| 研究生: | 張昱偉 Chang, Yu-Wei | 
|---|---|
| 論文名稱: | 海運國際貿易運輸作業對當地經濟與居民健康衝擊之探討-以高雄地區為例 The Economy and Health Burden Attributed to Shipping-Related Transportation for International Trading – A Case Study of Kaohsiung | 
| 指導教授: | 張瀞之 Chang, Ching-Chih | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science | 
| 論文出版年: | 2019 | 
| 畢業學年度: | 107 | 
| 語文別: | 中文 | 
| 論文頁數: | 86 | 
| 中文關鍵詞: | 高雄海運運輸作業 、細懸浮微粒 、健康負擔 、外部成本 | 
| 外文關鍵詞: | Kaohsiung Shipping-Related Transportation, PM2.5, Health Burden, External Cost | 
| 相關次數: | 點閱:107 下載:10 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
空氣汙染議題已逐漸受到關注,除了影響人體健康,也造成環境衝擊及經濟發展,其中細懸浮微粒(PM2.5)對人體健康之影響程度不容忽視,許多研究皆證實PM2.5與心肺跟呼吸系統相關疾病有密切關係。本研究以高雄地區為主要研究範圍,以進港船舶、裝卸機具及運送貨物之重型卡車作為研究對象,利用活動型態模型計算運作時所排放的PM2.5,並評估其所造成的外部健康成本(以DALY計)、健康衝擊指標及外部經濟成本,藉以了解PM2.5對於高雄地區居民所造成的健康負擔與經濟影響。最後評估在2030年落實《國家自訂預期貢獻》以及2050年落實《溫室氣體減量及管理法》的排放管制下,PM2.5的減量及其外部成本對當地衝擊的改善情形。研究結果為以下:自2005到2017年高雄海運貿易運輸作業每年平均造成約3245.03噸的PM2.5,平均外部健康成本為2,722.58 DALY,平均健康衝擊指標為7.17%,每年造成高雄地區1,787.32百萬美元的經濟損失。在2030年的假設情境(Scenario-INDC)中,PM2.5排放量比基礎情境(BAU-2030)減少924.88噸,外部健康成本減少773.98 DALY、健康衝擊指標IHI值下降2.05%、外部經濟成本減少509.41百萬美元;在2050年的假設情境(Scenario-GGRMA)中,PM2.5排放量比基礎情境(BAU-2050)減少1,714.15噸,外部健康成本減少1,438.17 DALY,健康衝擊指標IHI值下降約3.79%,外部經濟成本比減少了944.13百萬美元。高雄地區國際貿易運輸作業若能在未來落實該二法規的排放規範,將可大幅減少該空氣汙染物對於該地之影響。
For the purpose of assessing PM2.5-related impact from the shipping-related transportation for international trading in human health and local economy. This study employes activity-based model to estimate the PM2.5 emissions from ships, cargo handling equipments and heavy-duty vehicles for land transportation in Kaohsiung. Furthermore, the external health cost, index of health impact (IHI) and external economic cost will be assessed to quantize impact of PM2.5 emission from the shipping-related operation in Kaohsiung. At last, this study will evaluate the effect of mitigation for PM2.5 in Scenario-INDC and Scenario-GGRMA under two mitigation regulations of emission. The results are following:From 2005 to 2017, the PM2.5 emission caused external health cost of 3,238.30 DALY, IHI value of 8.53% and economic losses of 2,176.04 million annually. For Scenario-INDC, PM2.5-related external health costs, IHI value and external economic cost will decrease by 927.64 DALY, 2.45% and US$ 608.86 million respectively comparing to BAU-2030. For Scenario-GGRMA, PM2.5-related external health cost, IHI value and external economic cost will decrease by 1736.28 DALY, 4.58% and US$ 1,139.84 million respectively comparing to BAU-2050. The results indicate that the compliance with these two regulations of INDC and GGRMA would lead to the mitigation of PM2.5 emission which could improve air quality and reduce economic loss.
英文文獻
Balasubramanian, P., & Rao, K. R. (2015). An Adaptive Long-Term Bus Arrival Time Prediction Model with Cyclic Variations. Journal of Public Transportation, 18(1). 1-18
Berechman, J., & Tseng, P.-H. (2012). Estimating the environmental costs of port related emissions: The case of Kaohsiung. Transportation Research Part D: Transport and Environment, 17(1), 35-38.
Bickel, P., & Friedrich, R. (2005). ExternE Externalities of Energy Methodology 2005 Update. Retrieved May 2, 2019, from https://www.researchgate.net/publication/232075838_ExternE_Externalities_of_Energy_Methodology_2005_Update
Broome, R. A., Cope, M. E., Goldsworthy, B., Goldsworthy, L., Emmerson, K., Jegasothy, E., & Morgan, G. G. (2016). The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of NSW, Australia. Environment International, 87, 85-93.
Brown. (1959). Statistical forecasting for inventory control.
Chatzinikolaou, S. D., Oikonomou, S. D., & Ventikos, N. P. (2015). Health externalities of ship air pollution at port – Piraeus port case study. Transportation Research Part D: Transport and Environment, 40, 155-165. 
Chen, D., Wang, X., Nelson, P., Li, Y., Zhao, N., Zhao, Y., . . . Guo, X. (2017). Ship emission inventory and its impact on the PM2.5 air pollution in Qingdao Port, North China. Atmospheric Environment, 166, 351-361.
Chen, L., Shi, M., Gao, S., Li, S., Mao, J., Zhang, H., . . . Wang, Z. (2017). Assessment of population exposure to PM2.5 for mortality in China and its public health benefit based on BenMAP. Environmental Pollution, 221, 311-317. 
Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V., & Lauer, A. (2007). Mortality from Ship Emissions: A Global Assessment. Environmental Science & Technology, 41(24), 8512-8518. 
EEA. (2017). Air quality in Europe — 2017 report. Retrieved November 3, 2018, from https://www.eea.europa.eu/publications/air-quality-in-europe-2017
EPA. (2018). Particulate Matter (PM) Pollution. Retrieved November 3, 2018, from https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM
Futaba, D. (2006). OFFROAD Modeling Change Technical Memo. Retrieved November 3, 2018, from https://www.arb.ca.gov/msei/offroad/techmemo/off-2006-02.pdf
Guo, Y., Zeng, H., Zheng, R., Li, S., Pereira, G., Liu, Q., . . . Huxley, R. (2017). The burden of lung cancer mortality attributable to fine particles in China. Science of The Total Environment, 579, 1460-1466.
Han, C., Kim, S., Lim, Y.-H., Bae, H.-J., & Hong, Y.-C. (2018). Spatial and Temporal Trends of Number of Deaths Attributable to Ambient PM2.5 in the Korea. J Korean Med Sci, 33(30). e193, 1-14
Holland, M., & Watkiss, P. (2004). Estimates of the marginal external costs of air pollution in Europe. Retrieved May 2, 2019, from ec.europa.eu/environment/enveco/air/pdf/betaec02a.pdf
Holt, C. E. (1957). Forecasting seasonals and trends by exponentially weighted averages. 
IEA. (2016). Energy and Air Pollution-World Energy Outlook Special Report. Retrieved November 3, 2018, from https://webstore.iea.org/weo-2016-special-report-energy-and-air-pollution
IEA. (2018). Energy Efficiency 2O18 -Analysis and outlooks to 2040. Retrieved November 3, 2018, from https://www.iea.org/efficiency2018/
INDC. (2015). Intended Nationally Determined Contribution in Taiwan. Retrieved November 3, 2018, from https://enews.epa.gov.tw/enews/enews
ITSUBO, N., & INABA, A. (2012). Life-cycle Impact assessment method based on Endpoint modeling.
Kumar, S. V., Chaitanya Dogiparthi, K., Vanajakshi, L., & Subramanian, S. C. (2017). Integration of exponential smoothing with state space formulation for bus travel time and arrival time prediction. Transport, 32(4), 358-367.
Kyu, H. H., Abate, D., & Abate, K. H. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories,1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. THE LANCET, 1859-1922. 
López-Aparicio, S., Tønnesen, D., Thanh, T. N., & Neilson, H. (2017). Shipping emissions in a Nordic port: Assessment of mitigation strategies. Transportation Research Part D: Transport and Environment, 53, 205-216.
Lin, H., Tao, J., Qian, Z., Ruan, Z., Xu, Y., Hang, J., . . . Ma, W. (2018). Shipping pollution emission associated with increased cardiovascular mortality: A time series study in Guangzhou, China. Environmental Pollution, 241, 862-868.
Liu, H., Fu, M., Jin, X., Shang, Y., Shindell, D., Faluvegi, G., . . . He, K. (2016). Health and climate impacts of ocean-going vessels in East Asia. Nature Climate Change, 6, 1037-1041
Liu, M., Huang, Y., Ma, Z., Jin, Z., Liu, X., Wang, H., . . . Kinney, P. L. (2017). Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012. Environment International, 98, 75-81.
Lo, W.-C., Shie, R.-H., Chan, C.-C., & Lin, H.-H. (2017). Burden of disease attributable to ambient fine particulate matter exposure in Taiwan. Journal of the Formosan Medical Association, 116(1), 32-40.
Maji, K. J., Dikshit, A. K., Arora, M., & Deshpande, A. (2018). Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020. Science of The Total Environment, 612, 683-693.
Nayebare, S. R., Aburizaiza, O. S., Siddique, A., Carpenter, D. O., Arden Pope, C., Mirza, H. M., . . . Khwaja, H. A. (2019). Fine particles exposure and cardiopulmonary morbidity in Jeddah: A time-series analysis. Science of The Total Environment, 647, 1314-1322.
Nunes, R. A. O., Alvim-Ferraz, M. C. M., Martins, F. G., & Sousa, S. I. V. (2017). Assessment of shipping emissions on four ports of Portugal. Environmental Pollution, 231, 1370-1379.
POLA. (2007). THE PORT OF LOS ANGELES INVENTORY OF AIR EMISSIONS FOR CALENDAR YEAR 2007. Retrieved November 3, 2018, from https://www.portoflosangeles.org/environment/air-quality/air-emissions-inventory
POLA. (2012). THE PORT OF LOS ANGELES INVENTORY OF AIR EMISSIONS FOR CALENDAR YEAR 2012. Retrieved May 2, 2019, from https://www.portoflosangeles.org/
POLA. (2017). THE PORT OF LOS ANGELES INVENTORY OF AIR EMISSIONS FOR CALENDAR YEAR 2017. Retrieved May 2, 2019, from https://www.portoflosangeles.org/
POLB. (2005). The Port of Long Beach Green Flag Program. Retrieved November 3, 2018, from http://www.polb.com/environment/air/greenflag.asp
Pope, I. C., Burnett, R. T., Thun, M. J., & et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 1132-1141.
Puget-Sound. (2016). 2016 Puget Sound Maritime Emissions Inventory. Retrieved May, 5, 2019 from https://pugetsoundmaritimeairforum.org/
Raaschou-Nielsen, O., R. Beelenc, M. W., G. Hoek c, Z. J. A., Hoffmann, B., Stafoggia, M., Samoli, E., & G.Weinmayr. (2016). Particulate matter air pollution components and risk for lung cancer. Environment International, 87, 66-73.
RMT. (2017). Review of Maritime Transport. Retrieved November 3, 2018, from https://unctad.org/en/Pages/Publications/Review-of-Maritime-Transport-(Series).aspx
RMT. (2018). Review of Maritime Transport. Retrieved November 3, 2018, from https://unctad.org/en/Pages/Publications/Review-of-Maritime-Transport-(Series).aspx
San-Pedro-Bay. (2006). San Pedro Bay Ports Clean Air Action Plan. Retrieved November 3, 2018, from http://www.cleanairactionplan.org/2017-clean-air-action-plan-update/
Scarpel, R. A. (2013). Forecasting air passengers at São Paulo International Airport using a mixture of local experts model. Journal of Air Transport Management, 26, 35-39.
Shahandashti, S. M., & Ashuri, B. (2013). Forecasting Engineering News-Record Construction Cost Index Using Multivariate Time Series Models. Journal of Construction Engineering and Management, 139(9), 1237-1243.
Shi, Y., Matsunaga, T., Yamaguchi, Y., Zhao, A., Li, Z., & Gu, X. (2018). Long-term trends and spatial patterns of PM2.5-induced premature mortality in South and Southeast Asia from 1999 to 2014. Science of The Total Environment, 631-632, 1504-1514. 
Tang, L., Nagashima, T., Hasegawa, K., Ohara, T., Sudo, K., & Itsubo, N. (2014). Development of human health damage factors for PM2.5 based on a global chemical transport model. 
Tzannatos, E. (2010). Ship emissions and their externalities for the port of Piraeus - Greece. Atmospheric Environment, 400-407. 
USEPA. (2018). National Ambient Air Quality Standards. Retrieved November 3, 2018, from https://www.epa.gov/criteria-air-pollutants/naaqs-table
Viana, M., Fann, N., Tobías, A., Querol, Rojas-Rueda, D., Plaza∥, A., & Aynos, G. (2015). Environmental and Health Benefits from Designating the Marmara Sea and the Turkish Straits as an Emission Control Area (ECA). Environmental Science and Technology, 49,3304-3313. 
Wang, Q., Wang, J., He, M. Z., Kinney, P. L., & Li, T. (2018). A county-level estimate of PM2.5 related chronic mortality risk in China based on multi-model exposure data. Environment International, 110, 105-112.
WHO. (2016). Ambient air pollution:A global assessment of exposure and burden of disease. Retrieved November 3, 2018, from http://www.who.int/phe/publications/air-pollution-global-assessment/en/
WHO. (2018a). WHO ambient (outdoor) air quality database Summary results, update 2018. Retrieved November 3, 2018, from http://www.who.int/airpollution/data/cities/en/
Xie, R., Sabel, C. E., Lu, X., Zhu, W., Kan, H., Nielsen, C. P., & Wang, H. (2016). Long-term trend and spatial pattern of PM2.5 induced premature mortality in China. Environment International, 97, 180-186.
Yang, C.-M., & Kao, K. (2013). Reducing Fine Particulate to Improve Health: A Health Impact Assessment for Taiwan. Archives of Environmental & Occupational Health, 68(1). 3-12
Yang, Y., Luo, L., Song, C., Yin, H., & Yang, J. (2018). Spatiotemporal Assessment of PM2.5-Related Economic Losses from Health Impacts during 2014–2016 in China. International Journal of Environmental Research and Public Health. 
Zhang, Z., Chan, T.-C., Guo, C., Chang, L.-y., Lin, C., Chuang, Y. C., . . . Lao, X. Q. (2018). Long-term exposure to ambient particulate matter (PM2.5) is associated with platelet counts in adults. Environmental Pollution, 240, 432-439.
中文文獻
交通部. (2018). 各國際商港貨物吞吐量. Retrieved November 3, 2018, from http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100
交通部. (2019). 《道路交通安全規則》第81條. Retrieved May, 5, 2019 from https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=K0040013
林茂文. (2006). 時間數列分析與預測.
高雄市政府海洋局. (2018). 2017 高雄市漁業年報. Retrieved November 3, 2018, from https://kh.twport.com.tw/chinese/cp.aspx?n=481828B210C05CB2
高雄港務公司. (2015). 2014 高雄港統計年報(Annual Statistical Report Port of Kaohsiung). Retrieved from Retrieved November 3, 2018, from https://kh.twport.com.tw/chinese/cp.aspx?n=481828B210C05CB2
高雄港務公司. (2018). 2017高雄港統計年報(Annual Statistical Report Port of Kaohsiung). Retrieved November 3, 2018, from https://kh.twport.com.tw/chinese/cp.aspx?n=481828B210C05CB2 
臺灣港務公司. (2017). 2017統計年報(Annual Statistical Report). Retrieved November 3, 2018 from https://www.twport.com.tw/chinese/cp.aspx?n=55B0FCB1F3784FEC&s=1DBC319FE9304323
環保署. (2012). 行政院環保署-空氣品質標準. Retrieved November 3, 2018, from https://taqm.epa.gov.tw/taqm/tw/b0206.aspx
環保署. (2015). 溫室氣體減量及管理法 Retrieved November 3, 2018, from https://www.epa.gov.tw/lp.asp?ctNode=34546&CtUnit=2525&BaseDSD=7&mp=ghgact
環保署. (2017). 空氣汙染排放量查詢系統. Retrieved November 3, 2018, from https://teds.epa.gov.tw/new_main2-0-1.htm