簡易檢索 / 詳目顯示

研究生: 紀佳妤
Chi, Chia-Yu
論文名稱: 應用共振柱試驗探討海床土壤動態特性之研究
Dynamic Properties of Seabed Soils Using Resonant Column Test
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 106
中文關鍵詞: 共振柱試驗剪力模數阻尼比動態特性
外文關鍵詞: resonant column test, shear modulus, damping ratio, dynamic properties
相關次數: 點閱:116下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用Stokoe固定–自由型式共振柱儀器,試驗土樣採用台灣彰化近海鑽探取得砂質海床土壤,利用濕搗法製作重模試體進行共振柱試驗,以不同孔隙比(e = 0.7、0.8與0.9)、細粒料含量(FC = 15%、30%與50%)與飽和度(S = 15%、30%、60%與100%)在不同有效圍壓(Pc = 20 kPa、80 kPa與320 kPa)狀態下進行高、低振幅試驗以及自由振動衰減試驗,透過試驗所求得剪力模數與阻尼比等參數,與動力三軸試驗之剪應變範圍連接,獲得完整動態特性曲線,以探討海床土壤其動態特性受上述四種因素之影響。
    其結果顯示完整動態特性之正規化剪力模數衰減曲線,對孔隙比及有效圍壓來說其衰減趨勢隨著剪應變增加影響愈不顯著,細粒料含量反之,而對飽和度來說不論其應變範圍,衰減趨勢皆為飽和度上升衰減趨勢趨緩。完整動態特性之阻尼比曲線,孔隙比與飽和度兩者隨剪應變增加其趨勢與小應變時完全相反,有效圍壓隨剪應變增加受有效圍壓之影響逐漸消失,而不論其應變範圍阻尼比皆隨細粒料含量增加而上升。

    In this research, the Stokoe-type fixed-free end resonant column apparatus was exploited to obtain the dynamic properties of reconstituted specimens by moist tamping method. The soil samples were sandy seabed soils which extracted from the offshore near Changhua, Taiwan. The specimens with different void ratio (e = 0.7,0.8 and 0.9), fines content (FC = 15%, 30% and 50%) and degree of saturation (S = 15%, 30%, 60% and 100%) in the different stages of confining pressure (Pc = 20 kPa, 80 kPa and 320 kPa) were conducted in low amplitude test, high amplitude test and free vibration decay method to acquire the shear modulus and the damping ratio. This study integrates (1) the resonant column and dynamic triaxial data to comprehensively characterize the complete dynamic property curves and (2) discussion on the influence of the above mentioned four factors on the dynamic properties of sandy seabed soils.
    As characterized in resonant column and dynamic triaxial tests, normalized shear modulus reduction curve demonstrates that void ratio and confining pressure exhibit less influence than fines content does with increasing shear strains. Moreover, normalized shear modulus reduction curve rises with increasing degree of saturation, which is applicable in every shear strain region. Also, the damping ratio declines with increasing void ratio and degree of saturation at small strains but raises at large strains as observed in damping curve from resonant column and dynamic triaxial tests. The confining pressure is insensitive with increasing shear strains. Noteworthy, damping curve elevates with increasing fines content in every shear strain region.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與流程 1 1.3 論文內容概述 2 第二章 文獻回顧 4 2.1 土壤動態性質之室內試驗 4 2.2 共振柱試驗之發展 6 2.3 剪應變量之定義 6 2.4 土壤剪力模數影響因子 8 2.4.1 剪應變量對剪力模數之影響 11 2.4.2 孔隙比對剪力模數之影響 12 2.4.3 細粒料含量對剪力模數之影響 15 2.4.4 飽和度對剪力模數之影響 21 2.4.5 有效圍壓對剪力模數之影響 23 2.5 土壤阻尼比影響因子 24 2.5.1 剪應變量對阻尼比之影響 24 2.5.2 孔隙比對阻尼比之影響 26 2.5.3 細粒料含量對阻尼比之影響 28 2.5.4 飽和度對阻尼比之影響 28 2.5.5 有效圍壓對阻尼比之影響 29 第三章 共振柱試驗原理 30 3.1 共振柱儀器常見之型式 30 3.2 共振柱試驗基本假設 31 3.3 共振柱波傳控制方程式 32 3.4 剪力模數之計算 37 3.5 共振柱試驗之形狀函數 38 3.6 阻尼比之計算 40 第四章 試驗設備與流程 46 4.1 試驗設備介紹 46 4.2 基本物理性質試驗 50 4.3 試驗土樣之配置 51 4.4 共振柱試驗 52 4.4.1 重模試體之準備 54 4.4.2 試體架設 54 4.4.3 儀器架設 56 4.4.4 試體飽和程序 58 4.4.5 圍壓加壓階段 59 4.4.6 低振幅試驗 59 4.4.7 高振幅試驗 61 第五章 試驗結果與分析 62 5.1 對剪力模數之影響 62 5.1.1 孔隙比 62 5.1.2 細粒料含量 66 5.1.3 飽和度 71 5.1.4 有效圍壓 75 5.2 對阻尼比之影響 78 5.2.1 孔隙比 78 5.2.2 細粒料含量 81 5.2.3 飽和度 84 5.2.4 有效圍壓 86 5.3 完整動態特性曲線 88 5.3.1 正規化剪力模數衰減曲線 88 5.3.2 阻尼比曲線 91 第六章 結論與建議 94 6.1結論 94 6.2建議 95 參考文獻 96 附錄A 最大剪力模數 100 附錄B 完整動態特性曲線原始資料點 102

    1. Anderson, D.G., “Dynamic Modulus of Cohesive Soils,” Thesis Presented to the University of Michigan, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, pp. 311, 1974.
    2. Atkinson, J.H., and Sallfors, G., “Experimental Determination of Soil Properties,” Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Vol. 3, pp. 915-956, 1991.
    3. Chien, L.K., and Oh, Y.N., “Influence of Fines Content and Initial Shear Stress on Dynamic Properties of Hydraulic Reclaimed Soil,” Canadian Geotechnical Journal, Vol. 39, No. 1, pp. 242-253, 2002.
    4. Carraro, J.A.H., Prezzi, M., and Salgado, R., “Shear Strength and Stiffness of Sands Containing Plastic or Nonplastic Fines,” Journal of Geotechnical and Geoenvironment Engineering, Vol. 135, No. 9, pp. 1167-1178, 2009.
    5. Goudarzy, M., König, D., and Schanz , T., “Small Strain Stiffness of Granular Materials Containing Fines,” Soils and Foundations, Vol. 56, No. 5, pp. 756-764, 2016.
    6. Hardin, B.O., and Richart F.E. Jr., “Elastic Wave Velocities in Granular Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33-65, 1963.
    7. Hall, J.R. Jr., and Richat, F.E. Jr., “Dissipation of Elastic Wave Energy in Granular Soils,” Journal of The Soil Mechanics and Foundation Division Proc., ASCE, Vol. 89, No. SM6, pp. 27-56, 1963.
    8. Hardin, B.O., and Black, W.L., “Sand Stiffness under Various Triaxial Stresses,” Journal of the Soil Mechanics and Foundations Division, Vol. 92, No. SM2, pp. 27-42, 1966.
    9. Hardin, B.O., and Black W.L., “Vibration Modulus of Normally Consolidated Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, pp. 353-369, 1968.
    10. Hardin, B.O., and Drnevich V. P., “Shear Modulus and Damping in Soils: Measurement and Parameter Effects,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, pp. 603-624, 1972a.
    11. Hardin, B.O., and Drenvich, V.P., “Shear Modulus and Damping in Soils: Design Equations and Curves,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692, 1972b.
    12. Huang, Y.T., Huang, A.B., Kuo, Y.C., and Tsai, M.D., “A Laboratory Study on the Undrained Strength of A Silty Sand from Central Western Taiwan,” Soil Dynamic and Earthquake Engineering, Vol. 24, No. 9-10, pp. 733-743, 2004.
