簡易檢索 / 詳目顯示

研究生: 陳柚鈞
Chen, You-Jyun
論文名稱: 吡咯及嘧啶在銅(100)和氧/銅(100)表面的吸附與反應研究
Adsorption and Reactions of Pyrrole and Pyrimidine on Cu(100) and O/Cu(100)
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 73
中文關鍵詞: 吡咯嘧啶銅(100)X射線光電子光譜反射式紅外線吸收光譜程式控溫反應/脫附
外文關鍵詞: pyrrole, pyrimidine, Cu(100), temperature-programmed reacton/desorption (TPR/D), reflection-adsorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS)
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這是一份關於吡咯(Pyrrole)及嘧啶(Pyrimidine)在銅(100)和氧/銅(100)表面的熱反應研究。利用程式控溫反應譜(TPR/D)偵測反應脫附的氣體分子,配合反射式紅外線吸收光譜(RAIRS)及X射線光電子光譜(XPS)對表面的吸附物種探測,結合理論計算,分析Pyrrole和Pyrimidine在Cu(100)和O/Cu(100)表面可能的反應路徑。
    Pyrrole在Cu(100)表面上,己知不會反應分解。當Pyrrole在140 K於O/Cu(100)表面吸附時,會進行去質子化反應,發生N-H鍵斷裂並且生成OH(ad)和Pyrrolate。理論計算此反應的活化能為6.02 kcal/mol,約在100 K左右即可發生反應。Pyrrolate在250 K會進一步反應發生環結構改變或是環破裂,並且在350 K時完全分解生成其他物種。當溫度繼續提高,會脫氫持續產生H2O脫附。在600 K時,表面的中間產物會再分解出CO2和H2O。在700K,表面有足夠的O(ad)濃度,會產生CO2脫附,致使在850 K左右有N2的生成脫附。若表面O(ad)濃度不足,則在770 K左右分解產生HCN及H2,並且在850 K以上生成C2N2。另外在600 K有大量的H2O生成脫附,會導致HCN和H2的生成會減少,甚至不會產生H2。然而在高暴露量的紅外線光譜中,在500 – 700 K有789 cm-1的吸收峰出現,顯示在不同的覆蓋率可能造成Pyrrole在O/Cu(100)表面有不同的反應路徑或生成物。
    Pyrimidine在140 K於Cu(100)及O/Cu(100)表面吸附時,不會發生反應分解,而且隨溫度提高只有發生脫附。在紅外線光譜中,在這兩種表面也只有觀察到in-plane的吸收峰,顯示Pyrimidine在表面有直立或是接近直立的吸附。理論計算Pyrimidine在Cu(100)或O/Cu(100)最穩定的吸附結構結果也顯示,Pyrimidine分子和表面之間有N-Cu鍵生成且分子直立於表面。此結果也與紅外線研究相符。另外,在Cu(100)的高暴露量紅外線光譜中,在140 K有不在Pyrimidine振動模式中的吸收峰生成。

    The adsorption and thermal chemistry of pyrrole and pyrimidine on Cu(100) and O/Cu(100) have been investigated, using by temperature-programmed reaction/desorption (TPR/D), reflection-adsorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) the calculations for the adsorption energy, structure and orientation and the reaction pathway.
    Pyrrole on O/Cu(100) shows a complex reaction. At 140 K, pyrrole decomposes into pyrrolate and OH groups on the surface. The activation energy of this reaction is calculated to be 6.02 kcal/mole. It suggests this reaction can occur even at 100 K. Between 200 K and 350 K, the RAIRS and XPS results indicate that the pyrrolate may have a change in adsorption structure. At higher temperatures, the product of H2O(400, 500, 600 K ), CO2(600, 700 K), H2(770 K) ,HCN( 770 K), N2 (870 K)and C2N2( > 850 K) are detected. The appearing temperatures and relative amounts of these products are dependent on the pyrrole coverage.
    Pyrimidine has no reaction on Cu(100) or O/Cu(100) surface. In the IR spectra, only the in-plane vibrational modes are observed. These results reveal the adsorption orientation of the pyrimidine on Cu(100) and O/Cu(100), i.e., are upright or near upright. Theoretically, the pyrimidine is predicted to be adsorbed vertically on Cu(100), with one of the nitrogen atoms on a atop site. The calculated, the most stable geometric structure of pyrimidine/Cu(100) is consistent with the infrared result.
    Keywords: Pyrrole, Pyrimidine, Cu(100), temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS)

    第一章 緒 言 1 1.1. 表面化學 1 1.2. 銅表面 3 1.3. 吡咯——Pyrrole 6 1.4. 嘧啶——Pyrimidine 9 第二章 表面研究分析技術及原理 11 2.1. TPR/D 11 2.2. RAIRS 14 2.3. XPS 17 2.4. 實驗裝置 19 2.5. 單晶表面實驗前處理 20 Cu(100) 20 O/Cu(100)表面製備 20 樣品前處理 20 2.6. 實驗方法 21 TPR/D 21 RAIRS 21 XPS 22 理論計算 22 第三章 結果與討論 24 3.1. Pyrrole/Cu(100) 24 TPR/D與RAIRS研究 24 XPS研究 28 3.2. Pyrrole/O/Cu(100) 30 TPR/D研究 30 Pyrrole/O/Cu(100)的XPS研究 38 RAIRS研究 41 3.3. 理論計算 43 Pyrrole單一分子理論計算結構 43 Pyrrole/Cu(100)理論計算結構 44 Pyrrole/O/Cu(100)理論計算結構 46 Pyrrole/OH/Cu(100)理論計算結構 48 生成Pyrrole/OH/Cu(100)的反應路徑理論計算 49 Pyrrolate的IR振動光譜理論計算 51 3.4. Pyrimidine/Cu(100) 52 TPR/D研究 52 RAIRS研究 54 3.5. Pyrimidine/O/Cu(100) 58 TPR/D研究 58 RAIRS研究 61 3.6. 理論計算 63 單獨分子理論計算 63 Pyrimidine在Cu(100)的吸附理論計算 64 Pyrimidine在O/Cu(100)的吸附理論計算 66 第四章 結論 68 第五章 參考資料 70

    1. Akkaya, Y.; Akyuz, S.; Akyuz, T., Vibrational Spectroscopic Investigation of Tetracyanopalladate Bridged Two Dimensional Coordination Polymer Compounds of Pyrimidine. Asian Journal of Chemistry, 25, 9185, 2013.
    2. Baltazzi, E.; Krimen, L. I., Recent Advances in the Chemistry of Pyrrole. Chemical Reviews, 63, 511-556, 1963.
    3. Bartle, K. D.; Perry, D. L.; Wallace, S., The Functionality of Nitrogen in Coal and Derived Liquids: An XPS Study. Fuel Processing Technology, 15, 351-361, 1987.
    4. Berman, A., Total Pressure Measurements in Vacuum Technology; Academic Press, 2014.
    5. Breda, S.; Reva, I.; Lapinski, L.; Nowak, M.; Fausto, R., Infrared Spectra of Pyrazine, Pyrimidine and Pyridazine in Solid Argon. Journal of molecular structure, 786, 193-206, 2006.
    6. Cao, X.; Coulter, S. K.; Ellison, M. D.; Liu, H.; Liu, J.; Hamers, R. J., Bonding of Nitrogen-Containing Organic Molecules to the Silicon (001) Surface: The Role of Aromaticity. The Journal of Physical Chemistry B, 105, 3759-3768, 2001.
    7. Carley, A. F.; Davies, P. R.; Roberts, M. W.; Thomas, K. K., Hydroxylation of Molecularly Adsorbed Water at Ag(111) and Cu(100) Surfaces by Dioxygen: Photoelectron and Vibrational Spectroscopic Studies. Surface Science, 238, L467-L472, 1990.
    8. Chesters, M. A., Infrared Spectroscopy of Molecules on Metal Single-Crystal Surfaces. Journal of Electron Spectroscopy and Related Phenomena, 38, 123-140, 1986.
    9. Doughty, A.; Mackie, J. C., Kinetics of Thermal Decomposition of the Diazines: Shock-Tube Pyrolysis of Pyrimidine. Journal of the Chemical Society, Faraday Transactions, 90, 541-548, 1994.
    10. Fierro, J. L. G., Chapter 1 Chemisorption of Probe Molecules. In Studies in Surface Science and Catalysis, Fierro, J. L. G., Ed. Elsevier: 1990; Vol. 57, pp B1-B66.
    11. Gerhard, E., Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture). Angewandte Chemie International Edition, 47, 3524-3535, 2008.
    12. Gómez-Zavaglia, A.; Fausto, R., Self-Aggregation in Pyrrole:  Matrix Isolation, Solid State Infrared Spectroscopy, and DFT Study. The Journal of Physical Chemistry A, 108, 6953-6967, 2004.
    13. H.S., A.; S., A. G., Mechanism of Inhibition of Iron Corrosion in Hydrochloric Acid by Pyrimidine and Series of Its Derivatives. Anti-Corrosion Methods and Materials, 52, 328-336, 2005.
    14. Holze, R., The Adsorption of Pyrrole on Silver and Gold Electrodes as Studied with Surface Enhanced Raman Spectroscopy SERS. Zeitschrift für Physikalische Chemie, 160, 45-58, 1988.
    15. Ibach, H., Physics of Surfaces and Interfaces; Springer Berlin Heidelberg, 2006.
    16. Khaled, K.; Hamed, M. N.; Abdel-Azim, K.; Abdelshafi, N., Inhibition of Copper Corrosion in 3.5% Nacl Solutions by a New Pyrimidine Derivative: Electrochemical and Computer Simulation Techniques. Journal of Solid State Electrochemistry, 15, 663-673, 2011.
    17. Klots, T. D.; Chirico, R. D.; Steele, W. V., Complete Vapor Phase Assignment for the Fundamental Vibrations of Furan, Pyrrole and Thiophene. Spectrochimica Acta Part A: Molecular Spectroscopy, 50, 765-795, 1994.
    18. Kolasinski, K. W., Surface Science: Foundations of Catalysis and Nanoscience; Wiley, 2008.
    19. Mackie, J. C.; Colket, M. B.; Nelson, P. F.; Esler, M., Shock Tube Pyrolysis of Pyrrole and Kinetic Modeling. International Journal of Chemical Kinetics, 23, 733-760, 1991.
    20. Mahmoud, S.; Ahmed, M.; El-Kasaby, R., Corrosion Inhibition of Some Copper Alloys in Acidic Medium by Pyrimidine and Its Derivatives. Advances in Materials and Corrosion, 2, 36-45, 2013.
    21. Masel, R. I.; Masel, R. I., Principles of Adsorption and Reaction on Solid Surfaces; John Wiley & Sons, 1996; Vol. 3.
    22. Matsushita, T., Electricity and Magnetism: New Formulation by Introduction of Superconductivity; Springer Science & Business Media, 2013.
    23. Okuyama, T.; Maskill, H., Organic Chemistry: A Mechanistic Approach; Oxford University Press, 2013.
    24. Oura, K.; Lifshits, V. G.; Saranin, A.; Zotov, A. V.; Katayama, M., Surface Science: An Introduction; Springer Berlin Heidelberg, 2003.
    25. Pan, F.-M.; Stair, P. C.; Fleisch, T. H., Chemisorption of Pyridine and Pyrrole on Iron Oxide Surfaces Studied by XPS. Surface Science, 177, 1-13, 1986.
    26. Pearce, H. A.; Sheppard, N., Possible Importance of a “Metal-Surface Selection Rule” in the Interpretation of the Infrared Spectra of Molecules Adsorbed on Particulate Metals; Infrared Spectra from Ethylene Chemisorbed on Silica-Supported Metal Catalysts. Surface Science, 59, 205-217, 1976.
    27. Pignataro, S.; Di Marino, R.; Distefano, G.; Mangini, A., Core Ionization Energies and Multi-Peak Structure of Esca Bands in Some Pentatomic Heterocyclic Compounds. Chemical Physics Letters, 22, 352-355, 1973.
    28. Rasheeda, K.; Vijaya, D.; Krishnaprasad, P.; Samshuddin, S., Pyrimidine Derivatives as Potential Corrosion Inhibitors for Steel in Acid Medium-an Overview. International Journal of Corrosion and Scale Inhibition, 7, 48-61, 2018.
    29. Sexton, B. A., Surface Vibrations of Adsorbed Intermediates in the Reaction of Alcohols with Cu(100). Surface Science, 88, 299-318, 1979.
    30. Sexton, B. A., A Vibrational and TDS Study of the Adsorption of Pyrrole, Furan and Thiophene on Cu(100) - Evidence for Pi-Bonded and Inclined Species. Surface Science, 163, 99-113, 1985.
    31. Stair, P., The Concept of Lewis Acids and Bases Applied to Surfaces. Journal of the American Chemical Society, 104, 4044-4052, 1982.
    32. Stańczyk, K.; Dziembaj, R.; Piwowarska, Z.; Witkowski, S., Transformation of Nitrogen Structures in Carbonization of Model Compounds Determined by XPS. Carbon, 33, 1383-1392, 1995.
    33. Tanaka, K.-i., Dynamic Chemical Processes on Solid Surfaces; Springer, 2017.
    34. Vickerman, J. C.; Gilmore, I. S., Surface Analysis: The Principal Techniques; Wiley, 2011.
    35. Zeller, M.; Hahn, S., The Correlation of Chemical Structure and Electrical Conductivity in Polypyrrole Films by X‐Ray Photoelectron Spectroscopy. Surface and Interface Analysis, 11, 327-334, 1988.
    36. Zhai, L.; Zhou, X.; Liu, R., A Theoretical Study of Pyrolysis Mechanisms of Pyrrole. The Journal of Physical Chemistry A, 103, 3917-3922, 1999.

    下載圖示 校內:2023-08-01公開
    校外:2023-08-31公開
    QR CODE