簡易檢索 / 詳目顯示

研究生: 黃文劭
Huang, Wan-Shao
論文名稱: 具磁回復扭矩之二自由度音圈球型馬達設計與模擬
Design and Simulation of two-degree-of-freedom voice coil spherical motor with magneto restoring torque
指導教授: 劉建聖
Liu, Chien-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 141
中文關鍵詞: 球型制動器球型馬達音圈馬達磁回中力音圈力
外文關鍵詞: Spherical motor, Spherical actuator, Voice coil actuator, magnetic restoring torque
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨加工技術日益發達,一些原本較難加工的形狀已成為可能,這也使的在20世紀中提出球型馬達被人重新提起,在許多研究及實作驗證下,球型馬達逐漸從概念慢慢成為未來有機會運用到實務方面的馬達設計。
    球型馬達的驅動原理與傳統的馬達驅動原理都是通過電磁力驅動,然而不同種的磁力交互運動,及幾何形狀的設計都將影響該馬達的性能與特性,進而影響該馬達設計適用的場域。球型馬達相對於傳統馬達增加至少1個自由度的驅動設計,需額外考量個別自由度驅動與彼此的影響,因此儘管球型馬達驅動原理大同小異,仍然有研究透過不同的幾何設計,提出不同性能之設計。
    此論文為接續本實驗室前面兩個球形馬達設計,以傳統音圈馬達作動原理與理論下提出另一種磁路設計,透過將磁鐵N極雙向排列的方式,使單一線圈兩邊均能提供同方向的勞倫茲力,相對於比較期刊設計出力值提升,並以扼鐵與磁鐵的幾何搭配使該設計在無通電下有恢復水平的磁回復力,增強其可操控性。接著,以ANSYS Maxwell對設計的磁路結構進行電磁模擬,並與選定的比較設計之模擬檔比較討論,並建立簡單的數學模型分析其動態性。

    With the continuous advancement of processing technology, shapes that were previously difficult to manufacture have now become possible. This has rekindled interest in the spherical motor concept, first proposed in the 20th century. Through extensive research and practical verification, the spherical motor has gradually evolved from a mere concept to a potential future application in practical motor design.
    This thesis builds on the previous two spherical motor designs developed in our laboratory, proposing a new magnetic circuit design based on the operating principles and theories of traditional voice coil motors. By arranging the magnets' N-poles in a bidirectional manner, the design enables both sides of a single coil to provide Lorentz force in the same direction. This results in an improved output force compared to designs published in journals. Additionally, the combination of yoke iron and magnet geometry allows the design to have a magnetic restoring force that maintains horizontal alignment when not energized, enhancing its controllability. The electromagnetic simulation of the designed magnetic circuit structure is conducted using ANSYS Maxwell, and the results are compared and discussed with those of a selected comparative design.

    摘要 I ABSTRACT II 誌謝 XII 目錄 XIII 圖目錄 XVI 表目錄 XXIV 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 1-3 論文架構 3 第二章 文獻回顧 4 2-1 球型馬達種類簡介 4 2-1-1 永久磁鐵型球型馬達 5 小結:永久磁鐵型球型馬達的優缺點 9 2-1-2 感應型球型馬達 10 小結:感應型球型馬達的優缺點 17 2-1-3 磁阻型球型馬達 18 2-1-4壓電變形驅動型球型馬達 21 2-1-5勞倫茲力驅動型球型馬達 24 2-2 球型滾動機器人簡介 32 2-2-1重心偏移驅動型球型滾動機器人 32 2-2-2角動量守恆型球型滾動機器人 34 2-2-3球殼變形驅動型球型滾動機器人 34 2-3 球型齒輪簡介 35 2-4 小結 36 第三章 基礎理論 38 3-1 勞倫茲力 38 3-2 磁路 40 3-3 磁性與永久磁鐵種類 43 第四章 音圈球型馬達磁路設計流程 46 4-1 設計目標 46 4-1-1 磁路設計與輸出觀點 47 4-1-2 幾何限制 51 4-1-3 理想的設計目標 51 4-2 電磁模擬設定 52 4-3 磁回復力磁路設計概念 56 4-3 最終磁路設計 57 第五章 磁回復扭矩二自由度音圈球型馬達設計與模擬 65 5-1 磁路設計 65 5-2 模型尺寸 69 5-2-1 未改變前球形馬達磁路設計尺寸 69 5-2-2 回復力軛鐵結構高度2mm線圈高度7mm設計尺寸 72 5-2-3 回復力軛鐵結構高度7mm線圈高度7mm設計尺寸 75 5-3 電磁模擬結果 78 5-3-1 磁回復扭矩二自由度音圈球型馬達模型作動模式 78 5-3-2 電磁模擬結果 79 5-4 音圈型球型制動器之比較 88 5-4-1 學者Kim等人提出的音圈型球型馬達 88 5-4-2 學者Heya等人提出的音圈型球型馬達 92 5-4-3 性質比較 96 第六章 結論與未來展望 97 6-1 結論 97 6-2 未來展望 97 6-2-1音圈型球形馬達應用 98 6-2-2磁路的額外運用與設想可添加的設計 99 參考文獻 101

    [1] Y. N. Akira Heya, Hiroshi Ishiguro, and Katsuhiro Hirata, “<Two-Degree-of-Freedom_Actuator_for_Robotic_Eyes.Pdf>,” presented at the 2020 International Conference on Electrical Machines (ICEM), 2020.
    [2] H. Li, J. Luo, C. Huang et al., “Design and Control of 3-Dof Spherical Parallel Mechanism Robot Eyes Inspired by the Binocular Vestibule-Ocular Reflex,” Journal of Intelligent & Robotic Systems, vol. 78, no. 3, pp. 425-441, 2015.
    [3] L. Ciupitu, S. Toyama, and E. Purwanto, “Robotic Arm with 9 Dof Driven by Spherical Ultrasonic Motors,” IFAC Proceedings Volumes, vol. 36, no. 23, pp. 85-90, 2003.
    [4] X. Zhang, G. Zhang, K. Nakamura et al., “A Robot Finger Joint Driven by Hybrid Multi-Dof Piezoelectric Ultrasonic Motor,” Sensors and Actuators A: Physical, vol. 169, no. 1, pp. 206-210, 2011.
    [5] J. Tayebi, T. Chen, and H. Wang, “Dynamics and Control of Flexible Satellite Using Reaction Sphere Actuators,” Space: Science & Technology, vol. 3, 2023.
    [6] C.-S. Liu and P. D. Lin, “A Miniaturized Low-Power Vcm Actuator for Auto-Focusing Applications,” Optics Express, vol. 16, no. 4, pp. 2533-2540, 2008.
    [7] C.-S. Liu and P. D. Lin, “Miniaturized Auto-Focusing Vcm Actuator with Zero Holding Current,” Optics Express, vol. 17, no. 12, pp. 9754-9763, 2009.
    [8] C. S. Liu, P. D. Lin, P. H. Lin et al., “Design and Characterization of Miniature Auto-Focusing Voice Coil Motor Actuator for Cell Phone Camera Applications,” IEEE Transactions on Magnetics, vol. 45, no. 1, pp. 155-159, 2009.
    [9] C. S. Liu, S. S. Ko, and P. D. Lin, “Experimental Characterization of High-Performance Miniature Auto-Focusing Vcm Actuator,” IEEE Transactions on Magnetics, vol. 47, no. 4, pp. 738-745, 2011.
    [10] C.-S. Liu, H.-F. Li, and M.-K. Lee, “Innovative Af Vcm Actuator for Smart Phone Camera Module,” in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. Volume 9: 2015 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, 2015.
    [11] C.-S. Liu, Y.-H. Chang, and H.-F. Li, “Design of an Open-Loop Controlled Auto- Focusing Vcm Actuator without Spring Plates,” International Journal of Applied Electromagnetics and Mechanics, vol. 51, pp. 61-70, 2016.
    [12] C. L. Hsieh, H. Y. Wang, Y. H. Chang et al., “Design of Vcm Actuator with the Chamfered Edge Magnet for Cellphone,” Microsystem Technologies, vol. 23, no. 12, pp. 5293-5302, 2017.
    [13] Y. H. Chang, C. S. Liu, and C. C. Cheng, “Design and Characterisation of a Fast Steering Mirror Compensation System Based on Double Porro Prisms by a Screw-Ray Tracing Method,” Sensors, vol. 18, no. 11, 2018.