    13. Iwasaki, T., and Tatsuoka, F., “Effects of Grain Size and Grading on Dynamic Shear Moduli of Sands,” Soils and Foundations, Vol. 17, No. 3, pp. 19-35, 1977.
    14. Ishihara, K., Soil Behavior in Earthquake Geotechnics, Clarendon Press, Oxford, 1996.
    15. Inci, G., Yesiller, N., and Kagawa, T., “Experimental Investigation of Dynamic Response on Compacted Clayey Soils,” Geotechnical Testing Journal, Vol. 26, No. 2, pp. 125-141, 2003.
    16. Lo Presti, D.C.F., Discussion on, “Threshold Strain in Soils,” In: Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Vol. IV, Firenze, Italy, pp. 1282-1283, 1991.
    17. Payan, M., Senetakis, K., Khoshghalb, A., and Khalili, N., “Characterization of the Small-Strain Dynamic Behavior of Silty Sands; Contribution of Silica Non-Plastic Fines Content,” Soil Dynamics and Earthquake Engineering, Vol. 102, pp. 232-240, 2017.
    18. Qian, X., Gray, D.H., and Woods, R.D., “Resonant Column Tests on Partially Saturated Sands,” Geotechnical Testing Journal, Vol. 14, No. 3, pp. 266-275, 1991.
    19. Seed, H.B., and Idriss, I.M., “Shear Moduli and Damping Factor for Dynamic Response Analysis,” Report No. EERC 70-10, Earthquake Engineering Research Center, Univ. of California, Berkeley, California, 1970.
    20. Silver, M.L., and Seed, H.B., “Deformation Characteristics of Sands under Cyclic Loading,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. 8, pp. 1081-1098, 1971.
    21. Silver, M.L., “Load Deformation and Strength Behavior of Soil under Dynamic Loading,” State-of-Art Paper, Proceedings of International Conference on Recent Advances in Geotechnical Earthquake and Soil Dynamic, St. Louis, Vol. 3, pp. 873-896, 1981.
    22. Thevanayagam, S., and Martin, G.R., “Liquefaction in Silty Soils—Screening and Remediation Issues,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.1035-1042, 2002.
    23. Tao, M., Figueroa, J.L., and Saada, A.S., “Influence of Nonplastic Fines Content on the Liquefaction Resistance of Soils in Terms of the Unit Energy,” In: Proceedings of The Cyclic Behavior of Soil Sand Liquefaction Phenemena, A.A. Balkema Publishers Bochum,Germany, pp. 223-231, 2004.
    24. Vucetic, M., “Cyclic Threshold Shear Strains in Soils,” Journal of Geotechnical Engineering, Vol. 120, No. 12, pp. 2208-2228, 1994.
    25. Wu, S., Gray, D.H., and Richart, F. E., Jr., “Capillary Effects on Dynamic Modulus of Sands and Silts,” Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 9, pp. 1188-1203, 1984.
    26. Wichtmann, T., Navarrete Hernández, M.A., and Triantafyllidis, T., “On the Influence of A Non-Cohesive Fines Content on Small Strain Stiffness, Modulus Degradation and Damping of Quartz Sand,” Soil Dynamics and Earthquake Engineering, Vol. 69, pp. 103-114, 2015.
    27. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,9期,pp. 5-19,1985。
    28. 李偉榮,「細料含量對飽和粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,2010。
    29. 林華悌,「粉質砂土阻尼比模式之探討」,碩士論文,國立成功大學土木工程研究所,2012。
    30. 徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程研究所,2002。
    31. 陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,2010。
    32. 黃安斌,「台灣中西部粉/砂土壤液化行為之研究心得」,地工技術雜誌,121期,pp.5-16,2009。
    33. 葉兆欽,「飽和度對粉質砂土動態特性影響之研究」,碩士論文,國立成功大學土木工程研究所,2011。
    34. 鄭鈺諠,「不飽和夯實土壤之動態性質」,碩士論文,國立中央大學土木工程研究所,2010。
    35. 徐羽柔,「應用動力三軸探討海床土壤之動態特性」,碩士論文,國立成功大學土木工程研究所,2020。(未出版)

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE