴張網 、摺板結構 、吸音係數 、實場驗證 |
| 外文關鍵詞: | Acoustic resonance structure, Expended Metal Mesh, Folding Structure, Sound Absorption Coefficient, Field Measurement |
| 相關次數: | 點閱:207 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
建築聲學中迴響時間(Reverberation time, RT)是重要的因子,當需要語言清晰度的室內空間多用光滑表面材料時,可能造成迴響時間過長、語音不清晰等狀況,故依據適當的空間用途運用合適的吸音材料,方能提供較佳之音環境。目前吸音主要有二大原理,分別為共振吸音結構(acoustic resonance structure)及多孔材料(porous materials)構成之吸音材料。
共振吸音結構是透過薄板或薄膜構造壓縮空氣層容積,產生共振效果達到吸音,以吸收低頻為主,可分為穿孔共振、微穿孔共振及薄板共振。市面常見之穿孔板吸音材料多為金屬、塑膠或木材等,但考量使用年限、防水及結構硬度,公共空間中大多選擇金屬類材料,又以牆面及天花板為主要對象。微穿孔板則為需高度生產技術之板材,應用上不像穿孔板需搭配多孔質吸音材料(如玻璃棉)使用,吸音頻率寬度可優於一般的穿孔板共振吸音結構,但製造成本相對也較高。
本研究以金屬擴張網為研究對象,以開發高吸音性能之構造為目標,首先進行三階段之摺板原型實驗,並將性能最佳之摺板組合裝設於一辦公空間天花板,進行建築聲學指標參數測試。第一階段的實驗試體為4種單板擴張網與 3種空氣層搭配,共12組;第二階段將單板實驗中吸音性能最佳之type C凹摺為盒狀構造,設定3種試體高度搭配2種空氣層,共6組;為了使試體本身具有支撐結構,於第三階段進行摺板實驗,設計3種摺板形狀、3種試體高度及2種空氣層,共30種組合。
本研究於國立成功大學建築音響實驗室之迴響室(Reverberation Room)進行研究試體之吸音實驗,實驗方法為CNS 9056,評定方法為CNS 15218。研究結果顯示,摺板結構之金屬擴張網及板後空氣層搭配,可達到如微穿孔板之高吸音性能,加權吸音係數αw約0.65 ~ 0.85,其中板高度3 cm搭配空氣層20 cm之組合,即達到台灣高性能防音綠建材之標準(αw = 0.80)。最後,我們將摺板結構之金屬擴張網放置於辦公空間天花板,進行裝設前後之模擬及實測,裝設面積約總天花板之47.8 %,結果顯示摺板結構之金屬擴張網能有效降低迴響時間T30約0.25 ~ 0.46 s,同時也使語音清晰度C50及語言清晰度指標STI達到更好的等級。
The reverberation time (RT) is an important index of room acoustic, which is highly reflective material can cause long RT and speech unclarity. Therefore, chosen appropriate sound absorption material can provide a better sound environment. The resonant absorber structure is mainly targeting low frequency, that construction include perforated, micro-perforated and panel resonance. Consider with the restrictions in use, that metal material is better than plastic, wood etc. Micro-perforated panel is a high technical product, which is different from perforated sheet. It isn’t need to use porous materials for sound absorption. It is a high acoustic impedance with wider sound absorption frequency than perforated structure. However, it is highly cost of manufacture.
In this study, target the sound absorption structure with expanded metal mesh and folding structure. At first, the specimen was single panel. Second, folding the panel into a box. Third, the folding structure was designed. This study was tested in the architectural acoustics Lab of NCKU. The result showed folding structure could also achieved micro-perforated panel of sound absorption performance, which was αw = 0.65 ~ 0.85. The folding structure was also installed in office to do field measurement. However, it showed effectively decreased RT and improved speech clarity (C50 and STI).
(一)中文文獻
1. 馬大猷(1975)。微穿孔板吸音結構的理論和設計。中國科學,1,38-50。
2. 馬大猷(1988)。微穿孔板結構的設計。聲學學報,3,174-180。
3. 盧博堅,劉嘉俊(2011)。噪音控制與防治。台中市:滄海圖書資訊股份有限公司。
4. 劉鎧華(2014)。金屬板構造吸音率預測模式之研究。國立成功大學建築研究所博士論文,台南市。
(二)英文文獻
1. Bolt, R. H. (1947). On the design of perforated facing acoustic materials. Acoustical Society of America, 19(5), 917-921.
2. Barron, M., Arya, C., & Wright, P. J. (1993). Auditorium Acoustics and Architectural Design. UK: Taylor & Francis Group.
3. Beranek, L. L. (1996). Concert and Opera Halls: How they Sound. Acoustical Society of America, 99, 2637.
4. Bucciarelli, F., Malfense Fierro, G. P., & Meo, M. (2019). A multilayer microperforated panel prototype for broadband sound absorption at low frequencies. Applied Acoustics, 146, 134-144.
5. Christensen, C. L. (2002). Odeon Room Acoustics Program, Version 6.0, User Manual, Industrial, Auditorium and Combined Editions. DK: Technical University of Denmark.
6. Cobo, P. & Simón, F. (2019). Multiple-Layer Microperforated Panels as Sound Absorbers in Buildings: A Review. Buildings, 9(2), 53.
7. Davern, W. A., (1977). Perforated facings backed with porous materials as sound absorbers – an experimental study. Applied Acoustics, 10, 85-112.
8. Dhoore, L. G., & William H. S. (1980). Combination bulk absorber-honeycomb acoustic panels. U.S. Patent, No. 4, 235, 303.
9. David Egan, M. (1988). Architectural Acoustics. New York: McGraw-Hill Education.
10. Guo, W., & Min, H, (2015). A compound micro-perforated panel sound absorber with partitioned cavities of different depths. Energy Procedia, 78, 1617-1622.
11. Hermann von Helmholtz. (1954) On the Sensations of Tone as a Physiological Basis for the Theory of Music (2nd ed.). New York: Dover Publications Inc.
12. Houtgast, T., & Steneken, H. J. M. (1984). A multi-language evaluation of the RaSTI-Method for estimating speech intelligibility in auditoria, Acta Acustica united with Acustica, 54, 185-199.
13. Hodgson, M. (1999). Experimental investigation of the acoustical characteristics of university classrooms. Acoustical Society of America, 106, 1810.
14. Huang, S., Li, S., Wang, X. & Mao, D. (2017). Micro-perforated absorbers with incompletely partitioned cavities. Applied Acoustics, 126, 114-119.
15. Ingard, U. & Bolt, R. H. (1951). Absorption characteristics of acoustic material with perforated facing. Acoustical Society of America, 23, 533-540.
16. IEC 60268-16 (2011). Sound system equipment - Part 16: Objective rating of speech intelligibility by speech transmission index. Geneva, Switzerland: International Electrotechnical Commission.
17. Jefferson F. N., Thomas D. M., Willard N. W., David J. C., & Roy I. (1995). Lightweight honeycomb panel structure. U.S. Patent, No. 5, 445, 861.
18. Jung, S. S., Kim, Y. T., Lee, D. H., Kim, H. C., Cho, S. I., & Lee, J. K. (2007). Sound absorption of micro-perforated panel. Korean Physical Society, 50(4), 1044-1051.
19. Jongkwan, R., Hansol, S., & Yonghee, K. (2018). Effect of the suspended ceiling with low-frequency resonant panel absorber on heavy-weight floor impact sound in the building. Building and Environment, 139, 1-7.
20. Kaarlela-Tuomaala, A., Helenius. R., Keskinen, E., & Hongisto, V. (2009). Effects of acoustic environment on work in private office rooms and open-plan offices – longitudinal study during relocation, Ergonomics, 52, 1423-1444.
21. Klatte, M. Hellbrück, J. Seidel, J. Leistner, P. (2010). Effects of Classroom Acoustics on Performance and Well-Being in Elementary School Children: A Field Study. SAGE, 42(5), 659-692.
22. Kłosak, A. K. (2020). Design, simulations and experimental research in the process of development of sound absorbing perforated ceiling tile. Applied Acoustics, 161, 1-13.
23. Liu, K. H., Lai, R. P., & Kuo, C. H. (2013). A Study on the Sound-Absorbing Characteristics of Multi Air Layer, Applied Mechanics and Materials, 420, 92-98.
24. Liu, Z., Zhan, J., Fard, M., & Davy, J. L. (2017). Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel. Applied Acoustics, 121, 25-32.
25. Li, X., Wu, Q. Q., Kang, L. D., & Liu, B. L. (2019). Design of multiple parallel-arranged perforated panel absorber for low frequency sound absorption, Materials, 2099.
26. Maa, D. Y., (1998). Potential of microperforated panel absorber. Acoustical Society of America, 104, 2861-2866.
27. McGarrigle, R., Kevin, J. M., Dawes, P., Andrew, J. S., David, R. M., Johanna, G. B., & Amitay, S. (2014). Listening effort and fatigue: What exactly are we measuring? A British Society of Audiology Cognition in Hearing Special Interest Group ‘ white paper ’. International Journal of Audiology, 1-13.
28. Meng, H., Galland. M. A., Ichchou, M., Bareille, O., Xin, F. X., & Lu, T. J. (2017). Small perforations in corrugated sandwich panel significantly enhance low frequency sound absorption and transmission loss. Composite Structures, 182, 1-11.
29. Mosa, A. I., Putra, A., Ramlan, R., Prasetiyo, I., & Esraa, A.-A. (2019), Absorption coefficient of inhomogeneous MPP absorbers with multi-cavity depths. Applied Acoustics, 146, 409-419.
30. Passero, C. R. M., & Zannin, P. H. T. (2012). Acoustic evaluation and adjustment of an open-plan office through architectural design and noise control. Applied Ergonomics, 43(6), 1066-1071.
31. Peng, F. (2018). Sound absorption of a porous material with a perforated facing at high sound pressure levels. Sound and Vibrations, 425, 1-20.
32. Rose, P. M., & Jia Y. (1991). Honeycomb noise attenuation structure. U.S. Patent, No. 5, 041, 323.
33. Ricciardia, P., & Buratti, C. (2018). Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Building and Environment, 127, 23-36.
34. Rachel, L. M., Roy, K. S. (2020). Open plan office space? If you're going to do it, do it right: A fourteen-month longitudinal case study. Applied Ergonomics, 82, 102933.
35. Sakagami, K., Morimoto, M., & Yairi, M., (2008). Application of microperforated panel absorbers to room interior surfaces. Acoustics and Vibrations, 13(3), 120-124.
36. Toyoda, M., Sakagami, K., Takahashi, D. & Morimoto, M., (2011). Effect of a honeycomb on the sound absorption characteristics of panel-type absorbers. Applied Acoustics, 72(12), 943-948.
37. Tan, W. H., Afendi, M., Ahmad, R., Daud, R., Shukry, M., &. Cheng, E.M. (2015), Sound absorption analysis on micro-perforated panel sound absorber with multiple size air cavities. Mechanical & Mechatronics Engineering, 15(5), 71-76.
38. Wang, C., Cheng, L., Pan, J., & Yu, G. (2010). Sound absorption of a micro-perforated panel backed by an irregular-shaped cavity. Acoustical Society of America, 127(1), 238-246.
39. Wang, J., Rubini, P., & Qin, Q. (2017). Application of a porous media model for the acoustic damping of perforated plate absorbers. Applied Acoustics, 127, 324-335.
40. Wang, D. W., Wen, Z. H., Glorieux, C., & Ma, L. (2020). Sound absorption of face-centered cubic sandwich structure with micro-perforations. Materials Design, 186.
41. Yu, X., Fang, H., Cui, F., Cheng, L., & Lu, Z. (2019). Origami-inspired foldable sound barrier designs. Sound and Vibrations, 442, 514-526.