簡易檢索 / 詳目顯示

研究生: 歐尼安
Ondevilla, Neil Adrian
論文名稱: 可用於早期監測感染症的電動力增強式電化學檢測平台開發
Development of an Electrokinetically-Enhanced Electrochemical Detection Platform for the Early Monitoring of Infection
指導教授: 張憲彰
Chang, Hsien-Chang
王德華
Wong, Tak-Wah
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 153
中文關鍵詞: 電化學生物感測器電動力學EDLSAM抗體適配體細胞激素風暴敗血症POC
外文關鍵詞: electrochemical biosensor, electrokinetics, EDL, SAMs, antibody, aptamer, cytokine storm, sepsis, POC
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學(EC) 生物感測器因其具有小型化、便攜性和降低成本等優勢,是最常被研究用於居家即時 (POC) 的生物感測器類型。本研究旨在以EC法為基礎開發符合POC要求的感測器,且得以能快速、靈敏地檢測感染中的生物標的物。為此,先對於雙電層(EDL)有較深入的概念釐清,其在檢測較低濃度之生物標的物時尤為重要。其次,利用電化學阻抗譜 (EIS) 技術以及對電路元件的分析和對電子轉移速率常數(k_et^0)的監測,可以提供受測試樣在添加前後在EDL特性上的變化。我們也對表面修飾進行探討,期望理出面對臨床檢體複雜環境於EIS量測時仍可適用之數值模擬參數解析。繼之,與直流偏壓交流電動(DC-ACEK)系統整合後,發現可在 60秒內收集標的物,且EIS量測是在具有高電導率的10 mM 磷酸鹽緩衝(PBS)液中進行。透過類似傳統親和性反應的「兩步驟式方案」操作,來分析腫瘤壞死因子-α (TNF-α)、介白素-6 (IL-6) 和 microRNA-155 (miR-155),量測乃先以DC-ACEK促進標的物之雜交,經水洗瀝乾除去電極尚未結合物質後,再滴入EIS量測所需之含Fe(CN)64-/3-的氧化還原對(redox pair)之標準液等兩步驟來實施,全程可在5分鐘內完成,且被用於監測敗血症患者之血清試樣中如上所述三種生物標的物濃度之呈現走勢。此技術可檢測較低之標的物濃度(達0.1 pg mL-1),且具有良好的線性,可作為醫師評估其預後的指標。此結果與傳統酵素連結免疫吸附測定法(ELISA) 相比較,也發現兩者間在屬較高的濃度(>10 pg mL-1)具有良好的正相關性,尤其DC-ACEK 在較低濃度下明顯具有3個指數以上的優異靈敏度。最後,我們更為解決兩步驟式方案中間須經水洗等較不便的問題,也開發了“一步驟式方案”,乃利用血清樣本先和含電化學氧化還原對的10 mM PBS之測試液,惟須先藉一小試管,以1:1比例混合後再引導至試片側向入口,即可透過微管道之親水性完成一種更簡單、快速的檢測方案。此種結合電動力學反應促進與電化學檢測,提供了能在兩分鐘內完成全程檢測的方法,更可滿足POC組件用於感染症早期診斷的要求。

    Electrochemical (EC) biosensors are the most commonly studied type of biosensors for point-of-care (POC) due to their advantages, such as their potential for miniaturization, portability, and reduction of cost. This study aims to utilize EC biosensors in the fabrication of a POC device for the rapid and sensitive detection of biomarkers in infection. Prior to the biosensor fabrication, the concept of the electrical double layer (EDL) should be initially investigated, for its effects are more apparent in the detection of lower target biomarker concentrations, which can provide a great advantage in the early diagnosis of diseases. The utilization of the electrochemical impedance spectroscopy (EIS) technique along with the analysis of the electric circuit elements and monitoring of the electron transfer rate constant (k_et^0) can provide a view of the changes in the EDL before and after the addition of the modification layers. The optimized surface modification conditions were further utilized to fabricate a POC device to address the current limitations in the clinical setting. Integrating with DC-biased AC electrokinetics (DC-ACEK) allowed the target collection within 60 s, suspended in 10 mM phosphate buffer saline (PBS) solution with high conductivity. Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and microRNA-155 (miR-155) were analyzed through a conventional “two-step protocol”, wherein the target hybridization was initially done followed by sample washing and detection stages utilizing the Fe(CN)64-/3- electrochemical reagent. This technique allowed the detection of lower target concentrations, reaching 0.1 pg mL-1 with good linearity and can be finished within 5 min. However, the separate detection still has the limitation of not being easy to operate. Therefore, a “one-step protocol” was further introduced, utilizing a 1:1 mixture of the serum sample and electrochemical reagent to facilitate easier and faster detection scheme. The mixture resulted in a high viscosity, causing an alteration in the electrochemical parameter from charge-transfer resistance (RCT) to double layer capacitance (QDL). A good correlation within 3 orders of magnitude was obtained with the traditional enzyme-linked immunosorbent assay (ELISA), specifically at higher concentrations (> 10 pg mL-1), with the DC-ACEK having superior sensitivity at lower concentrations. Combination of electrokinetic concentration and electrochemical detection provides a simple detection method that can be finished within 2 min, addressing the requirements for a POC device for the early diagnosis of infection.

    Abstract 1 摘要 2 Acknowledgement 3 Table of Contents 4 List of Tables 6 List of Figures 7 Chapter 1 Introduction 13 1.1. Biosensors 13 1.1.1. Enzyme-Linked Immunosorbent Assay 17 1.1.2. Lateral Flow Immunoassay 20 1.1.3. Electrogenerated Chemiluminescence 22 1.1.4. Point-of-care Testing 23 1.2. Electrochemical Biosensors 25 1.2.1. Electric Double Layer 26 1.2.2. Cyclic Voltammetry 27 1.2.3. Electrochemical Impedance Spectroscopy 29 1.3. Aims and Contributions of the Study 32 Chapter 2 Materials and Methods 33 2.1. Reagents 33 2.2. SAM Modification 35 2.3. Antibody Conjugation 35 2.4. Aptamer Immobilization 36 2.5. Microelectrode Fabrication 36 2.6. System Configuration 38 2.7. Lipopolysaccharide-Induced Sepsis in Mice 38 2.8. ELISA for Cytokine Assay 39 Chapter 3 Elucidation of the Electron Transfer Reaction Across the EDL 40 3.1. Introduction 40 3.2. Results and Discussion 43 3.2.1. Reference Electrode 43 3.2.2. Understanding the Measurement through EIS 47 3.2.3. Evaluation of the EDL Characteristics through the Changes in Electrolyte Concentration with and without the presence of Electroactive Species 55 3.2.4. SAM-Modified Layer and the Calculation of the Electron Transfer Rate Constant 60 3.2.5. Activation of the Terminal Carboxylic Group of SAMs 69 3.2.6. Anti-SRBD IgG Conjugation on SAM-Modified Electrodes 71 3.3. Summary 78 Chapter 4 A Rapid and Sensitive Electrochemical Biosensor Integrated with Electrokinetic Concentration 79 4.1. Introduction 79 4.2. Results and Discussion 84 4.2.1. Surface Modification on Microelectrodes 84 4.2.2. Target Collection Time Optimization 87 4.2.3. Calibration Curve Construction through a Two-Step Method 89 4.3. Summary 90 Chapter 5 POCT Biosensor for the Rapid and Early-Stage Diagnosis of Sepsis 91 5.1. Introduction 91 5.2. Results and Discussion 98 5.2.1. Aptamer Modification on Microelectrodes 98 5.2.2. Optimization of Collection Time 99 5.2.3. Detection of Target Biomarkers in Human Serum 100 5.2.4. Detection of Target Biomarkers in Animal Model Serum 104 5.2.5. One-Drop No-Wash Protocol 110 5.2.6. Detection of Target Biomarkers in Localized Infection 116 5.2.7. Detection of Target Biomarkers in Systemic Infection 122 5.3. Summary 127 Chapter 6 Conclusions 128 Chapter 7 Prospects 129 References 131 Curriculum Vitae 150

    Abdullah, S. O. Bin, Sørensen, R. H., & Nielsen, F. E. (2021). Prognostic Accuracy of SOFA, qSOFA, and SIRS for Mortality Among Emergency Department Patients with Infections. Infect. Drug Resist. 14, 2763–2775. https://doi.org/10.2147/IDR.S304952
    Adamson, T. L., Eusebio, F. A., Cook, C. B., & LaBelle, J. T. (2012). The promise of electrochemical impedance spectroscopy as novel technology for the management of patients with diabetes mellitus. Analyst 137(18), 4179. https://doi.org/10.1039/c2an35645g
    Adumitrăchioaie, A., Tertiș, M., Cernat, A., Săndulescu, R., & Cristea, C. (2018). Electrochemical Methods Based on Molecularly Imprinted Polymers for Drug Detection. A Review. Int. J. Electrochem. Sci. 13(3), 2556–2576. https://doi.org/10.20964/2018.03.75
    Agnolon, V., Contato, A., Meneghello, A., Tagliabue, E., Toffoli, G., Gion, M., Polo, F., & Fabricio, A. S. C. (2020). ELISA assay employing epitope-specific monoclonal antibodies to quantify circulating HER2 with potential application in monitoring cancer patients undergoing therapy with trastuzumab. Sci. Rep. 10(1), 3016. https://doi.org/10.1038/s41598-020-59630-y
    Almawash, A. M. (2018). The Inflammatory Mediators and Sepsis. Int. J. Curr. Microbio. Appl. Sci. 7(03), 1763–1776. https://doi.org/10.20546/ijcmas.2018.703.208
    Antonakos, N., Gilbert, C., Théroude, C., Schrijver, I. T., & Roger, T. (2022). Modes of action and diagnostic value of miRNAs in sepsis. Front. Immunol. 13, 951798. https://doi.org/10.3389/fimmu.2022.951798
    Ao, S., Gao, X., Zhan, J., Ai, L., Li, M., Su, H., Tang, X., Chu, C., Han, J., & Wang, F. (2022). Inhibition of tumor necrosis factor improves conventional steroid therapy for Stevens-Johnson syndrome/toxic epidermal necrolysis in a cohort of patients. J. Am. Acad. Dermatol. 86(6), 1236–1245. https://doi.org/10.1016/j.jaad.2022.01.039
    Avogadro: an open-source molecular builder and visualization tool. Version 1.XX. http://avogadro.cc/. (n.d.).
    Bard, A. J., & Faulkner, L. R. (2000). Electrochemical Methods: Fundamentals and Applications, 2nd Edition. John Wiley & Sons.
    Barten, D., Kleijn, J. M., Duval, J., Leeuwen, H. P. v., Lyklema, J., & Cohen Stuart, M. A. (2003). Double Layer of a Gold Electrode Probed by AFM Force Measurements. Langmuir 19(4), 1133–1139. https://doi.org/10.1021/la0117092
    Bayoumy, S., Hyytiä, H., Leivo, J., Talha, S. M., Huhtinen, K., Poutanen, M., Hynninen, J., Perheentupa, A., Lamminmäki, U., Gidwani, K., & Pettersson, K. (2020). Glycovariant-based lateral flow immunoassay to detect ovarian cancer–associated serum CA125. Commun. Biol. 3(1), 460. https://doi.org/10.1038/s42003-020-01191-x
    Bayram, E., & Akyilmaz, E. (2014). A new pyruvate oxidase biosensor based on 3-mercaptopropionic acid/6-aminocaproic acid modified gold electrode. Artif. Cells Nanomed. Biotechnol. 42(6), 418–422. https://doi.org/10.3109/21691401.2013.815626
    Bertok, T., Lorencova, L., Chocholova, E., Jane, E., Vikartovska, A., Kasak, P., & Tkac, J. (2019). Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers. ChemElectroChem 6(4), 989–1003. https://doi.org/10.1002/celc.201800848
    Bhalla, N., Jolly, P., Formisano, N., & Estrela, P. (2016). Introduction to biosensors. Essays Biochem. 60(1), 1–8. https://doi.org/10.1042/EBC20150001
    Bima, P., Lopez-Ayala, P., Koechlin, L., Boeddinghaus, J., Nestelberger, T., Okamura, B., Muench-Gerber, T. S., Sanzone, A., Skolozubova, D., Djurdjevic, D., Rubini Gimenez, M., Wildi, K., Miro, O., Martínez-Nadal, G., Martin-Sanchez, F. J., Christ, M., Keller, D., Lindahl, B., Giannitsis, E., & Mueller, C. (2023). Chest Pain in Cancer Patients. JACC: CardioOncology, 5(5), 591–609. https://doi.org/10.1016/j.jaccao.2023.08.001
    Boisen, M. L., Oottamasathien, D., Jones, A. B., Millett, M. M., Nelson, D. S., Bornholdt, Z. A., Fusco, M. L., Abelson, D. M., Oda, S., Hartnett, J. N., Rowland, M. M., Heinrich, M. L., Akdag, M., Goba, A., Momoh, M., Fullah, M., Baimba, F., Gbakie, M., Safa, S., … Pitts, K. R. (2015). Development of Prototype Filovirus Recombinant Antigen Immunoassays. J. Infect. Dis. 212(suppl 2), S359–S367. https://doi.org/10.1093/infdis/jiv353
    Borges, I. N., Resende, C. B., Vieira, É. L. M., Silva, J. L. P. da, Andrade, M. V. M. de, Souza, A. J. de, Badaró, E., Carneiro, R. M., Teixeira Júnior, A. L., & Nobre, V. (2018). Role of interleukin-3 as a prognostic marker in septic patients. Rev. Bras. Ter. Intensiva 30(4). https://doi.org/10.5935/0103-507X.20180064
    Boschi, C., Scheim, D. E., Bancod, A., Militello, M., Bideau, M. Le, Colson, P., Fantini, J., & Scola, B. La. (2022). SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse Effects. Int. J. Mol. Sci. 23(24), 15480. https://doi.org/10.3390/ijms232415480
    Bosmann, M., & Ward, P. A. (2013). The inflammatory response in sepsis. Trends Immunol. 34(3), 129–136. https://doi.org/10.1016/j.it.2012.09.004
    Brown, A. B. D., Smith, C. G., & Rennie, A. R. (2000). Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. Phys. Rev. E 63(1), 016305. https://doi.org/10.1103/PhysRevE.63.016305
    Castellanos, A., Ramos, A., González, A., Green, N. G., & Morgan, H. (2003). Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J. Phys. D Appl. Phys. 36(20), 2584–2597. https://doi.org/10.1088/0022-3727/36/20/023
    Chabay, R. W., & Sherwood, B. A. (2020). Electric Potential. In Matter and Interactions (4th Edition, pp. 626–661). John Wiley & Sons.
    Chen, J., Li, P., Zhang, T., Xu, Z., Huang, X., Wang, R., & Du, L. (2022). Review on Strategies and Technologies for Exosome Isolation and Purification. Front. Bioeng. Biotechnol. 9. https://doi.org/10.3389/fbioe.2021.811971
    Chen, X., Tseng, J.-K., Treufeld, I., Mackey, M., Schuele, D. E., Li, R., Fukuto, M., Baer, E., & Zhu, L. (2017). Enhanced dielectric properties due to space charge-induced interfacial polarization in multilayer polymer films. J. Mater. Chem. C 5(39), 10417–10426. https://doi.org/10.1039/C7TC03653A
    Cheng, I.-F., Yang, H.-L., Chung, C.-C., & Chang, H.-C. (2013). A rapid electrochemical biosensor based on an AC electrokinetics enhanced immuno-reaction. Analyst 138(16), 4656. https://doi.org/10.1039/c3an00190c
    Ching, C. B., Gupta, S., Li, B., Cortado, H., Mayne, N., Jackson, A. R., McHugh, K. M., & Becknell, B. (2018). Interleukin-6/Stat3 signaling has an essential role in the host antimicrobial response to urinary tract infection. Kidney Int. 93(6), 1320–1329. https://doi.org/10.1016/j.kint.2017.12.006
    Chousterman, B. G., Swirski, F. K., & Weber, G. F. (2017). Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 39(5), 517–528. https://doi.org/10.1007/s00281-017-0639-8
    Cieplak, M., & Kutner, W. (2016). Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol. 34(11), 922–941. https://doi.org/10.1016/j.tibtech.2016.05.011
    Conte, D., Holcik, M., Lefebvre, C. A., LaCasse, E., Picketts, D. J., Wright, K. E., & Korneluk, R. G. (2006). Inhibitor of Apoptosis Protein cIAP2 Is Essential for Lipopolysaccharide-Induced Macrophage Survival. Mol. Cell. Biol. 26(2), 699–708. https://doi.org/10.1128/MCB.26.2.699-708.2006
    Crivianu-Gaita, V., & Thompson, M. (2016). Aptamers, antibody scFv, and antibody Fab’ fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens. Bioelectron. 85, 32–45. https://doi.org/10.1016/j.bios.2016.04.091
    Dai, Y., Molazemhosseini, A., & Liu, C. (2017). A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV). Biosensors 7(4), 10. https://doi.org/10.3390/bios7010010
    Dalgaard, L., Leal, E., Svensen, R., Moura, J., Sørensen, A., Jørgensen, P., & Carvalho, E. (2018). Effects of the Diabetes-Induced MicroRNA-155 on Wound Healing and Fibroblast Growth Factor 7 Expression. Diabetes 67(Supplement_1). https://doi.org/10.2337/db18-29-LB
    Daniels, K. M., Shetu, S., Staser, J., Weidner, J., Williams, C., Sudarshan, T. S., & Chandrashekhar, M. (2015). Mechanism of Electrochemical Hydrogenation of Epitaxial Graphene. J. Electrochem. Soc. 162(4), E37–E42. https://doi.org/10.1149/2.0191504jes
    Diepold, M., Noellke, P., Duffner, U., Kontny, U., & Berner, R. (2008). Performance of Interleukin-6 and Interleukin-8 serum levels in pediatric oncology patients with neutropenia and fever for the assessment of low-risk. BMC Infect. Dis. 8(1), 28. https://doi.org/10.1186/1471-2334-8-28
    Dinarello, C. A. (2007). Historical insights into cytokines. Eur. J. Immunol. 37(S1), S34–S45. https://doi.org/10.1002/eji.200737772
    Ding, S.-J., Chang, B.-W., Wu, C.-C., Lai, M.-F., & Chang, H.-C. (2005). Impedance spectral studies of self-assembly of alkanethiols with different chain lengths using different immobilization strategies on Au electrodes. Anal. Chim. Acta 554(1–2), 43–51. https://doi.org/10.1016/j.aca.2005.08.046
    Drijvers, J. M., Awan, I. M., Perugino, C. A., Rosenberg, I. M., & Pillai, S. (2017). The Enzyme-Linked Immunosorbent Assay. In Basic Science Methods for Clinical Researchers (pp. 119–133). Elsevier. https://doi.org/10.1016/B978-0-12-803077-6.00007-2
    Drury, R. E., O’Connor, D., & Pollard, A. J. (2017). The Clinical Application of MicroRNAs in Infectious Disease. Front. Immunol. 8. https://doi.org/10.3389/fimmu.2017.01182
    Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 95(2), 197–206. https://doi.org/10.1021/acs.jchemed.7b00361
    Engvall, E. (2010). The ELISA, Enzyme-Linked Immunosorbent Assay. Clin. Chem. 56(2), 319–320. https://doi.org/10.1373/clinchem.2009.127803
    Fabri, A., Kandara, K., Coudereau, R., Gossez, M., Abraham, P., Monard, C., Cour, M., Rimmelé, T., Argaud, L., Monneret, G., & Venet, F. (2021). Characterization of Circulating IL-10-Producing Cells in Septic Shock Patients: A Proof of Concept Study. Front. Immunol. 11. https://doi.org/10.3389/fimmu.2020.615009
    Fabri-Faja, N., Calvo-Lozano, O., Dey, P., Terborg, R. A., Estevez, M.-C., Belushkin, A., Yesilköy, F., Duempelmann, L., Altug, H., Pruneri, V., & Lechuga, L. M. (2019). Early sepsis diagnosis via protein and miRNA biomarkers using a novel point-of-care photonic biosensor. Anal. Chim. Acta 1077, 232–242. https://doi.org/10.1016/j.aca.2019.05.038
    Feiner, A.-S., & McEvoy, A. J. (1994). The Nernst Equation. J. Chem. Educ. 71(6), 493. https://doi.org/10.1021/ed071p493
    Feldman, H. C., Sigurdson, M., & Meinhart, C. D. (2007). AC electrothermal enhancement of heterogeneous assays in microfluidics. Lab Chip 7(11), 1553. https://doi.org/10.1039/b706745c
    Finney, A. R., McPherson, I. J., Unwin, P. R., & Salvalaglio, M. (2021). Electrochemistry, ion adsorption and dynamics in the double layer: a study of NaCl(aq) on graphite. Chem. Sci. 12(33), 11166–11180. https://doi.org/10.1039/D1SC02289J
    Fitzgerald, R. C., Antoniou, A. C., Fruk, L., & Rosenfeld, N. (2022). The future of early cancer detection. Nat. Med. 28(4), 666–677. https://doi.org/10.1038/s41591-022-01746-x
    Fleischmann, C., Scherag, A., Adhikari, N. K. J., Hartog, C. S., Tsaganos, T., Schlattmann, P., Angus, D. C., & Reinhart, K. (2016). Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 193(3), 259–272. https://doi.org/10.1164/rccm.201504-0781OC
    Florido, R., Daya, N. R., Ndumele, C. E., Koton, S., Russell, S. D., Prizment, A., Blumenthal, R. S., Matsushita, K., Mok, Y., Felix, A. S., Coresh, J., Joshu, C. E., Platz, E. A., & Selvin, E. (2022). Cardiovascular Disease Risk Among Cancer Survivors. J. Am. Coll. Cardiol. 80(1), 22–32. https://doi.org/10.1016/j.jacc.2022.04.042
    Forest-Nault, C., Koyuturk, I., Gaudreault, J., Pelletier, A., L’Abbé, D., Cass, B., Bisson, L., Burlacu, A., Delafosse, L., Stuible, M., Henry, O., De Crescenzo, G., & Durocher, Y. (2022). Impact of the temperature on the interactions between common variants of the SARS-CoV-2 receptor binding domain and the human ACE2. Sci. Rep. 12(1), 11520. https://doi.org/10.1038/s41598-022-15215-5
    Forster, R. J. (1994). Microelectrodes: new dimensions in electrochemistry. Chem. Soc. Rev. 23(4), 289. https://doi.org/10.1039/cs9942300289
    Gabriel, C., Gabriel, S., & Corthout, E. (1996). The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11), 2231–2249. https://doi.org/10.1088/0031-9155/41/11/001
    Gabriel, C., Peyman, A., & Grant, E. H. (2009). Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 54(16), 4863–4878. https://doi.org/10.1088/0031-9155/54/16/002
    Gaenslen, A., & Berg, D. (2010). Early Diagnosis of Parkinson’s Disease. Int. Rev. Neurobiol. 90, 81–92. https://doi.org/10.1016/S0074-7742(10)90006-8
    García-Miranda Ferrari, A., Rowley-Neale, S. J., & Banks, C. E. (2021). Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta 3, 100032. https://doi.org/10.1016/j.talo.2021.100032
    Gaudin, V. (2017). Advances in biosensor development for the screening of antibiotic residues in food products of animal origin – A comprehensive review. Biosens. Bioelectron. 90, 363–377. https://doi.org/10.1016/j.bios.2016.12.005
    Gharamti, A. A., Samara, O., Monzon, A., Montalbano, G., Scherger, S., DeSanto, K., Chastain, D. B., Sillau, S., Montoya, J. G., Franco-Paredes, C., Henao-Martínez, A. F., & Shapiro, L. (2022). Proinflammatory cytokines levels in sepsis and healthy volunteers, and tumor necrosis factor-alpha associated sepsis mortality: A systematic review and meta-analysis. Cytokine 158, 156006. https://doi.org/10.1016/j.cyto.2022.156006
    Giesbers, M., Kleijn, J. M., & Cohen Stuart, M. A. (2002). The Electrical Double Layer on Gold Probed by Electrokinetic and Surface Force Measurements. J. Colloid Interface Sci. 248(1), 88–95. https://doi.org/10.1006/jcis.2001.8144
    Golde, W. T., Gollobin, P., & Rodriguez, L. L. (2005). A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim. 34(9), 39–43. https://doi.org/10.1038/laban1005-39
    Goodwin, A. J., Guo, C., Cook, J. A., Wolf, B., Halushka, P. V., & Fan, H. (2015). Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Crit. Care 19(1), 440. https://doi.org/10.1186/s13054-015-1162-8
    Green, N. G., Ramos, A., González, A., Castellanos, A., & Morgan, H. (2001). Electrothermally induced fluid flow on microelectrodes. J. Electrostat. 53(2), 71–87. https://doi.org/10.1016/S0304-3886(01)00132-2
    Green, N. G., Ramos, A., González, A., Morgan, H., & Castellanos, A. (2000). Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys. Rev. E 61(4), 4011–4018. https://doi.org/10.1103/PhysRevE.61.4011
    Grönbeck, H., Curioni, A., & Andreoni, W. (2000). Thiols and Disulfides on the Au(111) Surface: The Headgroup−Gold Interaction. J. Am. Chem. Soc. 122(16), 3839–3842. https://doi.org/10.1021/ja993622x
    Gross, E. M., Maddipati, S. S., & Snyder, S. M. (2016). A review of electrogenerated chemiluminescent biosensors for assays in biological matrices. Bioanalysis 8(19), 2071–2089. https://doi.org/10.4155/bio-2016-0178
    Hakimian, F., & Ghourchian, H. (2020). Ultrasensitive electrochemical biosensor for detection of microRNA-155 as a breast cancer risk factor. Anal. Chim. Acta 1136, 1–8. https://doi.org/10.1016/j.aca.2020.08.039
    Han, L., Liu, P., Petrenko, V. A., & Liu, A. (2016). A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library. Sci. Rep. 6(1), 22199. https://doi.org/10.1038/srep22199
    Haneklaus, M., Gerlic, M., O’Neill, L. A. J., & Masters, S. L. (2013). miR-223: infection, inflammation and cancer. J. Intern. Med. 274(3), 215–226. https://doi.org/10.1111/joim.12099
    Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
    Hayyan, M., Mjalli, F. S., Hashim, M. A., AlNashef, I. M., & Mei, T. X. (2013). Investigating the electrochemical windows of ionic liquids. J. Ind. Eng. Chem. 19(1), 106–112. https://doi.org/10.1016/j.jiec.2012.07.011
    Hermanson, G. T. (2013). Zero-Length Crosslinkers. In Bioconjugate Techniques (pp. 259–273). Elsevier. https://doi.org/10.1016/B978-0-12-382239-0.00004-2
    Hinterwirth, H., Kappel, S., Waitz, T., Prohaska, T., Lindner, W., & Lämmerhofer, M. (2013). Quantifying Thiol Ligand Density of Self-Assembled Monolayers on Gold Nanoparticles by Inductively Coupled Plasma–Mass Spectrometry. ACS Nano 7(2), 1129–1136. https://doi.org/10.1021/nn306024a
    Howell, S., Kuila, D., Kasibhatla, B., Kubiak, C. P., Janes, D., & Reifenberger, R. (2002). Molecular Electrostatics of Conjugated Self-Assembled Monolayers on Au(111) Using Electrostatic Force Microscopy. Langmuir 18(13), 5120–5125. https://doi.org/10.1021/la0157014
    Huang, J. (2018). Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochim. Acta 281, 170–188. https://doi.org/10.1016/j.electacta.2018.05.136
    Huggett, J. F., Benes, V., Bustin, S. A., Garson, J. A., Harris, K., Kammel, M., Kubista, M., McHugh, T. D., Moran-Gilad, J., Nolan, T., Pfaffl, M. W., Salit, M., Shipley, G., Vallone, P. M., Vandesompele, J., Wittwer, C., & Zeichhardt, H. (2020). Cautionary Note on Contamination of Reagents Used for Molecular Detection of SARS-CoV-2. Clin. Chem. 66(11), 1369–1372. https://doi.org/10.1093/clinchem/hvaa214
    Husabø, G., Nilsen, R. M., Flaatten, H., Solligård, E., Frich, J. C., Bondevik, G. T., Braut, G. S., Walshe, K., Harthug, S., & Hovlid, E. (2020). Early diagnosis of sepsis in emergency departments, time to treatment, and association with mortality: An observational study. PLoS ONE 15(1), e0227652. https://doi.org/10.1371/journal.pone.0227652
    Izadi-Najafabadi, A., Futaba, D. N., Iijima, S., & Hata, K. (2010). Ion Diffusion and Electrochemical Capacitance in Aligned and Packed Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 132(51), 18017–18019. https://doi.org/10.1021/ja108766y
    Jackson, D. R., Omanovic, S., & Roscoe, S. G. (2000). Electrochemical Studies of the Adsorption Behavior of Serum Proteins on Titanium. Langmuir 16(12), 5449–5457. https://doi.org/10.1021/la991497x
    Jadhav, S., Misra, R., Vyawahare, C., Angadi, K., Gandham, N., & Ghosh, P. (2013). Role of sepsis screen in the diagnosis of neonatal sepsis. Med. J. Dr. D.Y. Patil University 6(3), 254. https://doi.org/10.4103/0975-2870.114649
    Jeppesen, D. K., Hvam, M. L., Primdahl‐Bengtson, B., Boysen, A. T., Whitehead, B., Dyrskjøt, L., Ørntoft, T. F., Howard, K. A., & Ostenfeld, M. S. (2014). Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J. Extracell. Vesicles 3(1). https://doi.org/10.3402/jev.v3.25011
    Jerkiewicz, G. (2022). Applicability of Platinum as a Counter-Electrode Material in Electrocatalysis Research. ACS Catalysis 12(4), 2661–2670. https://doi.org/10.1021/acscatal.1c06040
    Jiang, X., Wu, M., Albo, J., & Rao, Q. (2021). Non-Specific Binding and Cross-Reaction of ELISA: A Case Study of Porcine Hemoglobin Detection. Foods 10(8), 1708. https://doi.org/10.3390/foods10081708
    Jie Wu. (2006). Biased AC electro-osmosis for on-chip bioparticle processing. IEEE Transact. Nanotechnol. 5(2), 84–89. https://doi.org/10.1109/TNANO.2006.869645
    Jo, J., Yoon, J., Lee, T., Cho, H.-Y., Lee, J.-Y., & Choi, J.-W. (2019). H2O2 biosensor consisted of hemoglobin-DNA conjugate on nanoporous gold thin film electrode with electrochemical signal enhancement. Nano Converg. 6(1), 1. https://doi.org/10.1186/s40580-018-0172-z
    Justino, C. I. L., Freitas, A. C., Pereira, R., Duarte, A. C., & Rocha Santos, T. A. P. (2015). Recent developments in recognition elements for chemical sensors and biosensors. Trends Anal. Chem. 68, 2–17. https://doi.org/10.1016/j.trac.2015.03.006
    Kamali, H., Golmohammadzadeh, S., Zare, H., Nosrati, R., Fereidouni, M., & Safarpour, H. (2022). The recent advancements in the early detection of cancer biomarkers by DNAzyme-assisted aptasensors. J. Nanobiotechnol. 20(1), 438. https://doi.org/10.1186/s12951-022-01640-1
    Kasem, B. K. K., & Jones, S. (2008). Platinum as a Reference Electrode in Electrochemical Measurements. Platin. Met. Rev. 52(2), 100–106. https://doi.org/10.1595/147106708X297855
    Kawamura, A., & Miyata, T. (2016). Biosensors. In Biomaterials Nanoarchitectonics (pp. 157–176). Elsevier. https://doi.org/10.1016/B978-0-323-37127-8.00010-8
    Kesler, V., Murmann, B., & Soh, H. T. (2020). Going beyond the Debye Length: Overcoming Charge Screening Limitations in Next-Generation Bioelectronic Sensors. ACS Nano 14(12), 16194–16201. https://doi.org/10.1021/acsnano.0c08622
    Kettler, H., White, K., Hawkes, S. J., for Research, U. B. S. P., & in Tropical Diseases, T. (2004). Mapping the landscape of diagnostics for sexually transmitted infections : key findings and recommendations / Hannah Kettler, Karen White, Sarah Hawkes (p. TDR/STI/IDE/04.1). World Health Organization.
    Khadka, R., Aydemir, N., Carraher, C., Hamiaux, C., Colbert, D., Cheema, J., Malmström, J., Kralicek, A., & Travas-Sejdic, J. (2019). An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants. Biosens. Bioelectron. 126, 207–213. https://doi.org/10.1016/j.bios.2018.10.043
    Kim, C.-H., Pyun, S.-I., & Kim, J.-H. (2003). An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations. Electrochim. Acta 48(23), 3455–3463. https://doi.org/10.1016/S0013-4686(03)00464-X
    Kim, H., Chung, D.-R., & Kang, M. (2019). A new point-of-care test for the diagnosis of infectious diseases based on multiplex lateral flow immunoassays. Analyst 144(8), 2460–2466. https://doi.org/10.1039/C8AN02295J
    Kim, H. H., Jeon, H. J., Cho, H. K., Cheong, J. H., Moon, H. S., & Go, J. S. (2015). Highly sensitive microcantilever biosensors with enhanced sensitivity for detection of human papilloma virus infection. Sens. Actuators B Chem. 221, 1372–1383. https://doi.org/10.1016/j.snb.2015.08.014
    Kim, Y.-P., Park, S. J., Lee, D., & Kim, H.-S. (2012). Electrochemical glucose biosensor by electrostatic binding of PQQ-glucose dehydrogenase onto self-assembled monolayers on gold. J. Appl. Electrochem. 42(6), 383–390. https://doi.org/10.1007/s10800-012-0409-1
    Klein, D. R. (2020). Organic Chemistry (4th ed.). John Wiley & Sons.
    Koczula, K. M., & Gallotta, A. (2016). Lateral flow assays. Essays Biochem. 60(1), 111–120. https://doi.org/10.1042/EBC20150012
    Koh, H. K., Chai, Z. T., Tay, H. W., Fook-Chong, S., Choo, K. J. L., Oh, C. C., Yeo, Y. W., Koh, H. Y., Pang, S. M., & Lee, H. Y. (2019). Risk factors and diagnostic markers of bacteremia in Stevens-Johnson syndrome and toxic epidermal necrolysis: A cohort study of 176 patients. J. Am. Acad. Dermatol. 81(3), 686–693. https://doi.org/10.1016/j.jaad.2019.05.096
    Kohl, T. O., & Ascoli, C. A. (2017a). Direct Competitive Enzyme-Linked Immunosorbent Assay (ELISA). Cold Spring Harb. Protoc. 2017(7), pdb.prot093740. https://doi.org/10.1101/pdb.prot093740
    Kohl, T. O., & Ascoli, C. A. (2017b). Immunometric Double-Antibody Sandwich Enzyme-Linked Immunosorbent Assay. Cold Spring Harb. Protoc. 2017(6), pdb.prot093724. https://doi.org/10.1101/pdb.prot093724
    Kohl, T. O., & Ascoli, C. A. (2017c). Indirect Immunometric ELISA. Cold Spring Harb. Protoc. 2017(5), pdb.prot093708. https://doi.org/10.1101/pdb.prot093708
    Koklu, A., El Helou, A., Raad, P. E., & Beskok, A. (2019). Characterization of Temperature Rise in Alternating Current Electrothermal Flow Using Thermoreflectance Method. Anal. Chem. 91(19), 12492–12500. https://doi.org/10.1021/acs.analchem.9b03238
    Koklu, A., Giuliani, J., Monton, C., & Beskok, A. (2020). Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor. Anal. Chem. 92(11), 7762–7769. https://doi.org/10.1021/acs.analchem.0c00890
    Kränkel, N., Blankenberg, S., & Zeller, T. (2016). Early detection of myocardial infarction—microRNAs right at the time? Ann. Transl. Med. 4(24), 502–502. https://doi.org/10.21037/atm.2016.12.12
    Krauter, P. A., Piepel, G. F., Boucher, R., Tezak, M., Amidan, B. G., & Einfeld, W. (2012). False-Negative Rate and Recovery Efficiency Performance of a Validated Sponge Wipe Sampling Method. Appl. Environ. Microbiol. 78(3), 846–854. https://doi.org/10.1128/AEM.07403-11
    Krebs, F., Scheller, C., Grove‐Heike, K., Pohl, L., & Wätzig, H. (2021). Isoelectric point determination by imaged CIEF of commercially available SARS‐CoV‐2 proteins and the hACE2 receptor. ELECTROPHORESIS, 42(6), 687–692. https://doi.org/10.1002/elps.202100015
    Lai, Y.-T., Chu, Y.-S., Lo, J.-C., Hung, Y.-H., & Lo, C.-M. (2019). Effects of electrode diameter on the detection sensitivity and frequency characteristics of electric cell-substrate impedance sensing. Sens. Actuators B Chem. 288, 707–715. https://doi.org/10.1016/j.snb.2019.02.098
    Land, K. J., Boeras, D. I., Chen, X.-S., Ramsay, A. R., & Peeling, R. W. (2018). REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 4(1), 46–54. https://doi.org/10.1038/s41564-018-0295-3
    Landon-Lane, L., Marshall, A. T., & Harrington, D. A. (2019). EIS at carbon fiber cylindrical microelectrodes. Electrochem. Commun. 109, 106566. https://doi.org/10.1016/j.elecom.2019.106566
    Lasia, A. (2014). Electrochemical Impedance Spectroscopy and its Applications. Springer New York. https://doi.org/10.1007/978-1-4614-8933-7
    Lee, C.-W., Kou, H., Chou, H.-S., Chou, H., Huang, S.-F., Chang, C.-H., Wu, C.-H., Yu, M.-C., & Tsai, H.-I. (2018). A combination of SOFA score and biomarkers gives a better prediction of septic AKI and in-hospital mortality in critically ill surgical patients: a pilot study. World J. Emer. Surg. 13(1), 41. https://doi.org/10.1186/s13017-018-0202-5
    Lee, D., Gwon, O., Park, H., Kim, S. H., Yang, J., Kwak, S. K., Kim, G., & Song, H. (2015). Conductivity‐Dependent Completion of Oxygen Reduction on Oxide Catalysts. Angew. Chem. Int. Ed. 54(52), 15730–15733. https://doi.org/10.1002/anie.201508129
    Lee, W. C., Lee, H., Lim, J., & Park, Y. J. (2016). An effective electrical sensing scheme using AC electrothermal flow on a biosensor platform based on a carbon nanotube network. Appl. Phys. Lett. 109(22). https://doi.org/10.1063/1.4968593
    Leentjens, J., Kox, M., Koch, R. M., Preijers, F., Joosten, L. A. B., van der Hoeven, J. G., Netea, M. G., & Pickkers, P. (2012). Reversal of Immunoparalysis in Humans In Vivo A Double-Blind, Placebo-controlled, Randomized Pilot Study. Am. J. Respir. Crit. Care Med. 186(9), 838–845. https://doi.org/10.1164/rccm.201204-0645OC
    Leva-Bueno, J., Peyman, S. A., & Millner, P. A. (2020). A review on impedimetric immunosensors for pathogen and biomarker detection. Med. Microbiol. Immunol. 209(3), 343–362. https://doi.org/10.1007/s00430-020-00668-0
    Li, S., Cui, H., Yuan, Q., Wu, J., Wadhwa, A., Eda, S., & Jiang, H. (2014). AC electrokinetics-enhanced capacitive immunosensor for point-of-care serodiagnosis of infectious diseases. Biosens. Bioelectron. 51, 437–443. https://doi.org/10.1016/j.bios.2013.08.016
    Li, X., Xu, Z., Pang, X., Huang, Y., Yang, B., Yang, Y., Chen, K., Liu, X., Mao, P., & Li, Y. (2017). Interleukin-10/lymphocyte ratio predicts mortality in severe septic patients. PLoS ONE 12(6), e0179050. https://doi.org/10.1371/journal.pone.0179050
    Lian, M., & Wu, J. (2009). Ultrafast micropumping by biased alternating current electrokinetics. Appl. Phys. Lett. 94(6), 064101. https://doi.org/10.1063/1.3080681
    Lima, L. F., Vieira, A. L., Mukai, H., Andrade, C. M. G., & Fernandes, P. R. G. (2017). Electric impedance of aqueous KCl and NaCl solutions: Salt concentration dependence on components of the equivalent electric circuit. J. Mol. Liq. 241, 530–539. https://doi.org/10.1016/j.molliq.2017.06.069
    Liu, B., Bard, A. J., Mirkin, M. V., & Creager, S. E. (2004). Electron Transfer at Self-Assembled Monolayers Measured by Scanning Electrochemical Microscopy. J. Am. Chem. Soc. 126(5), 1485–1492. https://doi.org/10.1021/ja038611p
    Liu, C., Chu, D., Kalantar‐Zadeh, K., George, J., Young, H. A., & Liu, G. (2021). Cytokines: From Clinical Significance to Quantification. Adv. Sci. 8(15), 2004433. https://doi.org/10.1002/advs.202004433
    Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2(1), 17023. https://doi.org/10.1038/sigtrans.2017.23
    Liu, Z., Qi, W., & Xu, G. (2015). Recent advances in electrochemiluminescence. Chem. Soc. Rev. 44(10), 3117–3142. https://doi.org/10.1039/C5CS00086F
    Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., & Whitesides, G. M. (2005). Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 105(4), 1103–1170. https://doi.org/10.1021/cr0300789
    Lu, Y., Liu, T., Lamanda, A. C., Sin, M. L. Y., Gau, V., Liao, J. C., & Wong, P. K. (2015). AC Electrokinetics of Physiological Fluids for Biomedical Applications. SLAS Technol. 20(6), 611–620. https://doi.org/10.1177/2211068214560904
    Luo, D., Szaba, F. M., Kummer, L. W., Plow, E. F., Mackman, N., Gailani, D., & Smiley, S. T. (2011). Protective Roles for Fibrin, Tissue Factor, Plasminogen Activator Inhibitor-1, and Thrombin Activatable Fibrinolysis Inhibitor, but Not Factor XI, during Defense against the Gram-Negative Bacterium Yersinia enterocolitica. J. Immunol. 187(4), 1866–1876. https://doi.org/10.4049/jimmunol.1101094
    Luppa, P. B., Müller, C., Schlichtiger, A., & Schlebusch, H. (2011). Point-of-care testing (POCT): Current techniques and future perspectives. Trends Anal. Chem. 30(6), 887–898. https://doi.org/10.1016/j.trac.2011.01.019
    Ma, L., Zhang, H., Yin, Y., Guo, W., Ma, Y., Wang, Y., Shu, C., & Dong, L. (2016). Role of interleukin-6 to differentiate sepsis from non-infectious systemic inflammatory response syndrome. Cytokine 88, 126–135. https://doi.org/10.1016/j.cyto.2016.08.033
    Mabey, D., Peeling, R. W., Ustianowski, A., & Perkins, M. D. (2004). Diagnostics for the developing world. Nat. Rev. Microbiol. 2(3), 231–240. https://doi.org/10.1038/nrmicro841
    Marcus, R. A. (1956). On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I. J. Chem. Phys. 24(5), 966–978. https://doi.org/10.1063/1.1742723
    Marcus, R. A. (1957). On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. II. Applications to Data on the Rates of Isotopic Exchange Reactions. J. Chem. Phys. 26(4), 867–871. https://doi.org/10.1063/1.1743423
    Marcus, R. A. (1993). Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture). Angew. Chem. Int. Ed. 32(8), 1111–1121. https://doi.org/10.1002/anie.199311113
    Marquette, C. A., & Blum, L. J. (2006). Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal. Bioanal. Chem. 385(3), 546–554. https://doi.org/10.1007/s00216-006-0439-9
    Marquette, C. A., & Blum, L. J. (2008). Electro-chemiluminescent biosensing. Anal. Bioanal. Chem. 390(1), 155–168. https://doi.org/10.1007/s00216-007-1631-2
    Martin, G. S., Mannino, D. M., & Moss, M. (2006). The effect of age on the development and outcome of adult sepsis*. Crit. Care Med. 34(1), 15–21. https://doi.org/10.1097/01.CCM.0000194535.82812.BA
    Mateer, S. W., Mathe, A., Bruce, J., Liu, G., Maltby, S., Fricker, M., Goggins, B. J., Tay, H. L., Marks, E., Burns, G., Kim, R. Y., Minahan, K., Walker, M. M., Callister, R. C., Foster, P. S., Horvat, J. C., Hansbro, P. M., & Keely, S. (2018). IL-6 Drives Neutrophil-Mediated Pulmonary Inflammation Associated with Bacteremia in Murine Models of Colitis. Am. J. Pathol. 188(7), 1625–1639. https://doi.org/10.1016/j.ajpath.2018.03.016
    Mathers, A. R., & Cuff, C. F. (2004). Role of Interleukin-4 (IL-4) and IL-10 in Serum Immunoglobulin G Antibody Responses following Mucosal or Systemic Reovirus Infection. J. Virol. 78(7), 3352–3360. https://doi.org/10.1128/JVI.78.7.3352-3360.2004
    Miller, E., & Sikes, H. D. (2015). Addressing Barriers to the Development and Adoption of Rapid Diagnostic Tests in Global Health. Nanobiomed. 2, 6. https://doi.org/10.5772/61114
    Min, J., Nothing, M., Coble, B., Zheng, H., Park, J., Im, H., Weber, G. F., Castro, C. M., Swirski, F. K., Weissleder, R., & Lee, H. (2018). Integrated Biosensor for Rapid and Point-of-Care Sepsis Diagnosis. ACS Nano 12(4), 3378–3384. https://doi.org/10.1021/acsnano.7b08965
    Mina, F., Comim, C. M., Dominguini, D., Cassol-Jr, O. J., Dall`Igna, D. M., Ferreira, G. K., Silva, M. C., Galant, L. S., Streck, E. L., Quevedo, J., & Dal-Pizzol, F. (2014). Il1-β Involvement in Cognitive Impairment after Sepsis. Mol. Neurobiol. 49(2), 1069–1076. https://doi.org/10.1007/s12035-013-8581-9
    Mirzajani, H., Cheng, C., Vafaie, R. H., Wu, J., Chen, J., Eda, S., Aghdam, E. N., & Ghavifekr, H. B. (2022). Optimization of ACEK-enhanced, PCB-based biosensor for highly sensitive and rapid detection of bisphenol a in low resource settings. Biosens. Bioelectron. 196, 113745. https://doi.org/10.1016/j.bios.2021.113745
    Morales, M. A., & Halpern, J. M. (2018). Guide to Selecting a Biorecognition Element for Biosensors. Bioconjugate Chemistry, 29(10), 3231–3239. https://doi.org/10.1021/acs.bioconjchem.8b00592
    Morgan, H., & Green, N. (2003). AC Electrokinetics: Colloids and Nanoparticles, 1st ed. Research Studies Press Ltd.
    Mulder, W. H., Sluyters, J. H., Pajkossy, T., & Nyikos, L. (1990). Tafel current at fractal electrodes. J. Electroanal. Chem. Interfacial Electrochem. 285(1–2), 103–115. https://doi.org/10.1016/0022-0728(90)87113-X
    Naresh, Varnakavi., & Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 21(4), 1109. https://doi.org/10.3390/s21041109
    Newman, J. D., & Setford, S. J. (2006). Enzymatic Biosensors. Mol. Biotechnol. 32(3), 249–268. https://doi.org/10.1385/MB:32:3:249
    Ng, W. Y., Goh, S., Lam, Y. C., Yang, C., & Rodríguez, I. (2009). DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab Chip 9(6), 802–809. https://doi.org/10.1039/B813639D
    Ng, W. Y., Ramos, A., Lam, Y. C., Mahendra Wijaya, I. P., & Rodriguez, I. (2011). DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow. Lab Chip 11(24), 4241–4247. https://doi.org/10.1039/c1lc20495e
    Nielsen, K., Yu, W. L., Kelly, L., Bermudez, R., Renteria, T., Dajer, A., Gutierrez, E., Williams, J., Algire, J., & Torioni de Eschaide, S. (2007). Development of a Lateral Flow Assay for Rapid Detection of Bovine Antibody to Anaplasma marginale. J. Immunoass. Immunochem. 29(1), 10–18. https://doi.org/10.1080/15321810701734693
    Nikitina, E. A., Fomina, D. S., Markina, U. A., Andreev, S. S., Streltsov, Y. V., Kruglova, T. S., Lebedkina, M. S., Karaulov, A. V., & Lysenko, M. A. (2023). Positive experience with TNF-α inhibitor in toxic epidermal necrolysis resistant to high-dose systemic corticosteroids. Front. Med. 10. https://doi.org/10.3389/fmed.2023.1210026
    Nutting, J. E., Gerken, J. B., Stamoulis, A. G., Bruns, D. L., & Stahl, S. S. (2021). “How Should I Think about Voltage? What Is Overpotential?”: Establishing an Organic Chemistry Intuition for Electrochemistry. J. Org. Chem. 86(22), 15875–15885. https://doi.org/10.1021/acs.joc.1c01520
    Oldham, K. (2004). The RC time “constant” at a disk electrode. Electrochem. Commun. 6(2), 210–214. https://doi.org/10.1016/j.elecom.2003.12.002
    Oldham, K. B. (1991). Steady-State Voltammetry. In Microelectrodes: Theory and Applications (pp. 35–50). Springer Netherlands. https://doi.org/10.1007/978-94-011-3210-7_3
    Ondevilla, N. A. P., Wong, T. W., Lee, N. Y., & Chang, H. C. (2022). An AC electrokinetics-based electrochemical aptasensor for the rapid detection of microRNA-155. Biosens. Bioelectron. 199(5), 113847. https://doi.org/10.1016/j.bios.2021.113847
    Orazem, M. E. (2020). Electrochemical impedance spectroscopy: the journey to physical understanding. J. Solid State Electrochem. 24(9), 2151–2153. https://doi.org/10.1007/s10008-020-04725-9
    Park, J.-H., Lee, G.-Y., Song, Z., Bong, J.-H., Chang, Y. W., Cho, S., Kang, M.-J., & Pyun, J.-C. (2022). Capacitive biosensor based on vertically paired electrodes for the detection of SARS-CoV-2. Biosens. Bioelectron. 202, 113975. https://doi.org/10.1016/j.bios.2022.113975
    Park, M., Choi, S., Kim, S., Kim, J., Lee, D.-K., Park, W., Kim, T., Jung, J., Hwang, J. Y., Won, M.-H., Ryoo, S., Kang, S. G., Ha, K.-S., Kwon, Y.-G., & Kim, Y.-M. (2019). NF-κB-responsive miR-155 induces functional impairment of vascular smooth muscle cells by downregulating soluble guanylyl cyclase. Exp. Mol. Med. 51(2), 1–12. https://doi.org/10.1038/s12276-019-0212-8
    Pashchenko, O., Shelby, T., Banerjee, T., & Santra, S. (2018). A Comparison of Optical, Electrochemical, Magnetic, and Colorimetric Point-of-Care Biosensors for Infectious Disease Diagnosis. ACS Infect. Dis. 4(8), 1162–1178. https://doi.org/10.1021/acsinfecdis.8b00023
    Pauley, K. M., Satoh, M., Chan, A. L., Bubb, M. R., Reeves, W. H., & Chan, E. K. (2008). Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res. Ther. 10(4), R101. https://doi.org/10.1186/ar2493
    Perret, G., & Boschetti, E. (2018). Aptamer affinity ligands in protein chromatography. Biochimie 145, 98–112. Elsevier B.V. https://doi.org/10.1016/j.biochi.2017.10.008
    Podsiad, A., Standiford, T. J., Ballinger, M. N., Eakin, R., Park, P., Kunkel, S. L., Moore, B. B., & Bhan, U. (2016). MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway. Am. J. Physiol. Lung Cell. Mol. Physiol. 310(5), L465–L475. https://doi.org/10.1152/ajplung.00224.2015
    Prodromidis, M. I. (2010). Impedimetric immunosensors—A review. Electrochim. Acta 55(14), 4227–4233. https://doi.org/10.1016/j.electacta.2009.01.081
    Qing, Z., Luo, G., Xing, S., Zou, Z., Lei, Y., Liu, J., & Yang, R. (2020). Pt–S Bond‐Mediated Nanoflares for High‐Fidelity Intracellular Applications by Avoiding Thiol Cleavage. Angew. Chem. 132(33), 14148–14152. https://doi.org/10.1002/ange.202003964
    Ramos, A. (2011). Electrohydrodynamic Pumping in Microsystems. In Electrokinetics and Electrohydrodynamics in Microsystems (pp. 127–175). Springer Vienna. https://doi.org/10.1007/978-3-7091-0900-7_5
    Randviir, E. P. (2018). A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochim. Acta 286, 179–186. https://doi.org/10.1016/j.electacta.2018.08.021
    Rasmussen, J., & Langerman, H. (2019). Alzheimer’s Disease – Why We Need Early Diagnosis. Degener. Neurol. Neuromuscul. Dis. 9, 123–130. https://doi.org/10.2147/DNND.S228939
    Rayssi, Ch., El.Kossi, S., Dhahri, J., & Khirouni, K. (2018). Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca 0.85 Er 0.1 Ti 1−x Co 4x/3 O 3 (0 ≤ x ≤ 0.1). RSC Adv. 8(31), 17139–17150. https://doi.org/10.1039/C8RA00794B
    Richter, M. M. (2004). Electrochemiluminescence (ECL). Chem. Rev. 104(6), 3003–3036. https://doi.org/10.1021/cr020373d
    Rincón-López, E. M., Navarro Gómez, M. L., Hernández-Sampelayo Matos, T., Aguilera-Alonso, D., Dueñas Moreno, E., Saavedra-Lozano, J., Santiago García, B., Santos Sebastián, M. del M., García Morín, M., Beléndez Bieler, C., Lorente Romero, J., Cela de Julián, E., Hernanz Lobo, A., Garrido Colino, C., Huerta Aragonés, J., Mata Fernández, C., Bardón Cancho, E., Míguez Navarro, C., Mora Capín, A., … Zamarro Arranz, R. (2021). Interleukin 6 as a marker of severe bacterial infection in children with sickle cell disease and fever: a case–control study. BMC Infect. Dis. 21(1), 741. https://doi.org/10.1186/s12879-021-06470-4
    Roberge, P. (2008). Corrosion Engineering: Principles and Practice. McGraw Hill.
    Roderburg, C., Luedde, M., Vargas Cardenas, D., Vucur, M., Scholten, D., Frey, N., Koch, A., Trautwein, C., Tacke, F., & Luedde, T. (2013). Circulating MicroRNA-150 Serum Levels Predict Survival in Patients with Critical Illness and Sepsis. PLoS ONE 8(1), e54612. https://doi.org/10.1371/journal.pone.0054612
    Roger, I., & Symes, M. D. (2017). Silver Leakage from Ag/AgCl Reference Electrodes as a Potential Cause of Interference in the Electrocatalytic Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 9(1), 472–478. https://doi.org/10.1021/acsami.6b13438
    Rohrman, B. A., Leautaud, V., Molyneux, E., & Richards-Kortum, R. R. (2012). A Lateral Flow Assay for Quantitative Detection of Amplified HIV-1 RNA. PLoS ONE 7(9), e45611. https://doi.org/10.1371/journal.pone.0045611
    Rozenman, Y., & Gotsman, M. S. (1994). The Earliest Diagnosis of Acute Myocardial Infarction. Annu. Rev. Med. 45(1), 31–44. https://doi.org/10.1146/annurev.med.45.1.31
    Russo, A. J., Vasudevan, S. O., Méndez-Huergo, S. P., Kumari, P., Menoret, A., Duduskar, S., Wang, C., Pérez Sáez, J. M., Fettis, M. M., Li, C., Liu, R., Wanchoo, A., Chandiran, K., Ruan, J., Vanaja, S. K., Bauer, M., Sponholz, C., Hudalla, G. A., Vella, A. T., … Rathinam, V. A. (2021). Intracellular immune sensing promotes inflammation via gasdermin D–driven release of a lectin alarmin. Nat. Immunol. 22(2), 154–165. https://doi.org/10.1038/s41590-020-00844-7
    Sakamoto, S., Putalun, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H., & Morimoto, S. (2018). Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. of Nat. Med. 72(1), 32–42. https://doi.org/10.1007/s11418-017-1144-z
    Salari, A., & Thompson, M. (2018). Recent advances in AC electrokinetic sample enrichment techniques for biosensor development. Sens. Actuators B Chem. 255, 3601–3615. https://doi.org/10.1016/j.snb.2017.09.069
    Salenius, J., Suntila, M., Ahti, T., Huhtala, H., Vaalasti, A., Salmi, T., & Kimpimäki, T. (2021). Long-term Mortality among Patients with Chronic Ulcers. Acta Derm. Vener. 101(5), adv00455. https://doi.org/10.2340/00015555-3803
    Savéant, J.-M. (2006). Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry. John Wiley & Sons.
    Schiller, C. A., & Strunz, W. (2001). The evaluation of experimental dielectric data of barrier coatings by means of different models. Electrochim. Acta 46(24–25), 3619–3625. https://doi.org/10.1016/S0013-4686(01)00644-2
    Schmickler, W. (2020). Double layer theory. J. Solid State Electrochem. 24(9), 2175–2176. https://doi.org/10.1007/s10008-020-04597-z
    Schulte, W., Bernhagen, J., & Bucala, R. (2013). Cytokines in Sepsis: Potent Immunoregulators and Potential Therapeutic Targets—An Updated View. Mediators Inflamm. 2013, 1–16. https://doi.org/10.1155/2013/165974
    Senftle, F. E., Grant, J. R., & Senftle, F. P. (2010). Low-voltage DC/AC electrolysis of water using porous graphite electrodes. Electrochim. Acta 55(18), 5148–5153. https://doi.org/10.1016/j.electacta.2010.04.022
    Seymour, C. W., Gesten, F., Prescott, H. C., Friedrich, M. E., Iwashyna, T. J., Phillips, G. S., Lemeshow, S., Osborn, T., Terry, K. M., & Levy, M. M. (2017). Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N. Engl. J. Med. 376(23), 2235–2244. https://doi.org/10.1056/NEJMoa1703058
    Seymour, C. W., Liu, V. X., Iwashyna, T. J., Brunkhorst, F. M., Rea, T. D., Scherag, A., Rubenfeld, G., Kahn, J. M., Shankar-Hari, M., Singer, M., Deutschman, C. S., Escobar, G. J., & Angus, D. C. (2016). Assessment of Clinical Criteria for Sepsis. JAMA 315(8), 762–774. https://doi.org/10.1001/jama.2016.0288
    Sharafeldin, M., & Davis, J. J. (2022). Characterising the biosensing interface. Anal. Chim. Acta 1216, 339759. https://doi.org/10.1016/j.aca.2022.339759
    Smith, A. M., Lee, A. A., & Perkin, S. (2016). The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. J. Phys. Chem. Lett. 7(12), 2157–2163. https://doi.org/10.1021/acs.jpclett.6b00867
    Smith, S., Korvink, J. G., Mager, D., & Land, K. (2018). The potential of paper-based diagnostics to meet the ASSURED criteria. RSC Adv. 8(59), 34012–34034. https://doi.org/10.1039/C8RA06132G
    Soman, K., Nelson, C. A., Cerono, G., Goldman, S. M., Baranzini, S. E., & Brown, E. G. (2023). Early detection of Parkinson’s disease through enriching the electronic health record using a biomedical knowledge graph. Front. Med. 10. https://doi.org/10.3389/fmed.2023.1081087
    Song, J., Park, D. W., Moon, S., Cho, H.-J., Park, J. H., Seok, H., & Choi, W. S. (2019). Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the Sepsis-3 definitions. BMC Infect. Dis. 19(1), 968. https://doi.org/10.1186/s12879-019-4618-7
    Sonneville, R., Verdonk, F., Rauturier, C., Klein, I. F., Wolff, M., Annane, D., Chretien, F., & Sharshar, T. (2013). Understanding brain dysfunction in sepsis. Ann. Intensive Care 3(1), 15. https://doi.org/10.1186/2110-5820-3-15
    Steinhauser, M. L., Hogaboam, C. M., Kunkel, S. L., Lukacs, N. W., Strieter, R. M., & Standiford, T. J. (1999). IL-10 Is a Major Mediator of Sepsis-Induced Impairment in Lung Antibacterial Host Defense. J. Immunol. 162(1), 392–399. https://doi.org/10.4049/jimmunol.162.1.392
    Stevenson, H., Radha Shanmugam, N., Paneer Selvam, A., & Prasad, S. (2018). The Anatomy of a Nonfaradaic Electrochemical Biosensor. SLAS Technol. 23(1), 5–15. https://doi.org/10.1177/2472630317738700
    Szilágyi, B., Fejes, Z., Pócsi, M., Kappelmayer, J., & Nagy, B. (2019). Role of sepsis modulated circulating microRNAs. EJIFCC 30(2), 128–145.
    Taganov, K. D., Boldin, M. P., Chang, K.-J., & Baltimore, D. (2006). NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. 103(33), 12481–12486. https://doi.org/10.1073/pnas.0605298103
    Tang, Y., Cain, P., Anguiano, V., Shih, J. J., Chai, Q., & Feng, Y. (2021). Impact of IgG subclass on molecular properties of monoclonal antibodies. MAbs 13(1). https://doi.org/10.1080/19420862.2021.1993768
    Teijaro, J. R. (2017). Cytokine storms in infectious diseases. Semin. Immunopathol. 39(5), 501–503. https://doi.org/10.1007/s00281-017-0640-2
    Trilling, A. K., Beekwilder, J., & Zuilhof, H. (2013). Antibody orientation on biosensor surfaces: a minireview. Analyst 138(6), 1619–1627. https://doi.org/10.1039/c2an36787d
    Tsai, M.-H., Chang, C.-H., Tsai, R.-K., Hong, Y.-R., Chuang, T.-H., Fan, K.-T., Peng, C.-W., Wu, C.-Y., Hsu, W.-L., Wang, L.-S., Chen, L.-K., & Yu, H.-S. (2016). Cross-Regulation of Proinflammatory Cytokines by Interleukin-10 and miR-155 in Orientia tsutsugamushi-Infected Human Macrophages Prevents Cytokine Storm. J. Invest. Dermatol. 136(7), 1398–1407. https://doi.org/10.1016/j.jid.2015.11.034
    Tsai, T.-C., Liu, C.-W., Wu, Y.-C., Ondevilla, N. A. P., Osawa, M., & Chang, H.-C. (2019). In situ study of EDC/NHS immobilization on gold surface based on attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). Colloids Surf. B 175. https://doi.org/10.1016/j.colsurfb.2018.12.009
    Tsilimigras, D. I., Sigala, F., Karaolanis, G., Ntanasis-stathopoulos, I., Spartalis, E., Spartalis, M., Patelis, N., Papalampros, A., Long, C., & Moris, D. (2018). Cytokines as biomarkers of inflammatory response after open versus endovascular repair of abdominal aortic aneurysms: a systematic review. Acta Pharmacol. Sin. 39(7), 1164–1175. https://doi.org/10.1038/aps.2017.212
    Tsumoto, K., & Caaveiro, J. M. (2016). Antigen–Antibody Binding. In eLS (pp. 1–8). Wiley. https://doi.org/10.1002/9780470015902.a0001117.pub3
    Ulloa, L., & Tracey, K. J. (2005). The ‘cytokine profile’: a code for sepsis. Trends Mol. Med. 11(2), 56–63. https://doi.org/10.1016/j.molmed.2004.12.007
    Uygun, Z. O., & Ertuğrul Uygun, H. D. (2014). A short footnote: Circuit design for faradaic impedimetric sensors and biosensors. Sens. Actuators B Chem. 202, 448–453. https://doi.org/10.1016/j.snb.2014.05.029
    Vaisocherová, H., Faca, V. M., Taylor, A. D., Hanash, S., & Jiang, S. (2009). Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera. Biosens. Bioelectron. 24(7), 2143–2148. https://doi.org/10.1016/j.bios.2008.11.015
    Vericat, C., Vela, M. E., Corthey, G., Pensa, E., Cortés, E., Fonticelli, M. H., Ibañez, F., Benitez, G. E., Carro, P., & Salvarezza, R. C. (2014). Self-assembled monolayers of thiolates on metals: a review article on sulfur-metal chemistry and surface structures. RSC Adv. 4(53), 27730–27754. https://doi.org/10.1039/C4RA04659E
    Wackerlig, J., & Schirhagl, R. (2016). Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances toward Industrial Use: A Review. Anal. Chem. 88(1), 250–261. https://doi.org/10.1021/acs.analchem.5b03804
    Wada, Y., Pu, J., & Takenobu, T. (2015). Strategy for improved frequency response of electric double-layer capacitors. Appl. Phys. Lett. 107(15). https://doi.org/10.1063/1.4933255
    Walker, M. J., Barnett, T. C., McArthur, J. D., Cole, J. N., Gillen, C. M., Henningham, A., Sriprakash, K. S., Sanderson-Smith, M. L., & Nizet, V. (2014). Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus. Clini. Microbiol. Rev. 27(2), 264–301. https://doi.org/10.1128/CMR.00101-13
    Walker, N. L., & Dick, J. E. (2021). Leakless, Bipolar Reference Electrodes: Fabrication, Performance, and Miniaturization. Anal. Chem. 93(29), 10065–10074. https://doi.org/10.1021/acs.analchem.1c00675
    Wang, H., Peng, R., Wang, J., Qin, Z., & Xue, L. (2018). Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin. Epigen. 10(1), 59. https://doi.org/10.1186/s13148-018-0492-1
    Wang, H., Zhang, P., Chen, W., Feng, D., Jia, Y., & Xie, L. (2012). Serum MicroRNA Signatures Identified by Solexa Sequencing Predict Sepsis Patients’ Mortality: A Prospective Observational Study. PLoS ONE 7(6), e38885. https://doi.org/10.1371/journal.pone.0038885
    Wang, L., Filer, J. E., Lorenz, M. M., Henry, C. S., Dandy, D. S., & Geiss, B. J. (2019). An ultra-sensitive capacitive microwire sensor for pathogen-specific serum antibody responses. Biosens. Bioelectron. 131, 46–52. https://doi.org/10.1016/j.bios.2019.01.040
    Wang, Q., Lan, Y., Qi, B., Yin, L., Zhang, L., & Liu, W. (2021). Neutrophil : lymphocyte ratio is associated with disease severity and mortality in patients with Stevens–Johnson syndrome/toxic epidermal necrolysis. J. Dermatol. 48(9), 1394–1400. https://doi.org/10.1111/1346-8138.15968
    Wang, S., Zhang, J., Gharbi, O., Vivier, V., Gao, M., & Orazem, M. E. (2021). Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 1(1), 41. https://doi.org/10.1038/s43586-021-00039-w
    Wang, Y.-W., Chen, T.-Y., Yang, T.-H., Chang, C.-C., Yang, T.-L., Lo, Y.-H., & Huang, J.-J. (2016). Thin-Film Transistor-Based Biosensors for Determining Stoichiometry of Biochemical Reactions. PLoS ONE 11(12), e0169094. https://doi.org/10.1371/journal.pone.0169094
    Weber, G. F., Chousterman, B. G., He, S., Fenn, A. M., Nairz, M., Anzai, A., Brenner, T., Uhle, F., Iwamoto, Y., Robbins, C. S., Noiret, L., Maier, S. L., Zönnchen, T., Rahbari, N. N., Schölch, S., Klotzsche-von Ameln, A., Chavakis, T., Weitz, J., Hofer, S., … Swirski, F. K. (2015). Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science 347(6227), 1260–1265. https://doi.org/10.1126/science.aaa4268
    Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., How Huang, K., Jen Lee, M., Galas, D. J., & Wang, K. (2010). The MicroRNA Spectrum in 12 Body Fluids. Clin. Chem. 56(11), 1733–1741. https://doi.org/10.1373/clinchem.2010.147405
    Wei, S., Qiu, C.-Y., Jin, Y., Liu, T.-T., & Hu, W.-P. (2021). TNF-α acutely enhances acid-sensing ion channel currents in rat dorsal root ganglion neurons via a p38 MAPK pathway. J. Neuroinflamm. 18(1), 92. https://doi.org/10.1186/s12974-021-02151-w
    Wei, T.-T., Cheng, Z., Hu, Z.-D., Zhou, L., & Zhong, R.-Q. (2019). Upregulated miR-155 inhibits inflammatory response induced by C. albicans in human monocytes derived dendritic cells via targeting p65 and BCL-10. Ann. Transl. Med. 7(23), 758–758. https://doi.org/10.21037/atm.2019.11.71
    Weidhase, L., Wellhöfer, D., Schulze, G., Kaiser, T., Drogies, T., Wurst, U., & Petros, S. (2019). Is Interleukin-6 a better predictor of successful antibiotic therapy than procalcitonin and C-reactive protein? A single center study in critically ill adults. BMC Infect. Dis. 19(1), 150. https://doi.org/10.1186/s12879-019-3800-2
    Weiner, L. M., Surana, R., & Wang, S. (2010). Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 10(5), 317–327. https://doi.org/10.1038/nri2744
    Witsell, A. L., & Schook, L. B. (1993). Tumor necrosis factor alpha is an autocrine growth regulator during macrophage differentiation. Proc. Natl. Acad. Sci. 90(10), 4763. https://doi.org/10.1073/pnas.90.10.4763-b
    Wróblewska, A., Reshetnyak, O. V., Koval’chuk, E. P., Pasichnyuk, R. I., & Błażejowski, J. (2005). Origin and features of the electrochemiluminescence of luminol – Experimental and theoretical investigations. J. Electroanal. Chem. 580(1), 41–49. https://doi.org/10.1016/j.jelechem.2005.02.023
    Wu, C.-C., Huang, W.-C., & Hu, C.-C. (2015). An ultrasensitive label-free electrochemical impedimetric DNA biosensing chip integrated with a DC-biased AC electroosmotic vortex. Sens. Actuators B Chem. 209, 61–68. https://doi.org/10.1016/j.snb.2014.11.078
    Wu, C.-C., & Yang, D.-J. (2013). A label-free impedimetric DNA sensing chip integrated with AC electroosmotic stirring. Biosens. Bioelectron. 43, 348–354. https://doi.org/10.1016/j.bios.2012.12.041
    Wu, J. (2008). Interactions of electrical fields with fluids:laboratory-on-a-chip applications. IET Nanobiotechnol. 2(1), 14. https://doi.org/10.1049/iet-nbt:20070023
    Wu, J. (2022). Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chem. Rev. 122(12), 10821–10859. https://doi.org/10.1021/acs.chemrev.2c00097
    Wu, J., Ben, Y., Battigelli, D., & Chang, H.-C. (2005). Long-Range AC Electroosmotic Trapping and Detection of Bioparticles. Ind. Eng. Chem. Res. 44(8), 2815–2822. https://doi.org/10.1021/ie049417u
    Yamada, K., Shibata, H., Suzuki, K., & Citterio, D. (2017). Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17(7), 1206–1249. https://doi.org/10.1039/C6LC01577H
    Yang Ng, W., Ramos, A., Cheong Lam, Y., & Rodriguez, I. (2012). Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes. Biomicrofluidics 6(1). https://doi.org/10.1063/1.3668262
    Yetisen, A. K., Akram, M. S., & Lowe, C. R. (2013). Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12), 2210. https://doi.org/10.1039/c3lc50169h
    Zaccari, I., Catchpole, B. G., Laurenson, S. X., Davies, A. G., & Wälti, C. (2014). Improving the Dielectric Properties of Ethylene-Glycol Alkanethiol Self-Assembled Monolayers. Langmuir 30(5), 1321–1326. https://doi.org/10.1021/la403983b
    Zahn, D. (2003). Theoretical Study of the Mechanisms of Acid-Catalyzed Amide Hydrolysis in Aqueous Solution. J. Phys. Chem. B 107(44), 12303–12306. https://doi.org/10.1021/jp034175h
    Zanello, P. (2003). Basic Equipment for Electrochemical Measurements. In Inorganic Electrochemistry: Theory, Practice, and Application (pp. 139–154). The Royal Society of Chemistry.
    Zhan, C., Cerón, M. R., Hawks, S. A., Otani, M., Wood, B. C., Pham, T. A., Stadermann, M., & Campbell, P. G. (2019). Specific ion effects at graphitic interfaces. Nat. Commun. 10(1), 4858. https://doi.org/10.1038/s41467-019-12854-7
    Zhang, J., Arbault, S., Sojic, N., & Jiang, D. (2019). Electrochemiluminescence Imaging for Bioanalysis. Annual Review of Anal. Chem. 12(1), 275–295. https://doi.org/10.1146/annurev-anchem-061318-115226
    Zhou, W., Jimmy Huang, P.-J., Ding, J., & Liu, J. (2014). Aptamer-based biosensors for biomedical diagnostics. Analyst 139(11), 2627. https://doi.org/10.1039/c4an00132j
    Zhou, Y., Cao, W., Xu, Z., Zhang, X. F., & Liu, Y. (2021). Binding kinetics of liposome conjugated E-selectin and P-selectin glycoprotein ligand-1 measured with atomic force microscopy. Colloids Surf. B 207, 112002. https://doi.org/10.1016/j.colsurfb.2021.112002
    Zhou, Y., Song, Y., Shaikh, Z., Li, H., Zhang, H., Caudle, Y., Zheng, S., Yan, H., Hu, D., Stuart, C., & Yin, D. (2017). MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2. Oncotarget 8(29), 47317–47329. https://doi.org/10.18632/oncotarget.17636
    Zhu, S., Kingsbury, R. S., Call, D. F., & Coronell, O. (2018). Impact of solution composition on the resistance of ion exchange membranes. J. Membr. Sci. 554, 39–47. https://doi.org/10.1016/j.memsci.2018.02.050

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE