簡易檢索 / 詳目顯示

研究生: 康雅蓉
Kang, Ya-Rong
論文名稱: 研究Hippo pathway的失調在食道癌的角色
The role of Hippo pathway deregulation in esophageal cancer
指導教授: 吳梨華
Wu, Li-Wha
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 50
中文關鍵詞: 食道癌Hippo pathwayYAPTAZ
外文關鍵詞: Esophageal cancer, Hippo pathway, YAP, TAZ
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 食道癌是全球第八大癌症也是癌症相關死亡率的第六大起因,估計每年全球有45.6萬新發病例。食道癌平均5年存活率僅為15%,同時在原發腫瘤切除後,其復發率高達4成。在台灣,雖然食道癌是國人第九大癌症死因,但近幾年,食道癌發病率有逐年攀升的現象。Hippo pathway其主要功能為調控細胞增生,存活,幹細胞分化和器官大小的關鍵途徑。而YAP 和其旁系同源物TAZ是Hippo pathway 的主要轉錄共調因子,在不同癌症類型中,Hippo pathway 的下游調控因子YAP和TAZ經常被描述為具有相同功能,但是近年來的研究發現在癌症進展期間,不同基因的表達譜的YAP或TAZ,可能扮演不同的角色。在數種癌症類型中發現Hippo pathway有失活現象,然而在食道癌中,Hippo pathway 和其下游YAP和TAZ的確切作用仍然不清楚。因此在這論文中,我們分別討論YAP或TAZ在食道癌進程中所扮演的角色。首先我們利用西方墨點法檢測各種食道癌細胞株YAP / TAZ的差異表達。透過基因的靜默或過量表達,我們意外地發現在食道癌中,YAP和TAZ對於體外細胞增生,遷移和侵襲甚至動物體內腫瘤的形成具有相反的功能。儘管YAP和TAZ在食道癌中扮演不儘相同甚至相反的角色與機制仍值得進一步研究,此研究結果將有助於證實Hippo pathway及其作用因子YAP / TAZ在食道癌中的確切作用。

    Esophageal cancer is the 8th most common cancer and the 6th leading cause of cancer-related mortality in the world, with an estimated 456,000 new cases per year worldwide. In addition to high recurrence rate (~40%) even after resection of the primary tumor, the 5-year survival rate for all stages of esophageal cancer is only 15%. Although esophageal cancer is the ninth cause of cancer death in Taiwan, the incidence rate is on the rise especially in the past few years. Hippo pathway has been shown to be a key pathway involved in cell proliferation, survival, stemness, differentiation and organ size control. The transcription co-regulators, YAP and its paralog, TAZ, are the central mediators for Hippo pathway. Although YAP and TAZ have often been described to be the equivalent downstream effectors of the Hippo pathway in different cancer types, differential expression profiles of YAP or TAZ suggest distinct roles during cancer progression. Although more and more studies detected the inactivation of Hippo pathway in several cancer types, the exact role of Hippo pathway and its downstream mediators, YAP and TAZ, in esophageal cancer remains to be characterized. To examine the role of YAP/TAZ in esophageal cancer, we first detected a differential expression of YAP/TAZ in various esophageal cancer lines. Through genetic silencing and overexpression, we unexpectedly found that YAP and TAZ have opposing functions in mediating esophageal cancer cell proliferation, migration and invasion as well as xenograft tumorigenesis. Although the contrasting role of YAP and TAZ deregulation in esophageal cancer warrants further mechanistic studies, this study results would help corroborate the exact role of Hippo pathway and its effectors, YAP/TAZ, in esophageal cancer.

    Abstract in Chinese I Abstract in English II Acknowledgement………………………………………………………...III Content V List of Tables and Figures VIII Abbreviations IX I. Introduction 1 1-1 Esophageal cancer 1 1-2 Hippo pathway and its key effectors, Yes-associated protein (YAP) and PDZ-binding motif (TAZ), in tissue homeostasis and cancer 1 1-3 The imbalance of YAP/TAZ in cancer 3 1-4 The current studies of Hippo pathway deregulation in esophageal cancer 3 II. Hypothesis 5 III. Specific aims 6 IV. Materials and methods 7 4-1 Cell culture 7 4-2 Quantitative RT-PCR (qRT-PCR) 7 4-3 Western blotting 8 4-4 Lentivirus transduction 8 4-5 Doubling time 8 4-6 Wound healing assay 9 4-7 Trans-well migration and invasion assay 9 4-8 Trans-well invasion assay 10 4-9 Xenograft tumorigenesis 10 4-10 Statistical analysis 10 V. Results 11 5-1 The expression of YAP and TAZ protein was differentially regulated in various esophageal cancer cell lines 11 5-2 The expression of YAP or TAZ in esophageal cancer cells was differentially correlated with activating phosphorylation of LATS1 11 5-3 YAP knockdown increased esophageal cancer cell proliferation, migration and invasion 12 5-4 YAP overexpression decreased esophageal cancer cell proliferation, migration and invasion 13 5-5 TAZ knockdown decreased esophageal cancer cell proliferation, migration and invasion 13 5-6 TAZ overexpression increased esophageal cancer cell proliferation, migration and invasion 14 5-7 YAP and TAZ had opposing function in xenograft tumorigenesis 14 VI. Discussion 16 VII. Conclusion 18 VIII. References 19 IX. Table 1. Primer list 24 X. Table 2. Antibody list 25 XI. Appendix 49

    Ajani, J.A., Barthel, J.S., Bentrem, D.J., D'Amico, T.A., Das, P., Denlinger, C.S., Fuchs, C.S., Gerdes, H., Glasgow, R.E., Hayman, J.A., et al. (2011). Esophageal and esophagogastric junction cancers. J Natl Compr Canc Netw 9, 830-887.

    Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401-404.

    Chen, S.C., Teng, C.J., Hu, Y.W., Yeh, C.M., Hung, M.H., Hu, L.Y., Ku, F.C., Tzeng, C.H., Chiou, T.J., Chen, T.J., et al. (2015). Secondary primary malignancy risk among patients with esophageal cancer in Taiwan: a nationwide population-based study. PLoS One 10, e0116384.

    Conteduca, V., Sansonno, D., Ingravallo, G., Marangi, S., Russi, S., Lauletta, G., and Dammacco, F. (2012). Barrett's esophagus and esophageal cancer: an overview. Int J Oncol 41, 414-424.

    Creasy, C.L., and Chernoff, J. (1995). Cloning and characterization of a human protein kinase with homology to Ste20. J Biol Chem 270, 21695-21700.

    Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Gayyed, M.F., Anders, R.A., Maitra, A., and Pan, D. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133.

    Du, J., Ji, J., Gao, Y., Xu, L., Xu, J., Zhu, C., Gu, H., Jiang, J., Li, H., Ma, H., et al. (2013). Nonsynonymous polymorphisms in FAT4 gene are associated with the risk of esophageal cancer in an Eastern Chinese population. Int J Cancer 133, 357-361.

    Ehsanian, R., Brown, M., Lu, H., Yang, X.P., Pattatheyil, A., Yan, B., Duggal, P., Chuang, R., Doondeea, J., Feller, S., et al. (2010). YAP dysregulation by phosphorylation or DeltaNp63-mediated gene repression promotes proliferation, survival and migration in head and neck cancer subsets. Oncogene 29, 6160-6171.

    Ferraiuolo, M., Verduci, L., Blandino, G., and Strano, S. (2017). Mutant p53 Protein and the Hippo Transducers YAP and TAZ: A Critical Oncogenic Node in Human Cancers. Int J Mol Sci 18.

    Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6, pl1.

    Gumbiner, B.M., and Kim, N.G. (2014). The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci 127, 709-717.

    Guo, Y., Pan, Q., Zhang, J., Xu, X., Liu, X., Wang, Q., Yi, R., Xie, X., Yao, L., Liu, W., et al. (2015). Functional and clinical evidence that TAZ is a candidate oncogene in hepatocellular carcinoma. J Cell Biochem 116, 2465-2475.

    Halder, G., and Johnson, R.L. (2011). Hippo signaling: growth control and beyond. Development 138, 9-22.

    Hansen, C.G., Moroishi, T., and Guan, K.L. (2015). YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 25, 499-513.

    Harvey, K.F., Zhang, X., and Thomas, D.M. (2013). The Hippo pathway and human cancer. Nat Rev Cancer 13, 246-257.

    Hayashi, H., Higashi, T., Yokoyama, N., Kaida, T., Sakamoto, K., Fukushima, Y., Ishimoto, T., Kuroki, H., Nitta, H., Hashimoto, D., et al. (2015). An Imbalance in TAZ and YAP Expression in Hepatocellular Carcinoma Confers Cancer Stem Cell-like Behaviors Contributing to Disease Progression. Cancer Res 75, 4985-4997.

    Heidary Arash, E., Shiban, A., Song, S., and Attisano, L. (2017). MARK4 inhibits Hippo signaling to promote proliferation and migration of breast cancer cells. EMBO Rep 18, 420-436.

    Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A., and Nishida, E. (2012). A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling. EMBO J 31, 1109-1122.

    Janse van Rensburg, H.J., and Yang, X. (2016). The roles of the Hippo pathway in cancer metastasis. Cell Signal 28, 1761-1772.

    Kango-Singh, M., Nolo, R., Tao, C., Verstreken, P., Hiesinger, P.R., Bellen, H.J., and Halder, G. (2002). Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719-5730.

    Lai, Z.C., Wei, X., Shimizu, T., Ramos, E., Rohrbaugh, M., Nikolaidis, N., Ho, L.L., and Li, Y. (2005). Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120, 675-685.

    Lei, Q.Y., Zhang, H., Zhao, B., Zha, Z.Y., Bai, F., Pei, X.H., Zhao, S., Xiong, Y., and Guan, K.L. (2008). TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28, 2426-2436.

    Li, X., Zhao, L., Zhang, W., Yang, C., Lian, Z., Wang, S., Liu, N., Pang, Q., Wang, P., and Yu, J. (2017). Prognostic value of supraclavicular nodes and upper abdominal nodes metastasis after definitive chemoradiotherapy for patients with thoracic esophageal squamous cell carcinoma. Oncotarget.

    Li, Z., Wang, Y., Zhu, Y., Yuan, C., Wang, D., Zhang, W., Qi, B., Qiu, J., Song, X., Ye, J., et al. (2015). The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer. Mol Oncol 9, 1091-1105.

    Lim, S.K., Lu, S.Y., Kang, S.A., Tan, H.J., Li, Z., Adrian Wee, Z.N., Guan, J.S., Reddy Chichili, V.P., Sivaraman, J., Putti, T., et al. (2016). Wnt Signaling Promotes Breast Cancer by Blocking ITCH-Mediated Degradation of YAP/TAZ Transcriptional Coactivator WBP2. Cancer Res 76, 6278-6289.

    Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting coiled coils from protein sequences. Science 252, 1162-1164.

    Meng, Z., Moroishi, T., and Guan, K.L. (2016). Mechanisms of Hippo pathway regulation. Genes Dev 30, 1-17.

    Mi, W., Lin, Q., Childress, C., Sudol, M., Robishaw, J., Berlot, C.H., Shabahang, M., and Yang, W. (2015). Geranylgeranylation signals to the Hippo pathway for breast cancer cell proliferation and migration. Oncogene 34, 3095-3106.
    Moroishi, T., Hansen, C.G., and Guan, K.L. (2015). The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer 15, 73-79.

    Pan, D. (2010). The hippo signaling pathway in development and cancer. Dev Cell 19, 491-505.

    Shi, P., Feng, J., and Chen, C. (2015). Hippo pathway in mammary gland development and breast cancer. Acta Biochim Biophys Sin (Shanghai) 47, 53-59.

    Song, S., Honjo, S., Jin, J., Chang, S.S., Scott, A.W., Chen, Q., Kalhor, N., Correa, A.M., Hofstetter, W.L., Albarracin, C.T., et al. (2015). The Hippo Coactivator YAP1 Mediates EGFR Overexpression and Confers Chemoresistance in Esophageal Cancer. Clin Cancer Res 21, 2580-2590.

    Sudol, M. (1994). Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9, 2145-2152.

    Sudol, M., Bork, P., Einbond, A., Kastury, K., Druck, T., Negrini, M., Huebner, K., and Lehman, D. (1995). Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem 270, 14733-14741.

    Tapon, N., Harvey, K.F., Bell, D.W., Wahrer, D.C., Schiripo, T.A., Haber, D., and Hariharan, I.K. (2002). salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467-478.

    Wang, X., Luo, Y., Li, M., Yan, H., Sun, M., and Fan, T. (2016). Recurrence pattern of squamous cell carcinoma in the midthoracic esophagus: implications for the clinical target volume design of postoperative radiotherapy. Onco Targets Ther 9, 6021-6027.

    Wu, S., Huang, J., Dong, J., and Pan, D. (2003). hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445-456.

    Yabuta, N., Fujii, T., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Nishiguchi, H., Endo, Y., Toji, S., Tanaka, H., Nishimune, Y., et al. (2000). Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Genomics 63, 263-270.

    Yu, F.X., and Guan, K.L. (2013). The Hippo pathway: regulators and regulations. Genes Dev 27, 355-371.

    Yu, F.X., Zhao, B., Panupinthu, N., Jewell, J.L., Lian, I., Wang, L.H., Zhao, J., Yuan, H., Tumaneng, K., Li, H., et al. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791.

    Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747-2761.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE