簡易檢索 / 詳目顯示

研究生: 楊傑婷
Yang, Chieh-Ting
論文名稱: 直交集成材用於建築室內牆體構造之隔音性能研究
A Study on the Sound Insulation Performance of Cross Laminated Timber used in Interior Walls of Buildings
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: CLT直交集成板空氣音隔音牆體隔音隔音模擬
外文關鍵詞: CLT, Air-borne sound insulation, Sound insulation simulation
相關次數: 點閱:93下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直交集成板(Cross Laminated Timber, CLT)為1990年代歐洲開發的產品,是將實木按纖維方向垂直互相交疊後壓製而成的木板材料,其結構強度能支撐高層建築,若是取代現有鋼筋水泥建築,將成為減少全球碳排放的助力。因此近年陸續獲得重視並開始引入亞洲各國。木造建築有許多施工成本及實務上優點,然而國外許多採用CLT之木構造集合住宅,使用後評估卻出現音環境不佳的問題,本團隊前期研究也實地測量台灣某CLT建築,發現其牆體空氣音隔音指標Rw值在30~40dB區間,不符合國內隔音相關法規。原因在於木材質量較低,降低了隔音性能。音環境對於集合住宅而言是相當重要的居住性能,為了推廣木構造集合住宅,必須改善CLT構造的隔音工法。另外,台灣現有木構造建築採用CLT的案例僅僅只有數例,且從結構到裝修材大多使用國外進口產品。而國內外樹種材質差異以及人民生活習慣不同,使台灣生產的CLT無法直接套用國外隔音工法。

    基於上述原因,本研究目的為:探討CLT牆體的構造差異對於隔音性能之影響、國產CLT與國外CLT之比較評估以及找出適合的隔音模擬工具以簡化設計CLT牆體構造的流程。首先以日本CLT與台灣CLT為對象,設計對應分戶牆及分間牆之兩種牆體構造系統:中空雙層牆與實心牆,並於成功大學音響實驗室進行隔音測試。同時經由模擬工具預測牆體構造之隔音性能,而後與實驗值進行比對,驗證模擬工具之適用性。最後藉由文獻資料及公式找出小試體及標準尺寸試體測得隔音值之關係。

    實驗結果顯示,台灣CLT與日本CLT單板性能兩者透過損失趨勢相似,但日本CLT在250Hz以下之低頻表現略佳,推測因為使用之樹種不同,面密度及楊氏係數的改變,導致低頻共振頻率及隔音性能差異。中空雙層牆構造系統之整體隔音性能達到Rw 50dB,但填充玻璃棉或改變空氣層厚度,對於整體性能影響不大,提升效果在2dB以內。實心牆構造之Rw值也能達到50dB,在CLT與板材之間增加空氣層厚度,或是填充玻璃棉,皆能大幅改善其中低頻之透過損失。

    模擬結果發現,預測CLT單板時使用經驗公式計算會比INSUL及VBA工具準確,將中空雙層牆視為兩倍單板進行質量法則公式計算,結果會與實驗值相近,模擬工具預測能力皆不佳。預測實心牆時,INSUL於500~1350Hz之結果與實驗值相近,吻合頻率位置也一致。藉由修正質量法則公式能更貼近CLT單板實驗數據,且修正係數與試體大小呈現正相關。

    The study aimed to identify the influence of different CLT (cross laminated timber) wall structures on the sound insulation performance by designing two kinds of wall structure system, namely separating wall and partition wall upon Japan CLT and Taiwan CLT as the main research objects through which several rounds of insulation test were implemented in the NCKU Architectural Acoustics Laboratory. Simulation tools were used to predict the sound insulation performance of wall structures. Simulated data were then compared against empirical data in order to verify the reliability of simulation tools. Finally, literature and formulas were investigated so as to identify the relationships between sound transmission loss of small samples and full-size samples.

    As shown in empirical data, the overall sound insulation performance of double wall constructions reached Rw 50 dB, while filling glass wool and the change of airgap thickness did not bring significant influence to the performance as improvement was barely less than 2dB. Rw value of solid wall constructions also reached 50dB; the performance could be further enhanced by either increasing airgap thickness between CLT and panels or filling glass wool as ways to reduce the sound transmission loss in low frequency.

    Having compared the performance between Taiwan and Japan CLT single panel, similar trends in sound transmission loss of both materials were found; Japan CLT was slightly better in the low frequency performance under 250Hz. Several factors were assumed to altering both low resonance frequency and sound insulation performance, including: different tree species, a change in density, and a change in young’s modulus.

    As shown in the simulations, the use of empirical formula in predicting the CLT single board has yielded a more accurate result instead of using INSUL and VBA tools. However, all simulation tools displayed low predictability when viewing double wall system, in which the outcomes, calculated by the mass law formulas, resembled the actual values. In the prediction of solid wall, INSUL being manipulated in the 500~1350Hz zone has delivered the value close to the actual value, in which the fitting frequency also matched in the same position.

    第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 3 1-3 研究範圍與流程 4 1-3-1 研究範圍 4 1-3-2 研究流程 5 第二章 文獻回顧與相關理論 6 2-1 CLT歷史沿革與基本介紹 6 2-2 CLT建築物理環境之相關文獻 7 2-3 既有CLT建築隔音性能之相關研究 9 2-3-1 國外實測案例 9 2-3-2 國內實測案例 10 2-3-3 CLT牆體隔音性能之相關實驗 12 2-4 隔音構造模擬 13 2-4-1 隔音預測公式 13 2-4-2 隔音預測物理模型 14 2-5 試體大小對於隔音值測量之影響 14 第三章 研究方法 16 3-1 隔音性能量測及評估方法 16 3-1-1 CNS與法規基準 16 3-1-2隔音性能量測方法 16 3-1-3牆體隔音性能構造之影響因子與特性 17 3-2 對象試體說明 19 3-2-1 CLT單體物理特性 19 3-2-2實驗試體構造設計說明 19 3-2-3 日本CLT單體 20 3-2-4 日本CLT中空雙層牆構造 20 3-2-5 日本CLT實心牆構造 21 3-2-6 台灣CLT單體 23 3-3 實驗室環境與量測概要 24 3-3-1實驗室環境 24 3-3-2 實驗室量測概要 26 3-3-3 實驗測試儀器系統 28 3-4 模擬軟體分析 29 3-4-1 隔音模擬軟體INSUL 29 3-4-2 簡易物理模型之隔音模擬工具 32 第四章 實驗結果分析 35 4-1 實驗結果概述 35 4-1-1 封板性能探討 38 4-2 日本CLT隔音性能結果與分析_750x1500mm 39 4-2-1 CLT單板量測結果 39 4-2-2中空雙層牆量測結果 41 4-2-3 實心牆量測結果 45 4-2-4 中空雙層牆結果討論 50 4-2-5 實心牆結果討論 53 4-3 日本CLT隔音性能結果與分析_150x150cm 56 4-3-1 CLT單板量測結果 56 4-3-2 實心牆量測結果 57 4-3-3 實心牆結果討論 61 4-4 台灣及日本製CLT之隔音性能比較 65 4-4-1 CLT單板量測結果比較 65 4-4-2 中空雙層牆量測結果比較 66 4-4-3 實心牆量測結果比較 67 4-5 小結 69 第五章 隔音模擬預測及修正之探討 70 5-1 隔音之模擬模型概要 70 5-1-1 邊界條件設定 70 5-2 單板及雙層板隔音計算公式 70 5-3 INSUL模型之建立與初步分析 71 5-4 模擬與實測比對 75 5-4-1模擬工具預測能力之比較 75 5-4-2 各頻帶差異與分析 81 5-5 小尺寸試體與標準尺寸試體隔音性能之關係 82 5-6 小結 84 第六章 結論與建議 86 6-1 研究結論 86 6-2 後續研究建議 88 參考文獻 89 附錄 95

    (一) 中文文獻
    1. 內政部營建署 (2018),建築技術規則建築設計施工編部分條文修正條文,全國法規資料庫。
    2. 王松永 (2003),木質環境科學,國立編譯館。pp.355-366;793-795。
    3. 王松永、蔡明哲、塗三賢 (2009),木材利用對減緩二氧化碳排放之貢獻. 全球變遷通訊雜誌 61: 7-13。
    4. 郭彥閔 (2004),複合材料平板聲波穿透損失之研究,中華民國音響學會,第17屆學術研討會論文集。
    5. 陳啟仁 (2013),當前推動台灣木構造建築之迷思與法規障礙,建築師雜誌,457期。
    6. 塗三賢 (2007),台灣地區木構造住宅對碳貯存與二氧化碳減量之貢獻,國立台灣大學博士論文。
    7. 盧博堅 (2011),噪音控制與防制,CH9 隔音原理及其應用。台中:滄海出版社。
    8. 環球水泥 (2017),產品規格 – 普通石膏板。2019年6月18日檢自:http://www.ucctw.com/m/412-1518-11223.php?Lang=zh-tw
    9. 鐘祥璋 (2012),建築吸聲材料與隔聲材料(第二版)。北京:化學工業出版社。

    (二) 英文文獻
    1. Antonino Di Bella, Nicola Granzotto, and Luca Barbaresi (2016) Analysis of acoustical behavior of bare cross laminated timber floors for the evaluation of the improvement of impact sound insulation. Proceedings of Meetings on Acoustics, Volume 28
    2. AWC (2012) Preliminary CLT Fire Resistance Testing Report. American Wood Council. Retrieved 2014 from:
    http://www.awc.org/Code-Officials/2012-IBC-Challenges/Preliminary-CLT-Fire-Test-Report-FINAL-July2012.pdf
    3. Berndt Zeitler, Stefan Schoenwald and Ivan Sabourin (2014) Direct Impact Sound Insulation of Cross Laminate Timber Floors with and without Toppings. Conference Paper of Inter-noise 2014
    4. Cambiaso, F., Pietrasanta, M. (2014) Innovative timber construction: sustainability and high performance building skin. IACSIT Int. J. Eng. Technol. 6 (1), 47e54.
    5. Canadian Wood Council. (2010) The Design Possibilities of Engineered Wood Products. In: International Building Series Number, vol. 7.
    6. Chen, Y.J. (2012) Comparison of Environmental Performance of a Five-storey Building Built with Cross-laminated Timber and Concrete (Thesis). Department of Wood Science.
    7. Cremer, L.(1988) Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies, 2nd ed. Springer-Verlag, Berlin.
    8. Crespell, P., Gagnon, S. (2010) Cross Laminated Timber: a Primer. FPInnovations, Vancouver, Canada. Retrieved 2013
    9. Davy, J.L. (2014) The average specific forced radiation wave impedance of a finite rectangular panel. Journal of the Acoustical Society of America, 2014. 136(2): p. 525-536
    10. Forest Products Lab (2010) Wood Handbook: Wood as an Engineering Material. U.S. Department of Agriculture. Forest Service, Madison, Wisconsin.
    11. Fountain, H. (2012) Wood that Reaches New Heights. The New York Times.
    12. FPInnovations (2013) CLT Handbook. FPInnovations, Montreal, Canada
    13. Frangi, A., Fontana, M., Hugi, E., Joebstl, R. (2009) Experimental analysis of crosslaminated timber panels in fire. Fire Saf. J. 44, 1078e1087
    14. Hammond, G.P., Jones, C.I. (2008) Embodied energy and carbon in construction materials. Proc. Institut. Civ. Eng. Energy 161 (2), 87e98.
    15. Hoadley, B. (2000) Understanding wood: a craftsman's guide to wood technology. Taunton Press, Newtown, CT
    16. Hristovski, V., Dujic, B., Stojmanovska, M., Mircevska, V. (2012) Full-scale shakingtable tests of XLam panel systems and numerical verification: specimen 1. J. Struct. Eng. 139 (11), 2010e2018.
    17. INSUL Users Manual.(2017). Marshall Day Acoustics, New Zealand.
    18. J.W.G.Van DeKuilen et al. (2011) Very Tall Wooden Buildings with Cross Laminated Timber. Procedia Engineering, Volume 14, Pages 1621–1628
    19. Jowett, O. (2011) The thermal behavior of cross-laminated timber construction and its resilience to summertime overheating. In: Proceedings of PLEA 2011-the 27th Conference on Passive and Low Energy Architecture, pp. 339e344.
    20. Kirkegaard, A. (2012) Aesthetic Qualities of Cross Laminated Timber (Doctorate dissertation). Department of Civil Engineering, The Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark.
    21. Lehmann, S. (2012) Sustainable construction for urban infill development using engineered massive wood panel systems. Sustainability 4 (10), 2707e2742.
    22. Lehmann, S., Hamilton, C. (2011) Sustainable Infill Development Using Low Carbon CLT Prefabrication: Adaptation for the South Australian Context. Zero Waste SA Research Centre for Sustainable Design and Behaviour: University of South Australia, Adelaide, Australia
    23. Malczyk, R. (2011) Cross-laminated timber in british Columbia. In: Presentation. CLT Symposium. February 8e9.
    24. Maria Fernanda Laguarda Mallo, Omar Espinoza (2014) Outlook for Cross-Laminated Timber in the United States. BioResources, Volume 9, Number 4, Pages 7427-7443
    25. Martino Marini et al. (2015) Comparison between calculated and measured performances of impact sound insulation for Cross Laminated Timber building elements. Conference Paper of EuroNoise 2015
    26. MFL Mallo, O Espinoza. (2015) Awareness, perceptions and willingness to adopt Cross-Laminated Timber by the architecture community in the United States. Journal of Cleaner Production, Volume 94, Pages 198-210
    27. Omar Espinoza et al. (2016) Cross-Laminated Timber: Status and Research Needs in Europe. BioResources, Volume 11, Number 1, Pages 281-295
    28. Öqvist R., Ljunggren, F. and Ågren, A. (2012) On the uncertainty of building acoustic measurements – Case study of a cross-laminated timber construction, Applied Acoustics 73: 904–912.
    29. P. Y. Wang. et al. (2017) Field study on the sound insulation performance of a CLT residential building in a subtropical climate. InterNoise 17 pages 1996-2998, pp. 2336-2341(6)
    30. Pei, S., Popovski, M., van de Lindt, J.W. (2012) Seismic design of a multi-story cross laminated timber building based on component level testing. World 15, 19.
    31. Popovski, M., Karacabeyli, E. (2012) Seismic behaviour of cross-laminated timber structures. World 15, 19
    32. Popovski, M., Schneider, J., Schweinsteiger, M. (2010) Lateral load resistance of crosslaminated wood panels. In: World Conference on Timber Engineering, pp. 20e24
    33. R. R. Wareing. (2015) Variations in measured sound transmission loss due to sample size and construction parameters. Applied Acoustics, Volume 89, March 2015, Pages 166-177
    34. Robertson, A.B., Lam, F.C., Cole, R.J. (2012) A comparative cradle-to-gate life cycle assessment of mid-rise office building construction alternatives: laminated timber or reinforced Concrete. Buildings 2 (3), 245e270
    35. S Schoenwald. (2014) Acoustics summary: sound insulation in mid-rise wood building (Report to Research Consortium for wood and wood-hybrid mid-rise buildings)
    36. Sewell EC. (1970) “Transmission of reverberant sound through a single-leaf partition surrounded by an infinite rigid baffle”, Journal of Sound and Vibration, 12(1):21-32
    37. Shikai Xu (2013) A Review on Cross Laminated Timber (CLT) and its Possible Application in North America. The University of British Columbia
    38. Silva, C.V., Branco, J.M., Lourenço, P.B. (2013) A Project Contribution to the Development of Sustainable Multi-storey Timber Buildings. Report. Department of Civil Engineering. University of Minho, Guimaraes, Portugal.
    39. Skogstad, H., Gullbrekken, L., Nore, K. (2011) Air leakages through cross laminated timber (CLT) constructions. In: 9th Nordic Symposium on Building Physics.
    40. Steiger, R., Gülzow, A. (2010) Validity of bending tests on strip-shaped specimens to derive bending strength and stiffness properties of cross-laminated solid timber (X-lam). In: The Future of Quality Control for Wood and Wood Products, pp. 4e7
    41. Steiger, R., Gulzow, A., Gsell, D. (2008) Nondestructive evaluation of elastic material properties of cross-laminated timber. In: Conference COST E53. 29e30 October 2008, Delft, The Netherlands, pp. 171e182
    42. Timothy Beresford, Jeffery Chen (2018) Floor airborne and impact sound insulation performance of cross laminated timber vs. timber joist and concrete systems. Conference Paper of Hear to Listen 2018
    43. Waugh, A. (2010) Bigger, taller, better. PowerPoint presentation. In: Touch with Timber Conference. 18th May. London, England.
    44. Winter, W., Tavoussi Tafreshi, K., Fadai, A., Pixner, T. (2010) Development of wood based sustainable construction methods for high-rise buildings under lateral loading. High Rise Towers Tall Build. 1e8.
    45. WoodWorks (2013) Introducing Cross-laminated Timber. New Opportunities for Timber Construction. WoodWorks Presentation.

    (三) 日文文獻
    1. 笹尾博行 (2006),Excelによる音響解析入門-音響構造特性の解析-(3) : Excelによる遮音構造の解析。 空気調和・衛生工学 80(11), 1009-1016, 2006-11-05
    2. 田中学 (2017),直交集成板を用いた建築物の居室間遮音性能に関する研究,日本京都大學博士論文。
    3. 日本建築学会 (1979),日本防音建築基準法,建築物の遮音性能基準と設計指針[第二版]。
    4. 平松友孝、田端淳 (2017),集合住宅の遮音性能・遮音設計の考え方,日本音響学会誌,73巻2号,pp. 123–130。
    5. 銘建工業株式会社 (2015),竣工時音響性能測定報告書:真庭木材事業協同組合CLT共同住宅建築計画。http://www.pref.okayama.jp/uploaded/attachment/206226.pdf
    6. 銘建工業株式会社 (2018),WEBカタログ. http://www.meikenkogyo.com/product/contents/bs_content5.html
    7. 木村彰孝、杉山浩之、佐々木木靖、谷田貝光克(2011)ヒバ材を用いた室内空間での視覚・嗅覚刺激が人の心理・生理面に与える影響,木材學會誌 57: 150-159。
    8. 綠川信(2008),音の基礎講座 ⑦ 壁構造と遮音の原理,建築試験情報vol.44,pp.15-17

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE