簡易檢索 / 詳目顯示

研究生: 閻駿豪
Yen, Chun-Hao
論文名稱: 正交時頻空間系統之低複雜度迭代式偵測演算法
Low-Complexity Iterative Detection Algorithms for Orthogonal Time Frequency Space Systems
指導教授: 賴癸江
Lai, Kuei-Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 84
中文關鍵詞: 正交時頻空間系統時變通道最小均方誤差迭代式偵測演算法
外文關鍵詞: orthogonal time frequency space, time-varying channels, minimum mean square error, iterative detection algorithm
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交時頻空間(orthogonal time frequency space, OTFS)系統是近期提出的一種二維調變技術,目的在解決高都卜勒敏感度問題。其概念是在延遲-都卜勒域(delay-Doppler domain)進行調變,將延遲-都卜勒域的訊息符元轉換為時頻域,並在時間和頻率上同時擴展使得所有訊號可同時獲得時間分集和頻率分集的效果,進而在錯誤率性能上獲得大幅度的改善,以實現最大的有效多樣性。因此,很適合用於多重路徑干擾和移動性而導致的雙選擇性通道。因此,相較於傳統的正交分頻多工(orthogonal frequency-division multiplexing, OFDM),正交時頻空間系統更適合應用在具有大都卜勒頻移的高移動性通訊場景中。文獻中兩階段偵測演算法之第一階段為在時頻域假設理想脈衝整形波形,使用一階最小均方誤差等化器求得估計符元,再透過第二階段於時延域使用迭代最大比例合成決策回授等化器改進第一階段估計符元的錯誤率。本論文針對第一階段與第二階段都提出新的方法,在第一階段等化器提出在時延域並基於矩形脈衝整形波形的狀況下使用最小均方誤差為基礎的干擾分集最小均方誤差等化器、區塊式最小均方誤差等化器兩個方法。
    文獻中第二階段的最大比例合成方法推導後會等同於強制歸零(zero forcing)方法,因此我們在第二階段提出最小均方誤差合成(minimum mean square error combining)方法加以改進。結果顯示,第二階段提出來的時延域最小均方誤差迭代回授等化器可以在犧牲少許複雜度的代價下,在extended vehicular A model (EVA)、extended pedestrian A model (EPA)、extended typical urban model (ETU)這三個通道模型下皆呈現出比文獻中的方法更好的錯誤率表現。第一階段提出的干擾分集最小均方誤差等化器配合第二階段提出來的時延域最小均方誤差決策回授等化器在EVA通道模型下有最佳的錯誤率表現;跟另一個第一階段提出的區塊式最小均方誤差等化器也一同在EPA通道模型下能以更低的複雜度達到相同的錯誤率;但在ETU通道模型,仍舊是原本文獻中的低複雜度時頻域一階最小均方誤差等化器表現較優。

    Orthogonal time frequency space (OTFS) is a recently proposed two-dimensional modulation technique aimed at addressing high Doppler sensitivity issues. In the literature, a two-stage detection algorithm is proposed. In the first stage, an ideal pulse shaping waveform is assumed in the time-frequency domain, using a single tap minimum mean square error (MMSE) equalizer to obtain the estimated symbols. In the second stage, an iterative maximum ratio combining decision feedback equalizer is used in the delay-time domain. This thesis proposes new methods for both stages. For the first-stage equalizer, two methods are proposed: an interference diversity MMSE equalizer and a block MMSE equalizer, both in the delay-time domain and based on rectangular pulse shaping waveforms. The maximum ratio combining method in the second stage is equivalent to the zero forcing (ZF) method. Therefore, we propose an improvement by using the minimum mean square error combining (MMSE combining) method in the second stage. Results show that the proposed second-stage iterative MMSE decision feedback equalizer achieves better error rate performance than existing methods, with slightly increased complexity, in the extended vehicular A (EVA), extended pedestrian A (EPA), and extended typical urban (ETU) channel models. The interference diversity MMSE equalizer in the first stage, combined with the second-stage delay-time domain MMSE decision feedback equalizer, achieves the best error rate performance in the EVA channel model. The block MMSE equalizer in the first stage achieves similar error rates with lower complexity in the EPA model. However, in the ETU model, the original low-complexity first-order MMSE equalizer still performs best.

    摘要 I Extended Abstract III 致謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 導論 1 1.1 前言 1 1.2 動機 2 1.3 論文章節提要 2 1.4 論文貢獻 3 第二章 正交時頻空間系統及通道模型 4 2.1 系統架構 4 2.2 通道模型 6 2.2.1 時變通道 9 第三章 文獻回顧—二階段等化器 11 3.1 ZP-OTFS系統下的二階段等化器 11 3.2 第一階段—低複雜度時頻域一階最小均方誤差等化器 11 3.3 第二階段—低複雜度迭代最大比例合成決策回授等化器 13 3.3.1 延遲-都卜勒域 14 3.3.2 時延域 17 第四章 等化器—提出之方法 20 4.1 兩階段等化器架構與介紹 20 4.2 第二階段等化器 21 4.2.1 低複雜度時延域最小均方誤差決策回授等化器 22 4.3 第一階段等化器 28 4.3.1 時延域區塊式最小均方誤差決策反饋等化器 29 4.3.2 時延域干擾分集最小均方誤差等化器 30 4.4 複雜度分析 33 第五章 模擬結果 35 5.1 模擬環境 35 5.2 Extended Vehicular A model (EVA)通道模型 36 5.2.1 迭代次數選擇 37 5.2.2 兩階段等化器組合比較 44 5.3 Extended Typical Urban model (ETU)通道模型 47 5.3.1 迭代次數選擇 49 5.3.2 兩階段等化器組合比較 55 5.4 Extended Pedestrian A model (EPA)通道模型 59 5.4.1 迭代次數選擇 60 5.4.2 兩階段等化器組合比較 65 第六章 結論與未來研究方向 68 參考文獻 69

    [1] T. Thaj and E. Viterbo, “Low Complexity Iterative Rake Decision Feedback Equalizer for Zero Padded OTFS Systems’’, in IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15606 15622, Dec. 2020.
    [2] T. Thaj and E. Viterbo, “Low Complexity Iterative Rake Detector for Orthogonal Time Frequency Space Modulation’’ 2020 IEEE Wireless Communications and Networking Conference (WCNC), 2020, pp. 1-6.
    [3] Y. Hong, T. Thaj, E. Viterbo, “Delay-Doppler Communications: Principles and Applications'', Academic Press, 2022.
    [4] Qi Li, Jinhong Yuan, and Hai Lin, “Iterative MMSE Detection for Orthogonal Time Frequency Space Modulation” IEEE International Conference on Communications Workshops (ICC Workshops), July 2022.
    [5] Z. Tang and G. Leus, “A novel receiver architecture for single-carrier transmission over time-varying channels,” IEEE J. Sel. Areas Commun., vol. 26, no. 2, pp. 366–377, Feb. 2008.
    [6] N. Benvenuto and S. Tomasin, "Iterative design and detection of a DFE in the frequency domain," in IEEE Transactions on Communications, vol. 53, no. 11, pp. 1867-1875, Nov. 2005.
    [7] T. Zou, W. Xu, H. Gao, Z. Bie, Z. Feng and Z. Ding, " Low-Complexity Linear Equalization for OTFS Systems with Rectangular Waveforms," IEEE ICC Workshops, June 2021.
    [8] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.
    [9]“LTE evolved universal terrestrial radio access (E-UTRA); Base station (BS) radio transmission and reception,” 3GPP TS 36.104 version 8.6.0 Release 8, Jul. 2009.
    [10] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.
    [11] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Effective diversity of OTFS modulation,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp.249–253, Feb.2020.
    [12] 王致傑。「單輸入多輸出單載波區塊傳送系統中頻域決策回授等化器設計」。碩士論文,國立成功大學電腦與通信工程研究所,2012。
    [13] 李翊源。「適用於正交時頻空間系統與快速衰減通道之決策回授等化器設計」。碩士論文,國立成功大學電腦與通信工程研究所,2024。

    無法下載圖示 校內:2029-07-29公開
    校外:2029-07-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE