簡易檢索 / 詳目顯示

研究生: 張碩峰
Chang, Shuo-Feng
論文名稱: 利用元始計算研究鹼金屬離子在奈米碳管之嵌入效應
Studies Intercalation Effects of Alkaline Metal Ions on Carbon Nanotubes by ab initio Calculations
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 88
中文關鍵詞: 鹼金屬離子元始計算
外文關鍵詞: carbon nanotubes, intercalation effects, PAH
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   利用元始計算中Hartree-Fock (HF)的level來研究鹼金屬離子嵌入至Benzene、polycyclic aromatic hydrocarbons (PAH)、C60和CNT這些分子。在M+--benzene這系統中其距離與HF的相對能量關係其結果呈現出:金屬離子Li+、Na+、K+當其在距離分別為2.0、2.4、2.8 Å處,其HF值會有一個最小量,且其嵌入苯環所需克服的能障分別為294、940及2194 kcal/mol。相同的研究在金屬離子嵌入至PAH、C60和CNT這些系統時,所得到的結果亦是大同小異。
      為了比較鋰離子嵌入不同尺寸的環,因此對五圓環、七圓環和八圓環的嵌入來進行研究,結果發現其主要的差別在於:隨著環的尺寸越大,鋰離子嵌入環所需克服的能障越小,其所能佔據最鄰近環的位置取決於環的尺寸而定,約距離環1.8~2.0Å之間。
      上述研究若在幾何結構最佳化的條件下運算,所形成的Cation-π complex,其束縛能會隨陽離子半徑越大而越小,M+-benzene其結果為41 kcal/mol(Li)、27 kcal/mol(Na)、17 kcal/mol(K),M+-PAH也有相同的傾向。為了得到更可靠的結果,因此在有條件限制Optimized的條件下研究距離與相對能量的關係。這方法讓我們能藉由結果分析環的擴張程度。在M+-benzene其環上的C-C鍵長擴張了9.7 %(Li)、23.7 %(Na),在M+-PAH其其環上的C-C鍵長則是擴張了9.7 %(Li)。

      Ab initio calculations at Hartree-Fock (HF) level have been performed on benzene, polycyclic aromatic hydrocarbons (PAH), C60 and carbon nanotubes (CNT) intercalated by alkaline metal ions. HF energies of the M+--benzene systems calculated at various distances reveal a minimum near 2.0, 2.4 and 2.8 Å for M= Li, Na and K, respectively. The energy barriers for the metal ions to pass through the benzene ring are respectively 294, 940 and 2194 kcal/mol. The same studies carried out on PAH, C60 and CNT systems present quite similar results including the energy-distance relation, location of minimum energy and energy barriers.

      For comparison purpose, extended studies have been conducted on five-, seven-, and eight-member aromatic rings. The major difference arising from ring sizes is found for the energy barriers, i.e. this quantity decreases significantly with increasing sizes. The preferred space for metal ion intercalation is in the range, 1.8~2.0Å, depending on the sizes of the ring under this study.

      The above-stated cation-complexes have then been recalculated by allowing full optimization for benzene and PAH. The calculated binding energies decrease in the trend of the sizes of metal ions in M+--benzene: 41 kcal/mol(Li), 27 kcal/mol(Na), 17 kcal/mol(K). The same trend has been found for the M+--PAH series. In order to get more reliable results, such as energy barriers, the geometry optimization procedure is recommended as long as it is feasible computationally. More importantly it allows us to calculate the extents of the ring expansion due to intercalation of these ions. For M+-benzene, it is found that the C-C bond is lengthened by 9.7 and 23.7 % for M=Li and Na, respectively. In the Li+-PAH system, a lengthening of C-C bond by 9.3% is found.

