| 研究生: |
紀佳妤 Chi, Chia-Yu |
|---|---|
| 論文名稱: |
應用共振柱試驗探討海床土壤動態特性之研究 Dynamic Properties of Seabed Soils Using Resonant Column Test |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 共振柱試驗 、剪力模數 、阻尼比 、動態特性 |
| 外文關鍵詞: | resonant column test, shear modulus, damping ratio, dynamic properties |
| 相關次數: | 點閱:116 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用Stokoe固定–自由型式共振柱儀器,試驗土樣採用台灣彰化近海鑽探取得砂質海床土壤,利用濕搗法製作重模試體進行共振柱試驗,以不同孔隙比(e = 0.7、0.8與0.9)、細粒料含量(FC = 15%、30%與50%)與飽和度(S = 15%、30%、60%與100%)在不同有效圍壓(Pc = 20 kPa、80 kPa與320 kPa)狀態下進行高、低振幅試驗以及自由振動衰減試驗,透過試驗所求得剪力模數與阻尼比等參數,與動力三軸試驗之剪應變範圍連接,獲得完整動態特性曲線,以探討海床土壤其動態特性受上述四種因素之影響。
其結果顯示完整動態特性之正規化剪力模數衰減曲線,對孔隙比及有效圍壓來說其衰減趨勢隨著剪應變增加影響愈不顯著,細粒料含量反之,而對飽和度來說不論其應變範圍,衰減趨勢皆為飽和度上升衰減趨勢趨緩。完整動態特性之阻尼比曲線,孔隙比與飽和度兩者隨剪應變增加其趨勢與小應變時完全相反,有效圍壓隨剪應變增加受有效圍壓之影響逐漸消失,而不論其應變範圍阻尼比皆隨細粒料含量增加而上升。
In this research, the Stokoe-type fixed-free end resonant column apparatus was exploited to obtain the dynamic properties of reconstituted specimens by moist tamping method. The soil samples were sandy seabed soils which extracted from the offshore near Changhua, Taiwan. The specimens with different void ratio (e = 0.7,0.8 and 0.9), fines content (FC = 15%, 30% and 50%) and degree of saturation (S = 15%, 30%, 60% and 100%) in the different stages of confining pressure (Pc = 20 kPa, 80 kPa and 320 kPa) were conducted in low amplitude test, high amplitude test and free vibration decay method to acquire the shear modulus and the damping ratio. This study integrates (1) the resonant column and dynamic triaxial data to comprehensively characterize the complete dynamic property curves and (2) discussion on the influence of the above mentioned four factors on the dynamic properties of sandy seabed soils.
As characterized in resonant column and dynamic triaxial tests, normalized shear modulus reduction curve demonstrates that void ratio and confining pressure exhibit less influence than fines content does with increasing shear strains. Moreover, normalized shear modulus reduction curve rises with increasing degree of saturation, which is applicable in every shear strain region. Also, the damping ratio declines with increasing void ratio and degree of saturation at small strains but raises at large strains as observed in damping curve from resonant column and dynamic triaxial tests. The confining pressure is insensitive with increasing shear strains. Noteworthy, damping curve elevates with increasing fines content in every shear strain region.
1. Anderson, D.G., “Dynamic Modulus of Cohesive Soils,” Thesis Presented to the University of Michigan, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, pp. 311, 1974.
2. Atkinson, J.H., and Sallfors, G., “Experimental Determination of Soil Properties,” Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Vol. 3, pp. 915-956, 1991.
3. Chien, L.K., and Oh, Y.N., “Influence of Fines Content and Initial Shear Stress on Dynamic Properties of Hydraulic Reclaimed Soil,” Canadian Geotechnical Journal, Vol. 39, No. 1, pp. 242-253, 2002.
4. Carraro, J.A.H., Prezzi, M., and Salgado, R., “Shear Strength and Stiffness of Sands Containing Plastic or Nonplastic Fines,” Journal of Geotechnical and Geoenvironment Engineering, Vol. 135, No. 9, pp. 1167-1178, 2009.
5. Goudarzy, M., König, D., and Schanz , T., “Small Strain Stiffness of Granular Materials Containing Fines,” Soils and Foundations, Vol. 56, No. 5, pp. 756-764, 2016.
6. Hardin, B.O., and Richart F.E. Jr., “Elastic Wave Velocities in Granular Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33-65, 1963.
7. Hall, J.R. Jr., and Richat, F.E. Jr., “Dissipation of Elastic Wave Energy in Granular Soils,” Journal of The Soil Mechanics and Foundation Division Proc., ASCE, Vol. 89, No. SM6, pp. 27-56, 1963.
8. Hardin, B.O., and Black, W.L., “Sand Stiffness under Various Triaxial Stresses,” Journal of the Soil Mechanics and Foundations Division, Vol. 92, No. SM2, pp. 27-42, 1966.
9. Hardin, B.O., and Black W.L., “Vibration Modulus of Normally Consolidated Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, pp. 353-369, 1968.
10. Hardin, B.O., and Drnevich V. P., “Shear Modulus and Damping in Soils: Measurement and Parameter Effects,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, pp. 603-624, 1972a.
11. Hardin, B.O., and Drenvich, V.P., “Shear Modulus and Damping in Soils: Design Equations and Curves,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692, 1972b.
12. Huang, Y.T., Huang, A.B., Kuo, Y.C., and Tsai, M.D., “A Laboratory Study on the Undrained Strength of A Silty Sand from Central Western Taiwan,” Soil Dynamic and Earthquake Engineering, Vol. 24, No. 9-10, pp. 733-743, 2004.
13. Iwasaki, T., and Tatsuoka, F., “Effects of Grain Size and Grading on Dynamic Shear Moduli of Sands,” Soils and Foundations, Vol. 17, No. 3, pp. 19-35, 1977.
14. Ishihara, K., Soil Behavior in Earthquake Geotechnics, Clarendon Press, Oxford, 1996.
15. Inci, G., Yesiller, N., and Kagawa, T., “Experimental Investigation of Dynamic Response on Compacted Clayey Soils,” Geotechnical Testing Journal, Vol. 26, No. 2, pp. 125-141, 2003.
16. Lo Presti, D.C.F., Discussion on, “Threshold Strain in Soils,” In: Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Vol. IV, Firenze, Italy, pp. 1282-1283, 1991.
17. Payan, M., Senetakis, K., Khoshghalb, A., and Khalili, N., “Characterization of the Small-Strain Dynamic Behavior of Silty Sands; Contribution of Silica Non-Plastic Fines Content,” Soil Dynamics and Earthquake Engineering, Vol. 102, pp. 232-240, 2017.
18. Qian, X., Gray, D.H., and Woods, R.D., “Resonant Column Tests on Partially Saturated Sands,” Geotechnical Testing Journal, Vol. 14, No. 3, pp. 266-275, 1991.
19. Seed, H.B., and Idriss, I.M., “Shear Moduli and Damping Factor for Dynamic Response Analysis,” Report No. EERC 70-10, Earthquake Engineering Research Center, Univ. of California, Berkeley, California, 1970.
20. Silver, M.L., and Seed, H.B., “Deformation Characteristics of Sands under Cyclic Loading,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. 8, pp. 1081-1098, 1971.
21. Silver, M.L., “Load Deformation and Strength Behavior of Soil under Dynamic Loading,” State-of-Art Paper, Proceedings of International Conference on Recent Advances in Geotechnical Earthquake and Soil Dynamic, St. Louis, Vol. 3, pp. 873-896, 1981.
22. Thevanayagam, S., and Martin, G.R., “Liquefaction in Silty Soils—Screening and Remediation Issues,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.1035-1042, 2002.
23. Tao, M., Figueroa, J.L., and Saada, A.S., “Influence of Nonplastic Fines Content on the Liquefaction Resistance of Soils in Terms of the Unit Energy,” In: Proceedings of The Cyclic Behavior of Soil Sand Liquefaction Phenemena, A.A. Balkema Publishers Bochum,Germany, pp. 223-231, 2004.
24. Vucetic, M., “Cyclic Threshold Shear Strains in Soils,” Journal of Geotechnical Engineering, Vol. 120, No. 12, pp. 2208-2228, 1994.
25. Wu, S., Gray, D.H., and Richart, F. E., Jr., “Capillary Effects on Dynamic Modulus of Sands and Silts,” Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 9, pp. 1188-1203, 1984.
26. Wichtmann, T., Navarrete Hernández, M.A., and Triantafyllidis, T., “On the Influence of A Non-Cohesive Fines Content on Small Strain Stiffness, Modulus Degradation and Damping of Quartz Sand,” Soil Dynamics and Earthquake Engineering, Vol. 69, pp. 103-114, 2015.
27. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,9期,pp. 5-19,1985。
28. 李偉榮,「細料含量對飽和粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,2010。
29. 林華悌,「粉質砂土阻尼比模式之探討」,碩士論文,國立成功大學土木工程研究所,2012。
30. 徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程研究所,2002。
31. 陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,2010。
32. 黃安斌,「台灣中西部粉/砂土壤液化行為之研究心得」,地工技術雜誌,121期,pp.5-16,2009。
33. 葉兆欽,「飽和度對粉質砂土動態特性影響之研究」,碩士論文,國立成功大學土木工程研究所,2011。
34. 鄭鈺諠,「不飽和夯實土壤之動態性質」,碩士論文,國立中央大學土木工程研究所,2010。
35. 徐羽柔,「應用動力三軸探討海床土壤之動態特性」,碩士論文,國立成功大學土木工程研究所,2020。(未出版)