簡易檢索 / 詳目顯示

研究生: 吳佳芸
Wu, Chia-Yun
論文名稱: 以電沉積法製備鈀金合金薄膜及其甲醇電氧化催化特性之探討
Studies of PdAu alloy thin film via electrodeposition and its catalytic performance for methanol electro-oxidation
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 170
中文關鍵詞: 電沉積鈀金合金薄膜三乙醇胺退火熱處理甲醇電氧化
外文關鍵詞: Co-electrodeposition, PdAu alloy thin film, complexing agent triethanolamine, Annealing, Methanol oxidation reaction
相關次數: 點閱:152下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用定電位電沉積的方法,在鍍有銦錫氧化物的導電玻璃(ITO Glass)上製備鈀金合金薄膜,並探討其薄膜性質與應用在甲醇電氧化上的性質比較。對於合金薄膜的製備方法,本實驗改變參數分別為:電沉積溶液中的鈀金離子的組成比例、電沉積電位、電沉積溶液中添加不同濃度之錯合劑三乙醇胺(TEA)、薄膜沉積時間與薄膜退火熱處理。
    對於薄膜的晶型結構、元素組成、表面形貌與元素化學態性質,分別以X射線繞射分析儀(XRD)、能量分散式光譜分析儀(EDS)、掃描式電子顯微鏡(SEM)與X射線光電子能譜儀(XPS)進行量測。而甲醇電氧化效率與穩定性的探討,本實驗選用鹼性甲醇溶液,並利用循環伏安法(CV)和定電位電解法(CA)進行分析。
    由晶面分析與表面形貌得知,加入錯合劑三乙醇胺會使Pd特徵峰具有寬化的現象,平均粒徑減小,並且粒子會呈現均勻分散的情況,得到較為均勻的鍍層。根據甲醇催化性質量測,當電沉積溶液中添加60 mM三乙醇胺,其沉積電位為-0.5 V時製備之鈀金合金薄膜整體電氧化效率與穩定性最佳,其中以電沉積溶液中金屬離子溶液比(Pd2+: Au3+)為4:1甲醇電氧化效率相對較佳,電流密度可達7.994 mA cm-2。而在退火熱處理的部分,Pd金屬在高溫環境下易於與氧分子進行反應形成Pd氧化物,使Pd失去催化甲醇之活性,因此薄膜甲醇電氧化效率大幅下降。

    This experiment mainly focuses on the properties of methanol oxidation reaction (MOR) on PdAu alloy. In this work, PdAu thin films were co-electrodeposited on ITO glass substrates with different deposition conditions: metal ion precursor concentration ratio, the complexing agent triethanolamine(TEA) addition and thermal annealing treatment. The crystallinity of PdAu alloys was shown by X-ray diffractometer (XRD). The morphology of film surface was analyzed by scanning electron microscopy (SEM). The element composition of alloys were analyzed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectrometer (XPS). The electrochemical properties were tested by cyclic voltammetry (CV) and chronoamperometry (CA).
    As a result, the electrochemical test indicated that binary PdAu alloys increased the efficiency of MOR. Moreover, the complexing agent TEA could not only enhance uniformity, stability and performance of PdAu alloy films, but lower the deposition potential while electrodepositing. The thermal annealing treatment resulted in the oxidation of Pd, degrading the MOR performance.

    摘要...............I Extend abstract.............II 誌謝..............IX 目錄.............X 表目錄.............XIII 圖目錄.............XVI 第一章 緒論.............1 1-1 燃料電池............1 1-1-1 燃料電池的歷史與演進..........1 1-1-2 燃料電池發電原理..........3 1-1-3 燃料電池的優勢...........4 1-1-4 燃料電池的種類與應用發展.........5 1-2 直接甲醇燃料電池............8 1-2-1 介紹............8 1-2-2 主要結構............8 1-2-3 電池工作原理..........10 1-2-4 極化現象............11 1-2-5 甲醇氧化機制..........12 1-3 文獻回顧與研究動機..........13 第二章 實驗原理............15 2-1 電催化原理...........15 2-1-1 電催化反應介紹...........15 2-1-2 電催化甲醇反應機制介紹.........17 2-2 金屬薄膜製備原理..........20 2-2-1 薄膜成長機制..........20 2-2-2 薄膜電化學沉積原理.........22 2-3 電化學分析原理...........23 2-3-1 循環伏安法(Cyclic Voltammetry, CV) .....23 2-3-2 定電位電解法(Chronoamperometry, CA) ......25 2-4 儀器原理............27 2-4-1 X射線繞射分析儀(X-ray Diffractometer, XRD) ....27 2-4-2 能量分散式光譜分析儀(Energy Dispersive Spectroscopy, EDS)...28 2-4-3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)....29 2-4-4 X射線光電子能譜分析儀(X-ray photoelectron spectroscopy, XPS)..30 第三章 實驗方法與步驟...........31 3-1 實驗流程圖...........31 3-2 實驗藥品耗材與儀器..........32 3-3 實驗方法與步驟..........34 3-3-1 三電極式量測與反應槽裝置.......34 3-3-2 金屬離子電沉積溶液配置........35 3-3-3 鹼性甲醇溶液配置.........36 3-3-4 電沉積鈀金合金薄膜........37 3-3-5 鈀金合金薄膜熱處理........37 3-3-6 鈀金合金薄膜電化學分析........38 3-3-7 鈀金合金薄膜性質量測..........38 第四章 結果與討論..........39 4-1 沉積電位對鈀金合金薄膜影響之探討.......39 4-1-1 單一金屬離子與混合金屬離子電沉積溶液之循環伏安法分析...39 4-1-2 鈀、金與鈀金合金薄膜X射線繞射分析.....46 4-1-3 鈀金合金薄膜組成分析.........55 4-1-4 鈀、金與鈀金合金薄膜形貌分析.......58 4-1-5 薄膜甲醇電氧化效率分析........63 4-2 錯合劑三乙醇胺濃度對鈀金合金薄膜影響之探討.....75 4-2-1 錯合劑三乙醇胺之簡介........75 4-2-2 添加錯合劑三乙醇胺之金屬離子電沉積溶液之循環伏安法分析..76 4-2-3 添加錯合劑三乙醇胺之鈀、金與鈀金合金薄膜X射線繞射分析..81 4-2-4 添加錯合劑三乙醇胺之鈀金合金薄膜組成分析.....90 4-2-5 添加錯合劑三乙醇胺之鈀、金與鈀金合金薄膜形貌分析...93 4-2-6 添加錯合劑三乙醇胺之薄膜甲醇電氧化效率分析....98 4-3 沉積時間對鈀金合金薄膜影響之探討.......109 4-3-1 不同沉積時間之鈀、金與鈀金合金薄膜X射線繞射分析...109 4-3-2 不同沉積時間之鈀金合金薄膜組成分析........118 4-3-3 不同沉積時間之鈀、金與鈀金合金薄膜形貌分析.....121 4-3-4 不同沉積時間之薄膜甲醇電氧化效率分析......126 4-4 退火熱處理對鈀金合金薄膜影響之探討.......137 4-4-1 退火熱處理之鈀、金與鈀金合金薄膜X射線繞射分析....137 4-4-2 退火熱處理之鈀金合金薄膜組成分析.....143 4-4-3 退火熱處理之鈀、金與鈀金合金薄膜形貌分析....148 4-4-4 退火熱處理之薄膜甲醇電氧化效率分析.......151 第五章 結論............156 參考文獻............160 附錄............168

    [1] Geusic, j. E., Schulz-dubios, E. O., and Scovil, H. E. D. Quantum equivalent of the Carnot cycle. Physical review, vol. 156(2), pp. 343-351 (1967).
    [2] Andresen, B., Berry, R. S., Nitzan, A., and Salamon, P. Thermodynamics in finite time. I. The step-Carnot cycle. Physical Review A, vol. 15(5), pp. 2086-2093 (1977).
    [3] grove, W. R. On the gas voltaic battery. Experiments made with a view of ascertaining the rationale of its action and its application to eudiometry. Philosophical transactions of the royal society of London, vol. 133, pp. 91-112 (1843).
    [4] 黃鎮江,燃料電池,全華科技圖書(2005)。
    [5] 朱紅與衣寶廉(譯),燃料電池系統-原理、設計、應用,科學出版社(2008)。
    [6] 馬承九,燃料電池札記,三民書局(2008)。
    [7] 林昇佃、余子隆、張幼珍、翁芳柏、李碩仁、林育才、吳和生、魏榮宗、林修正、賴子珍、曾盛恕與詹世弘,燃料電池新世紀能源,滄海書局(2004)。
    [8] 溫武義(譯),燃料電池技術,全華科技圖書(2004)。
    [9] Jiang, S. P., Love, J. G., and Apateanu, L. Effect of contact between electrode and current collector on the performance of solid oxide fuel cells. Solid State Ionics, vol.160(1), pp. 15-26 (2003).
    [10] 衣寶廉,燃料電池-原理與應用,五南圖書(2005)。
    [11] Hogarth, M. P., Hards, G. A. Direct methanol fuel cells. Platinum Metals Review, vol. 40(4), pp. 150-159 (1996).
    [12] Dillon, R., Srinivasan, S., Arico, A. S., and Antonucci, V. International activities in DMFC R&D: status of technologies and potential applications. Journal of Power Sources, vol. 127(1), pp. 112-126 (2004).
    [13] Hashim, N., Kamarudin, S. K., and Daud, W. R. W. Design, fabrication and testing of a PMMA-based passive single-cell and a multi-cell stack micro-DMFC. International journal of hydrogen energy, vol. 34(19), pp. 8263-8269 (2009).
    [14] Ye, Q., Zhao, T. S., and Xu, C. The role of under-rib convection in mass transport of methanol through the serpentine flow field and its neighboring porous layer in a DMFC. Electrochimica Acta, vol. 51(25), pp. 5420-5429 (2006).
    [15] Dohle, H., Divisek, J., and Jung, R. Process engineering of the direct methanol fuel cell. Journal of Power Sources, vol. 86(1), pp. 469-477 (2000).
    [16] Hogarth, M. P. and Hards, G. A. Direct methanol fuel cells. Platinum Metals Review, vol. 40(4), pp. 150-159 (1996).
    [17] Jiang, Z. and Jiang, Z. J. Carbon Nanotubes Supported Metal Nanoparticles for the Applications in Proton Exchange Membrane Fuel Cells (PEMFCs). INTECH Open Access Publisher (2011).
    [18] Casalegno, A., and Marchesi, R. DMFC anode polarization: Experimental analysis and model validation. Journal of Power Sources, vol. 175(1), pp. 372-382 (2008).
    [19] Carrette, L., Friedrich, K. A. and Stimming, U. Fuel cells–fundamentals and applications. Fuel cells, vol. 1(1), pp. 5-39 (2001).
    [20] Cameron, D. S., Hards, G. A., Harrison, B., and Potter, R. J. Direct methanol fuel cells. Platinum Metals Review, vol. 31(4), pp. 173-181 (1987).
    [21] Wang, L., Nemoto, Y., and Yamauchi, Y. Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. Journal of the American Chemical Society, vol. 133(25), pp. 9674-9677 (2011).
    [22] Scofield, M. E., Koenigsmann, C., Wang, L., Liu, H., and Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy & Environmental Science, vol. 8(1), pp. 350-363 (2015).
    [23] Stevanović, S., Tripković, D., Tripkovic, V., Minić, D., Gavrilović, A., Tripković, A., and Jovanović, V. M. Insight into the effect of Sn on CO and formic acid oxidation at PtSn catalysts. The Journal of Physical Chemistry C, vol. 118(1), pp. 278-289 (2013).
    [24] Neto, A. O., Vasconcelos, T. R., Silva, R. D., Linardi, M., and Spinacé, E. V. Electro-oxidation of ethylene glycol on PtRu/C and PtSn/C electrocatalysts prepared by alcohol-reduction process. Journal of Applied Electrochemistry, vol. 35(2), pp. 193-198 (2005).
    [25] Chen, M., Lou, B., Ni, Z., and Xu, B. PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell. Electrochimica Acta, vol. 165, pp. 105-109 (2015).
    [26] Sun, Z. P., Zhang, X. G., Liu, R. L., Liang, Y. Y., and Li, H. L. A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation. Journal of Power Sources, vol. 185(2), pp. 801-806 (2008).
    [27] Wang, R., Zhang, Z., Wang, H., and Lei, Z. Pt decorating PdCu/C as highly effective electrocatalysts for methanol oxidation. Electrochemistry Communications, vol. 11(5), pp. 1089-1091 (2009).
    [28] Liu, Z., Zhang, X., and Tay, S. W. Nanostructured PdRu/C catalysts for formic acid oxidation. Journal of Solid State Electrochemistry, vol. 16(2), pp. 545-550 (2012).
    [29] Wu, B., Wang, B., Deng, C., and Gao, Y. A highly active carbon-supported PdSn catalyst for formic acid electrooxidation. Applied Catalysis B: Environmental, vol. 103(1), pp. 163-168 (2011).
    [30] Liu, Z., Zhang, X., and Hong, L. Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation. Electrochemistry Communications, vol. 11(4), pp. 925-928 (2009).
    [31] Watanabe, M. and Motoo, S. Electrocatalysis by ad-atoms: Part I. Enhancement of the oxidation of methanol on platinum and palladium by gold ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 60(3), pp. 259-266 (1975).
    [32] Wang, X., Tang, B., Huang, X., Ma, Y., and Zhang, Z. High activity of novel nanoporous Pd–Au catalyst for methanol electro-oxidation in alkaline media. Journal of Alloys and Compounds, vol. 565, pp. 120-126 (2013).
    [33] Hammer, B. and Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surface Science, vol. 343(3), pp. 211-220 (1995).
    [34] Feng, Y. Y., Liu, Z. H., Xu, Y., Wang, P., Wang, W. H., and Kong, D. S. Highly active PdAu alloy catalysts for ethanol electro-oxidation. Journal of Power Sources, vol. 232, pp. 99-105 (2013).
    [35] Chen, L. Y., Chen, N., Hou, Y., Wang, Z. C., Lv, S. H., Fujita, T., and Chen, M. W. Geometrically controlled nanoporous PdAu bimetallic catalysts with tunable Pd/Au ratio for direct ethanol fuel cells. ACS Catalysis, vol. 3(6), pp. 1220-1230 (2013).
    [36] 王俊傑、黃士杰、李穎弦、楊汶釧與林修正,電催化、電化學觸媒,化工,第56卷第5期(2009)。
    [37] 雷敏宏,觸媒的本領,科學發展,第352期(2002)。
    [38] 黃朝榮與林修正,燃料電池的心臟-電極模組,科學發展,第367期 (2003)。
    [39] Giorgi, L., Salernitano, E., Makris, T. D., Gagliardi, S., Contini, V., and De Francesco, M. Innovative electrodes for direct methanol fuel cells based on carbon nanofibers and bimetallic PtAu nanocatalysts. International Journal of Hydrogen Energy, vol. 39(36), pp. 21601-21612 (2014).
    [40] Antolini, E., Zignani, S. C., Santos, S. F., and Gonzalez, E. R. Palladium-based electrodes: A way to reduce platinum content in polymer electrolyte membrane fuel cells. Electrochimica Acta, vol. 56(5), pp. 2299-2305 (2011).
    [41] Choi, J. H., Park, K. W., Park, I. S., Nam, W. H., and Sung, Y. E. Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts. Electrochimica acta, vol. 50(2), pp. 787-790 (2004).
    [42] Zhang, J. and Liu, H. Electrocatalysis of direct methanol fuel cells: from fundamentals to applications. John Wiley & Sons (2009).
    [43] Wasmus, S. and Küver, A. Methanol oxidation and direct methanol fuel cells: a selective review. Journal of Electroanalytical Chemistry, vol. 461(1), pp. 14-31 (1999).
    [44] Watanabe, M., and Motoo, S. Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 60(3), pp. 275-283. (1975).
    [45] Chandrasekaran, K., Wass, J. C., and Bockris, J. M. The potential dependence of intermediates in methanol oxidation observed in the steady state by FTIR spectroscopy. Journal of the Electrochemical Society, vol. 137(2), pp. 518-524 (1990).
    [46] Ting, C. C., Liu, C. H., Tai, C. Y., Hsu, S. C., Chao, C. S., and Pan, F. M. The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism. Journal of Power Sources, vol. 280, pp. 166-172 (2015).
    [47] Xu, C., Zeng, R., Shen, P. K., and Wei, Z. Synergistic effect of CeO2 modified Pt/C catalysts on the alcohols oxidation. Electrochimica acta, vol. 51(6), pp. 1031-1035 (2005).
    [48] Zellner, M. B., and Chen, J. G. Potential Application of Tungsten Carbides as Electrocatalysts: Synergistic Effect by Supporting Pt on C∕W (110) for the Reactions of Methanol, Water, and CO. Journal of the electrochemical society, vol. 152(8), pp. A1483-A1494 (2005).
    [49] Venables, J. A., Spiller, G. D. T., and Hanbucken, M. Nucleation and growth of thin films. Reports on Progress in Physics, vol. 47(4), pp. 399-459 (1984).
    [50] 王恩哥,薄膜生長表面動力學(II),物理學進展,卷23之2,頁碼145至191 (2003)。
    [51] Barna, P. B., Eckertová, L., and Rů̆zǐcka, T. Diagnostics and applications of thin films. L. Ectertova and T. Ruzicka (Charles University, Prague, Czechoslovakia, 1991), p. 295 (1992).
    [52] Sudha, V. and Sangaranarayanan, M. V. Underpotential deposition of metals: structural and thermodynamic considerations. The Journal of Physical Chemistry B, vol. 106(10), pp. 2699-2707 (2002).
    [53] Adžić, R. R., Simić, D. N., Despić, A. R., and Dražić, D. M. Electrocatalysis by foreign metal monolayers: Oxidation of formic acid on platinum. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 65(2), pp. 587-601 (1975).
    [54] Bokshits, Y. V., Osipovich, N. P., Strel’tsov, E. A., ans Shevchenko, G. P. Underpotential deposition of lead on silver and gold colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 242(1), pp. 79-83 (2004).
    [55] Personick, M. L., Langille, M. R., Zhang, J., & Mirkin, C. A. Shape control of gold nanoparticles by silver underpotential deposition. Nano letters, vol. 11(8), pp. 3394-3398 (2011).
    [56] Finnefrock, A. C. Time-resolved Measurements of the underpotential deposition of copper onto platinum (111) in the presence of chloride (1998). 
    [57] Kissinger, P. T. and Heineman, W. R. Cyclic voltammetry. J. Chem. Educ, vol. 60(9), pp. 702 (1983).
    [58] Bard, A. J. and Faulkner, L. R. Electrochemical Methods Fundamentals and applications. (1998).
    [59] Cullity, B. D., & Weymouth, J. W. Elements of X-ray Diffraction. American Journal of Physics, vol. 25(6), pp. 394-395 (1957).
    [60] 林麗娟,X光繞射原理及其應用,工業材料,第86期,頁碼100至109 (1994)。
    [61] Heath, J. and Taylor, N. Energy Dispersive Spectroscopy, microscopy and analysis (2015).
    [62] 黃永盛,SEM/EDS與FIB的原理及其在半導體工業的應用,科儀新知,第17卷3期 (1995)。
    [63] Reimer, L. Scanning electron microscopy: physics of image formation and microanalysis (1998).
    [64] Comyn, J. Practical surface analysis—by Auger and X-ray photoelectron spectroscopy (1984).
    [65] Patterson, A. L. The Scherrer formula for X-ray particle size determination. Physical review, vol. 56(10), p.978 (1939).
    [66] Holzwarth, U. and Gibson, N. The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, vol. 6(9), pp. 534-534 (2011).
    [67] Weast, R. C., Astle, M. J., and Beyer, W. H. CRC handbook of chemistry and physics, Boca Raton (1988).
    [68] Greenwood, N. N. and Earnshaw, A. Chemistry of the Elements (Second Edition). (1997)

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE