簡易檢索 / 詳目顯示

研究生: 陳曦
Chen, Hsi
論文名稱: 具不同移氣器相位差之雙級史特靈冷凍機理論分析
Theoretical analysis of a two-stage Stirling cooler with different phase angles between displacers
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 雙級式史特靈冷凍機移氣器間相位差
外文關鍵詞: two-stage, Stirling-cooler, phase angle
相關次數: 點閱:86下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將現有之雙級式史特靈冷凍機內的二級移氣器分離,建立理論模型並撰寫程式以進行數值模擬。本研究中冷凍機動力模型分為兩種,第一種為將一、二級移氣器相位角設為給定的變數,第二種為將一、二級移氣器之間以彈性元件連接,其相位角由彈性元件和振動特性決定。首先給定初始條件以求得活塞及一、二級移氣器位置,接著計算各腔室之熱力性質,透過代入熱損失至能量方程式中,求得各腔室及各級製冷頭之溫度變化。另外也透過參數分析,找出能使冷凍機無負載溫度最低的一、二級移氣器間相位差,並且探討不同操作條件下的相位差表現和彈簧系統中製冷頭溫度表現。透過數值模擬的結果,在給定相位角的雙級史特靈冷凍機中,於工作流體為氦氣、填充壓力為7 bar、馬達轉速為1800 rpm、第二級移氣器領先第一級移氣器140°的操作條件下,第一、二級製冷頭分別可獲得152.1 K及100.3 K之無負載溫度;在此操作條件下,於第二級製冷頭加上0.5 W之熱負載,此時一、二級製冷頭的溫度分別為152.8 K及104.8 K,冷凍機整體的COP為 0.09,約為卡諾循環COP的16.8%。在以彈簧系統連接、二級移氣器的雙級史特靈冷凍機中,填充壓力為1 bar、馬達轉速為1600 rpm時,未碰撞的彈簧系統參數組合最佳值為阻尼比 η=1.0、彈簧常數 k=400 N/m,在此參數組合下,第一級製冷頭的穩態溫度為228.73 K,第二級製冷頭的穩態溫度為163 K。若在第二級製冷頭加上0.5 W之熱負載,則第一級製冷頭之溫度升為229.78 K,第二級製冷頭之溫度升為167.97 K。

    In this study, a two-stage Stirling cooler with different phase angles between displacers is analyzed by a theoretical model. Pressure, volume and mass in working chamber can be predicted by using the instantaneous position of piston, first stage and second stage displacer. The cold head temperature is calculated by the law of conservation of energy, which contains three kinds of thermodynamic losses: shuttle loss, pumping loss and pressure drop loss. Coefficient of performance can be determined by applying a heat load on the second stage cold head. The results of simulation shows the cold head temperature can reach 152K at the first stage cold head and 100K at the second stage cold head when the operating speed is 1800 rpm, the charging pressure is 7 bar and the second stage displacer leads the first stage displacer 140 degrees. When the heat load is 0.5W at 105 K, the coefficient of performance is 0.09. If a mass spring damper system is used to determine the motion of the second stage displacer, the temperature of the best case of the first stage and the second stage cold head are 228.73 K and 163 K respectively.

    摘要 I ABSTRACT III 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVI 符號索引 XIX 第一章 前言 1 1.1 研究背景與動機 1 1.2 史特靈冷凍機簡介 2 1.2.1 史特靈冷凍循環原理 3 1.2.2 多級膨脹型史特靈冷凍機 4 1.3 研究方向 5 1.4 論文架構 5 第二章 理論模型 6 2.1 動力模式 6 2.1.1 一、二級移氣器相位角給定 7 2.1.2 一、二級移氣器相位角由彈性元件特性決定 9 2.2 初始條件 12 2.3 熱力模式 14 2.3.1 再生器 15 2.3.2 壓縮室 23 2.3.3 第一級膨脹室 26 2.3.4 第二級膨脹室 28 2.3.5 第一級製冷頭 30 2.3.6 第二級製冷頭 32 2.3.7 壓縮室壁面 32 2.3.8 能量守恆檢查 33 2.4 性能係數 34 第三章 熱力模型模擬結果分析 38 3.1 基準組熱力性質 38 3.2 一、二級移氣器間相位角給定之參數分析 42 3.2.1 相位差之影響 42 3.2.2 填充壓力與相位差對溫度之影響 42 3.2.3 轉速與相位差影響 44 3.2.4 熱負載之影響 44 3.2.5 角度對COP之影響 45 3.2.6 活塞起始角度之影響 45 3.3 一、二級移氣器以彈簧系統連接 46 3.3.1 彈簧係數之影響 47 3.3.2 阻尼比之影響 47 3.3.3 碰撞與否對製冷頭穩態溫度的影響 47 3.3.4 彈簧系統與給定相位角之結果比較 48 3.4 本研究之冷凍機與現有冷凍機性能對照 50 第四章 結論 52 參考文獻 55

    [1] R.F. Barron, Cryogenic systems, Oxford University Press ; Clarendon Press, New York; Oxford, 1985.
    [2] A. Veprik, S. Zechtzer, N. Pundak, S. Riabzev, C. Kirckconnel, and J. Freeman, "Low cost split stirling cryogenic cooler for aerospace applications," AIP Conference Proceedings, Vol. 1434, pp. 1465-1472, 2012.
    [3] A. Filis, V. Segal, N. Pundak, Z.B. Haim, and M. Danziger, Ricor's anniversary of 50 innovative years in cryogenic technology, Vol. 10180, SPIE, 2017.
    [4] J. Steven Brown and P.A. Domanski, "Review of alternative cooling technologies," Applied Thermal Engineering, Vol. 64, pp. 252-262, 2014.
    [5] M. Kyoya, K. Narasaki, K. Ito, K. Nomi, M. Murakami, H. Okuda, H. Murakami, T. Matsumoto, and Y. Matsubara, "Development of two-stage small Stirling cycle cooler for temperatures below 20 K," Cryogenics, Vol. 34, pp. 431-434, 1994.
    [6] K. Narasaki, S. Tsunematsu, K. Ootsuka, M. Kyoya, T. Matsumoto, H. Murakami, and T. Nakagawa, Development of two-stage Stirling cooler for ASTRO-F, Vol. 710, 2004.
    [7] V. Bhojwani, A. Inamdar, M. Lele, M. Tendolkar, M. Atrey, S. Bapat, and K. Narayankhedkar, "Opposed piston linear compressor driven two-stage Stirling Cryocooler for cooling of IR sensors in space application," Cryogenics, Vol. 83, pp. 71-77, 2017.
    [8] 黃竹隱, 史特靈冷凍機之設計與理論分析, 國立成功大學航空太空工程學系碩士論文, 2012.
    [9] 卓杰蔚, 雙級史特靈冷凍機之理論分析與製作, 國立成功大學航空太空工程學系碩士論文, 2015.
    [10] 王栢村, 振動學, Vol. 3, 新北市:全華圖書, 2014.
    [11] D. Greenspan and V. Casulli, Numerical analysis for applied mathematics, science, and engineering, Addison-Wesley Pub. Co., Advanced Book Program, 1988.
    [12] A.J. Organ, The regenerator and the Stirling engine, London ; Bury St. Edmunds, England : Mechanical Engineering Publications, 1997.
    [13] G.W. Swift, Thermoacoustics - A Unifying Perspective for Some Engines and Refrigerators, Vol. 113, Acoustical Society of America through the American Institute of Physics, 2002.
    [14] T. Bernd and P. Deborah, "Update on the evaluation of different correlations for the flow friction factor and heat transfer of Stirling engine regenerators," 35th Intersociety Energy Conversion Engineering Conference and Exhibit, American Institute of Aeronautics and Astronautics, 2000.
    [15] K. Nam and S. Jeong, "Novel flow analysis of regenerator under oscillating flow with pulsating pressure," Cryogenics, Vol. 45, pp. 368-379, 2005.
    [16] R. A. Ackermann, Cryogenic Regenerative Heat Exchangers, New York : Plenum Press, 1997.
    [17] W.M. Kays and A.L. London, Compact heat exchangers, Krieger Publishing Company, 1984.
    [18] R. Li and L. Grosu, "Parameter effect analysis for a Stirling cryocooler," International Journal of Refrigeration, Vol. 80, pp. 92-105, 2017.
    [19] F.J. Zimmerman and R.C. Longsworth, "Shuttle Heat Transfer," Advances in Cryogenic Engineering, Springer US, Boston, MA, pp. 342-351, 1971.
    [20] L. Zhang, L.H. Gong, and X.D. Xu, "Study of Effect of Heat Transfer in the Cold Head to the Performance of a 4.2K G-M Refrigerator," Advances in Cryogenic Engineering, Springer US, Boston, MA, pp. 1645-1651, 1996.

    下載圖示 校內:2022-09-01公開
    校外:2024-09-01公開
    QR CODE