    摘要 I ABSTRACT II 目錄 III 表目錄 VII 圖目錄 IX 重要的英文縮寫和其中文譯名 XII 第一章、緒論 1 第二章、理論背景 3 2-1、鋰離子電池 (Lithium ion battery) 3 2-1-2、負極材料的種類 5 2-1-3、奈米碳管應用於鋰離子電池的優勢 7 2-2、奈米碳管 8 2-2-1、奈米碳管的發展 9 2-2-2、奈米碳管的結構 13 2-2-3、奈米碳管應用在負極材料的回顧 16 2-3、理論計算 19 2-3-1、自洽場理論(self-consistent-field theory) 20 2-3-2、基底 21 2-3-3、天然混成軌域(natural hybrid orbital,NHO) 23 2-3-4、天然鍵性軌域( natural bond orbital,NBO ) 24 2-3-5、天然分佈分析( natural population analysis,NPA ) 25 第三章、計算方法與研究流程 27 3-1、Input orientation and Standard orientation 27 3-2、元始計算 27 3-2-1、採用的計算條件: 27 3-2-2、計算流程 27 3-2-3、計算的指令 28 3-3、研究流程 29 第四章、結果與討論 31 4-1、陽離子與苯環形成Cation-π complex 31 4-1-1、Cation-Ph complex鍵長與Binding Energy的大小 32 4-1-2、Cation-Ph complex電荷及作用力的大小 32 4-2、陽離子與PAH形成Cation-π complex 34 4-2-1、Cation-PAH complex鍵長與Binding Energy的大小 34 4-2-2、Cation-PAH complex電荷及作用力的大小 35 4-3、陽離子隨著環平面其距離及相對能量關係 37 4-3-1、陽離子隨苯環平面其距離及相對能量關係 37 4-3-2、陽離子隨PAH環平面其距離及相對能量關係 38 4-4、Optimzed條件下陽離子隨環平面距離之相對能量關係 38 4-4-1、Cation-Ph在Optimzed條件下距離及相對能量關係 39 4-4-2、Cation-Ph在Optimzed條件下距離及C-C鍵長關係 39 4-4-3、Cation-PAH在Optimzed條件下距離及相對能量關係 41 4-4-4、Cation-PAH在Optimzed條件下距離及C-C鍵長關係 41 4-5、在Optimzed條件以NBO研究能量的趨勢 42 4-5-1、苯環對鋰離子的作用 42 4-5-2、鋰離子LP*的混成形式 44 4-5-3、鋰離子對苯環的作用 46 4-5-4、整個系統的總E(2)值 46 4-5-5、苯環系統的NPA探討 48 4-5-6、鋰離子系統的NPA探討 48 4-5-7、Nuclear repulsion effect 49 4-6、鋰離子嵌入五環、六環、七環、八環的比較 51 4-7、鋰離子在兩個六圓環的系統 52 4-7-1、不同構形時,其位址與能量的關係 52 4-7-2、不同管徑時,鋰離子位址與能量的關係 52 4-8、鋰離子嵌入C60以及CNT的系統 54 4-8-1、鋰離子嵌入至C60 55 4-8-2、鋰離子嵌入至Zigzag(14,0) CNT 56 4-8-3、鋰離子於開口結構的奈米碳管 57 第五章、結論 59 表 61 圖 68 參考文獻 87

    1. E. Peled and C. Menachem; J. Electrochem. Soc., 143, 4(1996)
    2. M. Nisbizawa, K. Mukai and S. Kuwabata; J. Electrochem. Soc., 144, 923(1997)
    3. J. Zhao, A. Buldum and J. Han; Phys. Rev. Lett., 80, 5556(1998)
    4. E. Frackowiak, S. Gautier and H. Gaucher; Carbon, 61, 1(1999).
    5. G. Maurin, C. Bousquet and F. Henn; Chem. Phys Lett., 312, 14(1999)
    6. T. Kar, J. Pattanayak and S. Scheiner; J. Phys. Chem. A., 105, 10397(2001)
    7. 林振華; 充電式鋰離子電池, 全華科技圖書, Ch2(2001)
    8. J. B. Goodenough,P. J. Wiseman and P. C. Jones; Mat. Res. Bull., 15, 783(1980)
    9. J. M. Tarascon and M. Armand; Nature, 414, 359(2001)
    10. R. Owen; Chemical Soc Rev., 26, 259(1997)
    11. D. Murphy and W. Carides; J. Electrochem. Soc., 126, 349(1979)
    12. M. Lazzari and B. Scrosati; J. Electrochem. Soc., 127, 773(1980)
    13. J. Auborn and J. Barberio; J. Electrochem. Soc., 134, 638(1987)
    14. 汪建民; 粉末冶金會刊, 3, 127(2002)
    15. H. Shi, J. Barker and R. Koksbang; J. Electrochem. Soc., 143, 3466(1996)
    16. M. Vaughan, Y. Chabre and D. Dubois; Europhys. Lett., 31, 525(1995)
    17. G. Che, B. B. Lakshmi and R. Ellen; Nature, 393, 346(1998)
    18. B. Gao, A. Kleinhammes and X. P. Tang; Chem. Phys. Lett, 307, 153(1999)
    19. H. Shimoda, C. Bower, X. P. Tang and A. Kleinhammes; Science, 288, 492 (2000).
    20. 成會明; 奈米碳管, 五南圖書,Ch.9(2004)
    21. S. Iijjima; Nature, 354, 56(1991)
    22. E. Osawa and S. Park; J. Phys. Chem. B., 104, 7038(2000)
    23. H. W. Kroto, JR. Heath and S. Brien; Nature, 318, 162(1985)
    24. W. Kraastschmer and K. Forrtiropoulos; Nature, 347, 354(1990)
    25. S. Wang and P. R. Buseck; Chem. Phys. Lett., 182, 1(1991)
    26. S. Iijjima and T. Ichihaashi; Nature, 363, 603(1993)
    27. D. S. Bethune, C. H. Kiang and M. S. Devries; Nature, 363, 605(1993)
    28. T. Gao, P. Nikolasev and A. Thess; Chem. Phys. Lett., 243, 49(1995)
    29. A. Thess, R. Lee and P. Nikolaev; Science, 273, 483(1996)
    30. R. E. Smalley, R. H. Hauge and J. L. Margrave; Chem. Phys. Lett., 296, 188(1998)
    31. C. Joumet, W. K. Maser and P. Bernier; Nature, 388, 756(1997)
    32. C. Liu, Y. Y. Fan and M. Liu; Science, 286, 1127(1999)
    33. R. R. Schlittler, J. W. Seo and J. K. Gimzewski; Science, 292, 1136(2001)
    34. E. D. Minot, Y. Yaish and V. Sazonova; Phys. Rev. Lett., 90, 15641(2003)
    35. T. H. Henning and F. Salama; Science, 282, 2204(1998)
    36. V. H. Crespi; Phys. Rev. B., 58, 12671(1998)
    37. 尤金跨, 楊勇; 電化學, 4, 94(1998)
    38. E. Frackowiak, S. Gautier and H. Gaucher; Carbon, 37, 61(1999)
    39. 吳國濤, 王春生; 電化學, 4, 313(1998)
    40. 劉春燕, 唐致遠; 材料導報, 14, 31(2000)
    41. F. Leroux, K. Metenier and S. Gauter; J. Power Sources., 81, 317(1999)
    42. 陳衛祥, 吳國濤, 王春生; 化學物理學報, 14, 85(2001)
    43. W. J. Hehre, L. Radom and P. v. R. Schleyer; “Ab Initio Molecular Orbital Theory,”Canada, (1986).
    44. S. Huzinaga; “Gaussian Basis Sets for Molecular Calculations ,” Elsevier,New York, (1984).
    45. A. E. Reed, L. A. Curtiss and F. Weinhold; Chem. Rev., 88, 899(1989).
    46. J. P. Foster and F. Weinhold; J. Am. Chem. Soc., 102, 7211(1980).
    47. R. McWeeney; “Coulson’s Valence,” 3rd Ed., Oxford University Press: New York, (1979).
    48. A. E. Reed, F. Weinstock and F. Weinhold; J. Chem. Phys., 83, 1736(1985).
    49. (a)L. Goodman, V. Pophristic and F. Weinhold; Acc. Chem. Res., 32, 983(1999).
    (b)S. J. Wilkens, W. M. Weatler, F. Weinhold and J. L Markley; J. Am. Chem. Soc., 124, 1190(2002).
    50. R. S. Mulliken; J. Chem. Phys., 23, 1833, 1841, 2338, 2343(1955).
    51. A. E. Reed, R. B. Weinstock, and F. Weinhold; J. Chem. Phys., 83, 735(1985).

    下載圖示 校內:2009-06-21公開
    校外:2009-06-21公開
    QR CODE