    [14] C. L. Hsieh, Y. H. Chang, Y. T. Chen et al., “Design of Vcm Actuator with L-Shape Coil for Smartphone Cameras,” Microsystem Technologies, vol. 24, pp. 1033-1040, 2018.
    [15] Y. H. Chang, C. C. Hu, C. L. Hsieh et al., “Design of Vcm Actuator for Optical Zooming Smartphone Cameras,” Microsystem Technologies, vol. 25, no. 1, pp. 277-281, 2019.
    [16] Y. H. Chang, C. S. Liu, I. W. Chen et al., “Open-Loop Control of Voice Coil Motor with Magnetic Restoring Force Using High-Low Frequency Composite Signals,” IEEE Access, vol. 7, pp. 146258-146263, 2019.
    [17] C.-L. Hsieh, C.-S. Liu, and C.-C. Cheng, “Design of a 5 Degree of Freedom–Voice Coil Motor Actuator for Smartphone Camera Modules,” Sensors and Actuators A: Physical, vol. 309, p. 112014, 2020.
    [18] Y.-H. Chang, G. Hao, and C.-S. Liu, “Design and Characterisation of a Compact 4-Degree-of-Freedom Fast Steering Mirror System Based on Double Porro Prisms for Laser Beam Stabilization,” Sensors and Actuators A: Physical, vol. 322, p. 112639, 2021.
    [19] C.-S. Liu, Y.-H. Lin, and C.-N. Yeh, “Analytical Investigation on Torque of Three-Degree-of-Freedom Electromagnetic Actuator for Image Stabilization,” Applied Sciences, vol. 11, no. 15, p. 6872, 2021.
    [20] C.-S. Liu, Y.-C. Wu, and Y.-J. Lan, “Design of 4-Dof Voice Coil Motor with Function of Reducing Laser Geometrical Fluctuations,” Actuators, vol. 10, no. 12, p. 320, 2021.
    [21] C. S. Liu, K. C. Jiang, M. F. Chen et al., “Design and Characterization of Four-Degree-of-Freedom Fast Steering Mirror for Laser Compensation System,” IEEE Transactions on Industry Applications, vol. 60, no. 3, pp. 3850-3859, 2024.
    [22] J. Zhang, L. Yuan, S. L. Chen et al., “A Survey on Design of Reaction Spheres and Associated Speed and Orientation Measurement Technologies,” ISA Trans, vol. 99, pp. 417-431, 2020.
    [23] A. Diouf, B. Belzile, M. Saad et al., “Spherical Rolling Robots—Design, Modeling, and Control: A Systematic Literature Review,” Robotics and Autonomous Systems, vol. 175, 2024.
    [24] “Electric Motor”, Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Electric_motor&oldid=1220757424 (accessed May 2, 22024).
    [25] W. contributors, “Actuator”, Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Actuator&oldid=1218156734 (accessed May 2, 2024).
    [26] M. Hoshina, T. Mashimo, N. Fukaya et al., “Spherical Ultrasonic Motor Drive System for Camera Orientation in Pipe Inspection,” Advanced Robotics, vol. 27, no. 3, pp. 199-209, 2013.
    [27] J. F. P. Fernandes and P. J. C. Branco, “The Shell-Like Spherical Induction Motor for Low-Speed Traction: Electromagnetic Design, Analysis, and Experimental Tests,” IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4325-4335, 2016.
    [28] J. F. P. Fernandes, S. M. Vieira, and P. J. Costa Branco, “Multiobjective Optimization of a Shell-Like Induction Spherical Motor for a Power-Assisted Wheelchair,” IEEE Transactions on Energy Conversion, vol. 33, no. 2, pp. 660-669, 2018.
    [29] K. Bai, R. Xu, K.-M. Lee et al., “Design and Development of a Spherical Motor for Conformal Printing of Curved Electronics,” IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 9190-9200, 2018.
    [30] K. Bai, H. Yan, and K.-M. Lee, “Robust Control of a Spherical Motor in Moving Frame,” Mechatronics, vol. 75, p. 102548, 2021.
    [31] T. Kenjo, Electric Motors and Their Controls, 五南圖書出版股份有限公司, 2010.
    [32] P. C. Sen, Principles of Electric Machines and Power Electronics, John Wiley and Sons, Inc., Hoboken, New Jersey, p. 11, 2014.
    [33] 自. 维基百科, “直流無刷電動機”, https://zh.wikipedia.org/w/index.php?title=%E7%9B%B4%E6%B5%81%E7%84%A1%E5%88%B7%E9%9B%BB%E5%8B%95%E6%A9%9F&oldid=82341815 (accessed 2024).
    [34] 維基百科,自由的百科全書, “電磁鐵.”, ‹https://zh.wikipedia.org/w/index.php?title=%E9%9B%BB%E7%A3%81%E9%90%B5&oldid=80523328›. (accessed April , 30, 2024).
    [35] E. h. M. Week, T. Reinartz, G. Henneberger et al., “Design of a Spherical Motor with Three Degrees of Freedom,” CIRP Annals, vol. 49, no. 1, pp. 289-294, 2000.
    [36] U. Yongsu and T. Yano, “Characteristic of Torque on Spherical Stepping Motor Based on Hexahedron-Octahedron Structure,” in 2009 International Conference on Mechatronics and Automation, pp. 170-175, 2009.
    [37] Y. Um, T. Yano, and B. Hur, “3 Axes Rotational and Frequency Characteristics of a Hexahedron-Octahedron Based Spherical Stepping Motor,” in 2009 International Symposium on Micro-NanoMechatronics and Human Science, pp. 27-32, 2009.
    [38] T. Yano, “Basic Characteristics of a Hexahedron-Octahedron Based Spherical Stepping Motor,” in SPEEDAM 2010, pp. 1748-1753, 2010.
    [39] T. Yano, “Simulation Results of a Hexahedron-Octahedron Based Spherical Stepping Motor,” Journal of Mechanical Science and Technology, vol. 24, no. 1, pp. 33-36, 2010.
    [40] J. He, G. Li, R. Zhou et al., “Optimization of Permanent-Magnet Spherical Motor Based on Taguchi Method,” IEEE Transactions on Magnetics, vol. 56, no. 2, pp. 1-7, 2020.
    [41] L. Rossini, S. Mingard, A. Boletis et al., “Rotor Design Optimization for a Reaction Sphere Actuator,” IEEE Transactions on Industry Applications, Article vol. 50, no. 3, pp. 1706-1716, 2014.
    [42] B. Li, R. Yu, H. Li et al., “Design Considerations of a Permanent Magnetic Spherical Motor Using Spherical Harmonics,” IEEE Transactions on Magnetics, vol. 50, no. 8, pp. 1-9, 2014.
    [43] Q. Chen, X. Yang, G. Zhong et al., “Design and Analysis of Double Stator Swing Rotating Permanent Magnet Spherical Motor,” IEEE Transactions on Magnetics, vol. 58, no. 8, pp. 1-12, 2022.
    [44] L. Yan, Y. Liu, L. Zhang et al., “Magnetic Field Modeling and Analysis of Spherical Actuator with Two-Dimensional Longitudinal Camber Halbach Array,” IEEE Transactions on Industrial Electronics, vol. 66, no. 12, pp. 9112-9121, 2019.
    [45] X. Changliang, L. Hongfeng, and S. Tingna, “3-D Magnetic Field and Torque Analysis of a Novel Halbach Array Permanent-Magnet Spherical Motor,” IEEE Transactions on Magnetics, vol. 44, no. 8, pp. 2016-2020, 2008.
    [46] L. Gan, Y. Pei, and F. Chai, “Tilting Torque Calculation of a Novel Tiered Type Permanent Magnet Spherical Motor,” IEEE Transactions on Industrial Electronics, vol. 67, no. 1, pp. 421-431, 2020.
    [47] F. Chai, L. Gan, Y. Pei et al., “Tilting Torque Analysis of an Iron-Cored Tiered-Type Permanent Magnet Spherical Motor,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 6121-6130, 2021.
    [48] F. Chai, L. Gan, and Y. Yu, “Magnetic Field Analysis of an Iron-Cored Tiered Type Permanent Magnet Spherical Motor Using Modified Dynamic Reluctance Mesh Method,” IEEE Transactions on Industrial Electronics, vol. 67, no. 8, pp. 6742-6751, 2020.
    [49] R. L. Hollis Jr and M. Kumagai, "Spherical Induction Motor," ed: Google Patents, 2014.
    [50] M. Kumagai and R. L. Hollis, “Development and Control of a Three Dof Spherical Induction Motor,” in 2013 IEEE International Conference on Robotics and Automation, pp. 1528-1533, 2013.
    [51] W. H. Isely, "Magnetically Supported and Torqued Momentum Reaction Sphere," ed: Google Patents, 1986.
    [52] J. Zhang, L. Yuan, Y. Liao et al., “Torque Optimization of a Novel Reaction Sphere Actuator Based on Support Vector Machines,” in 2018 IEEE International Conference on Applied System Invention (ICASI), pp. 263-266, 2018.
    [53] L. Yuan, J. Zhang, S.-L. Chen et al., “Design and Optimization of a Magnetically Levitated Inductive Reaction Sphere for Spacecraft Attitude Control,” Energies, vol. 12, no. 8, p. 1553, 2019.
    [54] D.-K. Kim, H. Yoon, W.-Y. Kang et al., “Development of a Spherical Reaction Wheel Actuator Using Electromagnetic Induction,” Aerospace Science and Technology, vol. 39, pp. 86-94, 2014.
    [55] A. Iwakura, S.-i. Tsuda, and Y. Tsuda, “Feasibility Study on Three Dimensional Reaction Wheel,” Proceedings of the School of Science of Tokai University, Series E, vol. 33, pp. 51-57, 2008.
    [56] L. Zhu, J. Guo, and E. Gill, “Reaction Sphere for Microsatellite Attitude Control,” in Proceedings of 67th International Astronautical Congress, pp. 26-30, 2016.
    [57] D. Fan, C. S. Fan, Y. He et al., “Momentum Sphere System of Magnetization Suspension and Induction Driving,” Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, Article vol. 24, no. 4, pp. 524-530, 2016.
    [58] L. Zhu, J. Guo, and E. Gill, “Review of Reaction Spheres for Spacecraft Attitude Control,” Progress in Aerospace Sciences, vol. 91, pp. 67-86, 2017.
    [59] M. Zhang, Y. Zhu, A. Chen et al., "Magnetic Levitation Reaction Sphere," ed: Google Patents, 2020.
    [60] Z. Huai, M. Zhang, Y. Zhu et al., “A Novel Electrodynamic Reaction Sphere Prototype for Spacecraft Attitude Control,” IEEE Transactions on Industrial Electronics, vol. 67, no. 5, pp. 3879-3890, 2020.
    [61] K. M. Lee and X. a. Wang, “Dynamic Modeling and Control of a Ball-Joint-Like Variable-Reluctance Spherical Motor,” in 1992 American Control Conference, pp. 2463-2467, 1992.
    [62] Z. Zhi and L. Kok-Meng, “Real-Time Motion Control of a Multi-Degree-of-Freedom Variable Reluctance Spherical Motor,” in Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2859-2864 vol.3, 1996.
    [63] K.-M. Lee, R. B. Roth, and Z. Zhou, “Dynamic Modeling and Control of a Ball-Joint-Like Variable-Reluctance Spherical Motor,” Journal of Dynamic Systems, Measurement, and Control, vol. 118, no. 1, pp. 29-40, 1996.
    [64] J. Liu, “Structural Design and Three-Dimensional Magnetic Field Analysis of Magnetic Levitation Switched Reluctance Spherical Motor,” Yangzhou University, 2011.
    [65] W. Tao, G. Li, L. Ju et al., “Design and Analysis of a Novel Spherical Motor Based on the Principle of Reluctance,” in 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), pp. 1-6, 2018.
    [66] M. Shi, Q. Wang, G. Li et al., “A New Adaptive Analytical Model for the Spherical Reluctance Motor Based on Hybrid Trigonometric Function–Power Function,” IEEE Transactions on Industrial Electronics, vol. 70, no. 6, pp. 6099-6109, 2023.
    [67] T. Shigeki, Z. Guoqiang, and M. Osamu, “Development of New Generation Spherical Ultrasonic Motor,” in Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2871-2876 vol.3, 1996.
    [68] S. Toyama, S. Sugitani, G. Zhang et al., “Multi Degree of Freedom Spherical Ultrasonic Motor,” in Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2935-2940 vol.3, 1995.
    [69] E. Purwanto and S. Toyama, “Control Method of a Spherical Ultrasonic Motor,” in Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), vol. 2, pp. 1321-1326 vol.2, 2003.
    [70] E. Purwanto and S. Toyama, “Development of an Ultrasonic Motor as a Fine-Orienting Stage,” IEEE Transactions on Robotics and Automation, vol. 17, no. 4, pp. 464-471, 2001.
    [71] 直. 深谷, 博. 和田, 保. 菊池 et al., “超音波モータを用いた人工の腕の開発,” ライフサポート, vol. 12, no. 4, pp. 131-136, 2000.
    [72] 智. 真下, 宏. 粟賀, and 茂. 遠山, “球面超音波モータを用いたmri環境下手術支援マニピュレータの開発(第2報)
    -光ファイバを用いた姿勢センシングの開発-,” 精密工学会誌, vol. 74, no. 4, pp. 400-404, 2008.
    [73] T. Mashimo, S. Toyama, and H. Ishida, “Design and Implementation of Spherical Ultrasonic Motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 11, pp. 2514-2521, 2009.
    [74] T. Oohashi and S. Toyama, “Development of Spherical Ultrasonic Motor for Space,” Applied Mechanics and Materials, vol. 555, pp. 26-31, 2014.
    [75] U. Nishizawa, T. Oohashi, and S. Toyama, “Evaluation of Resistance against Vibration and Shock Resistance on Spherical Ultrasonic Motor,” International Journal of Modeling and Optimization, vol. 8, no. 2, pp. 68-73, 2018.
    [76] L. Ciupitu, A. Olaru, and S. Toyama, “On the Controlling of Spherical Ultrasonic Motor,” Applied Mechanics and Materials, vol. 325-326, pp. 1115-1125, 2013.
    [77] N. Takesue, T. Ohara, R. Ishibashi et al., “Position Control Methods of Spherical Ultrasonic Motor,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3061-3066, 2010.
    [78] M. Hoshina, T. Mashimo, and S. Toyama, “Development of Spherical Ultrasonic Motor as a Camera Actuator for Pipe Inspection Robot,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2379-2384, 2009.
    [79] M. Hoshina, T. Mashimo, and S. Toyama, “Development of Pipe Inspection Robot; Driving System and Control of Outer-Rotor-Typed Spherical Ultrasonic Motor,” in 2009 International Conference on Advanced Robotics, pp. 1-6, 2009.
    [80] S. Toyama, U. Nishizawa, and O. Matsubara, “Development of Deep-Sea Drone by Spherical Ultrasonic Motor,” Vibroengineering PROCEDIA, 2018.
    [81] S. Toyama and U. Nishizawa, “Deep-Sea Drone with Spherical Ultrasonic Motors,” International Journal of Modeling and Optimization, pp. 348-351, 2019.
    [82] U. Nishizawa, T. Oohashi, and S. Toyama, “Evaluation of Spherical Ultrasonic Motor for Space in High Temperature Condition,” Journal of Vibroengineering, vol. 18, no. 2, 2016.
    [83] U. Nishizawa, T. Oohashi, and S. Toyama, “Evaluation of Spherical Ultrasonic Motor for Space in Low Temperature Condition,” Journal of Vibroengineering, vol. 19, no. 7, 2017.
    [84] F. Wang, U. Nishizawa, H. Tanaka et al., “Development of Miniature Spherical Ultrasonic Motor Using Wire Stators,” Journal of Vibroengineering, vol. 20, no. 8, pp. pp. 2939–2950, 2018.
    [85] T.-. JOUR, U.-. https://www.extrica.com/article/17945, T.-M. d.-o.-f. m. s. u. m. u. w. stators et al., “Multi Degree-of-Freedom Micro Spherical Ultrasonic Motor Using Wire Stators,” Vibroengineering PROCEDIA, vol. 10, 2016.
    [86] H. Paku and K. Uchiyama, “Satellite Attitude Control System Using a Spherical Reaction Wheel,” Applied Mechanics and Materials, vol. 798, pp. 256-260, 2015.
    [87] R. Takehana, H. Paku, and K. Uchiyama, “Attitude Control of Satellite with a Spherical Rotor Using Two-Degree-of-Freedom Controller,” in 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE), pp. 352-357, 2016.
    [88] R. Takehana and K. Uchiyama, “Attitude Controller Design for a Small Satellite Using Spherical Reaction Wheel System,” in 2017 11th Asian Control Conference (ASCC), pp. 1841-1846, 2017.
    [89] T. F. E. Wikipedia, “Voice Coil”, Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Voice_coil&oldid=1161759174 (accessed 20 May, 2024).
    [90] H. Kim, H. Kim, D. Ahn et al., “Design of a New Type of Spherical Voice Coil Actuator,” Sensors and Actuators A: Physical, vol. 203, pp. 181-188, 2013.
    [91] H. Y. Kim, H. Kim, D.-G. Gweon et al., “Development of a Novel Spherical Actuator with Two Degrees of Freedom,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 532-540, 2015.
    [92] A. Heya, K. Hirata, N. Niguchi et al., “Dynamic Analysis of High-Speed Three-Degree-of-Freedom Electromagnetic Actuator for Image Stabilization,” IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1-4, 2017.
    [93] A. Heya, K. Hirata, and N. Niguchi, “Dynamic Modeling and Control of Three-Degree-of-Freedom Electromagnetic Actuator for Image Stabilization,” IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, 2018.
    [94] A. Heya and K. Hirata, “Experimental Verification of Three-Degree-of-Freedom Electromagnetic Actuator for Image Stabilization,” Sensors (Basel), vol. 20, no. 9, 2020.
    [95] A. Heya, Y. Nakata, H. Ishiguro et al., “Two-Degree-of-Freedom Actuator for Robotic Eyes,” in 2020 International Conference on Electrical Machines (ICEM), vol. 1, pp. 735-740, 2020.
    [96] S. Kuribayashi, A. Heya, K. Hirata et al., “A Six-Coil Two-Degree-of-Freedom Actuator Driven by Three-Phase,” in 2021 24th International Conference on Electrical Machines and Systems (ICEMS), pp. 79-82, 2021.
    [97] A. Heya and K. Hirata, “Three-Degree-of-Freedom Voice Coil Actuator Driven by a Four-Phase Current,” Sensors, vol. 22, no. 18, p. 6926, 2022.
    [98] Y. Tamaki, A. Heya, and T. Inoue, “Prototype Fabrication and Torque Measurement of Three-Degree-of-Freedom Spherical Actuator Driven by Four-Phase,” IEEE Transactions on Magnetics, vol. 59, no. 11, pp. 1-5, 2023.
    [99] K. Landa and A. K. Pilat, “Design and Start-up of Spherical Robot with Internal Pendulum,” in 2015 10th International Workshop on Robot Motion and Control (RoMoCo), pp. 27-32, 2015.
    [100] S. Mahboubi, M. M. Seyyed Fakhrabadi, and A. Ghanbari, “Design and Implementation of a Novel Spherical Mobile robot,” Journal of Intelligent & Robotic Systems, vol. 71, no. 1, pp. 43-64, 2013.
    [101] S. Asiri, F. Khademianzadeh, A. Monadjemi et al., “The Design and Development of a Dynamic Model of a Low-Power Consumption, Two-Pendulum Spherical Robot,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, pp. 2406-2415, 2019.
    [102] B. P. DeJong, E. Karadogan, K. Yelamarthi et al., “Design and Analysis of a Four-Pendulum Omnidirectional Spherical Robot,” Journal of Intelligent & Robotic Systems, vol. 86, no. 1, pp. 3-15, 2017.
    [103] J. Alves and J. Dias, “Design and Control of a Spherical Mobile Robot,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 217, no. 6, pp. 457-467, 2003.
    [104] W. H. Chen, C. P. Chen, W. S. Yu et al., “Design and Implementation of an Omnidirectional Spherical Robot Omnicron,” in 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 719-724, 2012.
    [105] Y. L. Karavaev and A. A. Kilin, “Nonholonomic Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform: Theory and Experiments,” Proceedings of the Steklov Institute of Mathematics, vol. 295, no. 1, pp. 158-167, 2016.
    [106] Z. Qiang, C. Yao, and Y. Caixia, “Design, Analysis and Experiments of an Omni-Directional Spherical Robot,” in 2011 IEEE International Conference on Robotics and Automation, pp. 4921-4926, 2011.
    [107] A. Halme, T. Schonberg, and W. Yan, “Motion Control of a Spherical Mobile Robot,” in Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE, vol. 1, pp. 259-264 vol.1, 1996.
    [108] S. A. Tafrishi, M. Svinin, E. Esmaeilzadeh et al., “Design, Modeling, and Motion Analysis of a Novel Fluid Actuated Spherical Rolling Robot,” Journal of Mechanisms and Robotics, vol. 11, no. 4, 2019.
    [109] R. Mukherjee, M. A. Minor, and J. T. Pukrushpan, “Simple Motion Planning Strategies for Spherobot: A Spherical Mobile Robot,” in Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), vol. 3, pp. 2132-2137 vol.3, 1999.
    [110] Y. Zhai, Z. Ding, Y. Liu et al., “Research on Novel Spatial Structure of Power Generation of Spherical Robot,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 234, no. 6, pp. 600-612, 2020.
    [111] A. Amir Homayoun Javadi and P. Mojabi, “Introducing August: A Novel Strategy for an Omnidirectional Spherical Rolling Robot,” in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), vol. 4, pp. 3527-3533 vol.4, 2002.
    [112] J. Chen, P. Ye, H. Sun et al., “Design and Motion Control of a Spherical Robot with Control Moment Gyroscope,” in 2016 3rd International Conference on Systems and Informatics (ICSAI), pp. 114-120, 2016.
    [113] V. A. Joshi and R. N. Banavar, “Motion Analysis of a Spherical Mobile Robot,” Robotica, vol. 27, no. 3, pp. 343-353, 2009.
    [114] V. Muralidharan and A. D. Mahindrakar, “Geometric Controllability and Stabilization of Spherical Robot Dynamics,” IEEE Transactions on Automatic Control, vol. 60, no. 10, pp. 2762-2767, 2015.
    [115] S. Guanghui, Z. Qiang, and C. Yao, “Motion Control of Spherical Robot Based on Conservation of Angular Momentum,” in 2009 International Conference on Mechatronics and Automation, pp. 599-604, 2009.
    [116] Y. Sugiyama and S. Hirai, “Crawling and Jumping by a Deformable Robot,” The International Journal of Robotics Research, vol. 25, no. 5-6, pp. 603-620, 2006.
    [117] K. W. Wait, P. J. Jackson, and L. S. Smoot, “Self Locomotion of a Spherical Rolling Robot Using a Novel Deformable Pneumatic Method,” in 2010 IEEE International Conference on Robotics and Automation, pp. 3757-3762, 2010.
    [118] K. Abe, K. Tadakuma, and R. Tadakuma, “Abenics: Active Ball Joint Mechanism with Three-Dof Based on Spherical Gear Meshings,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1806-1825, 2021.
    [119] “The Motor Effect”, https://mmerevise.co.uk/gcse-physics-revision/the-motor-effect/ (accessed 06/02, 2023).
    [120] 磁性技術手冊, 中華民國磁性技術協會, 2002.
    [121] 茆尚勳, “直驅式跑步機用直流無刷馬達之設計”, 國立成功大學機械工程學系, 臺灣博碩士論文知識加值系統, 2002. [Online]. Available: https://hdl.handle.net/11296/5zmdfp
    [122] 李鴻飛, “利用磁預壓力之微型音圈馬達自動對焦致動器設計”, 國立中正大學機械工程學系, 碩士, 臺灣博碩士論文知識加值系統, 2014. [Online]. Available: https://hdl.handle.net/11296/e79nbm
    [123] optotune, “Mr-15-30”, https://www.optotune.com/mr1530?_gl=1*1b3yjdn*_up*MQ..&gclid=CjwKCAjwp4m0BhBAEiwAsdc4aOy60KnjwUGMCs-EhKJpbwprLHjxSG46i4oPsb4R0SSK4E1vqPC_gRoCDUYQAvD_BwE (accessed July

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE