簡易檢索 / 詳目顯示

研究生: 朱怡錚
Chu, I-Cheng
論文名稱: Cu添加對Bi-3.5Ag高溫無鉛銲料顯微組織與機械性質之影響
Effect of Cu Addition on the Microstructure and Mechanical Properties of Bi-3.5Ag High-Temperature Pb-free Solder
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 100
中文關鍵詞: Bi-Ag合金高溫無鉛銲料剪切測試
外文關鍵詞: High-temperature Pb-free solder, Bi-Ag alloy, Cu addition, microstructure, shear test
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在探討不同Cu添加量(0.5 wt.%、1 wt.%與2 wt.%),對高溫無鉛銲料Bi-3.5Ag之機械性質與顯微組織結構的影響,並研究其在迴銲過程中與常用基材Cu板之間的介面反應行為。
    研究結果顯示,在Bi中添加2.5 wt.% Ag生成Bi-Ag共晶組織;添加3.5 wt.% Ag時則先生成α-Ag,後再形成Bi-Ag共晶組織,由於金屬澆鑄後採用空冷,為較快的冷卻方式,導致在銲料中有純Bi組織的出現。在Bi-3.5Ag銲料中添加Cu時,Cu於冷卻過程中最先生成,由於Cu和Ag有較佳的親和力,α-Ag傾向在Cu附近生成,這一現象導致隨著Cu含量增加時,α-Ag晶粒的粗大化,且Bi-Ag共晶組織在銲料合金中的比例逐漸減少。
    硬度的量測觀察中,發現添加Cu使銲料整體硬度呈上升的趨勢,其中α-Ag組織與Cu-rich相皆具有散佈強化的效果。在剪切試驗觀察中,發現Bi-3.5Ag-0.5Cu銲料具有最佳的剪切強度。儘管Bi-3.5Ag-1Cu銲料中存在較深的晶界溝槽,但其裂紋完全斷裂於銲球中心,該中心區域多為純Bi與Bi-Ag共晶組織,由於這些結構無法有效抵抗裂紋擴展,最終導致得到最差的剪切強度。銲點破斷面觀察分析中,發現Bi-3.5Ag-2Cu的銲點有部分Cu基板裸露,呈現混合斷裂模式;而Bi-3.5Ag、Bi-3.5Ag-0.5Cu和Bi-3.5Ag-0.5Cu則皆為銲球內部斷裂。
    綜合以上實驗結果,在Bi-3.5Ag銲料中添加Cu,可增加α-Ag組織與富Cu相的占比,提升在合金中的散佈強化效果,進而強化整體銲料硬度;然而,若α-Ag晶粒過於粗大,在迴銲時則會沉積於銲接基板表面,影響熔融銲料與基板間的交互作用,導致較差的介面接合效果。

    This study investigates the effects of different Cu additions (0.5 wt.%, 1 wt.%, and 2 wt.%) on the mechanical properties and microstructure of the high-temperature lead-free solder Bi-3.5Ag.

    The results indicate that the addition of 2.5 wt.% Ag to Bi leads to forming a Bi-Ag eutectic structure, while the addition of 3.5 wt.% Ag first results in the formation of α-Ag, followed by the Bi-Ag eutectic structure. Due to air cooling, a relatively rapid method after metal casting, pure Bi structures appear in the solder. When Cu is added to the Bi-3.5Ag solder, Cu precipitates first during the cooling process. As the Cu content increases, the α-Ag grains coarsen, and the proportion of the Bi-Ag eutectic structure in the solder alloy gradually decreases.

    Hardness measurements reveal that adding Cu increases the solder's overall hardness, with both the α-Ag phase and Cu-rich phase contributing to dispersion strengthening. In shear tests, the Bi-3.5Ag-0.5Cu solder exhibits the highest shear strength. Fracture surface analysis of the solder joints shows that Bi-3.5Ag-2Cu exhibits partial exposure of the Cu substrate, indicating a mixed fracture mode, whereas Bi-3.5Ag, Bi-3.5Ag-0.5Cu, and Bi-3.5Ag-1Cu all exhibit fractures within the solder ball.

    摘 要 I Extended Abstract II 誌 謝 VII 總目錄 VIII 表目錄 XI 圖目錄 XII 第1章 前言 1 1-1 前言 1 1-2 研究動機與目的 3 第2章 文獻回顧 7 2-1 高溫無鉛銲料概論 7 2-1-1 高溫銲料應用 7 2-1-2 高溫無鉛銲料性質要求 8 2-2 高溫無鉛銲料系統發展概況 12 2-2-1 金錫(Au-Sn)系合金 12 2-2-2 鋅錫(Zn-Sn)系合金 13 2-2-3 鋅鋁(Zn-Al)系合金 13 2-2-4 鉍銀(Bi-Ag)系合金 14 2-2-5 錫銻(Sn-Sb)系合金 15 2-3 Bi與Cu基板的介面層反應 20 2-4 銲點接合性質 22 2-4-1 銲點剪切試驗測試 22 2-4-2 銲點破壞模式 22 第3章 實驗步驟與方法 26 3-1 實驗規劃 26 3-2 試件製備 28 3-2-1 高溫無鉛銲料的製備 28 3-2-2 銲球製備 28 3-2-3 銅基板前處理 29 3-2-4 接點試片的製作 29 3-3 實驗內容 38 3-3-1 銲料之微結構觀察與分析 38 3-3-2 銲料之微硬度分析 38 3-3-3 銲點之微結構觀察與分析 38 3-3-4 銲點之剪切試驗 38 3-3-5 破斷面分析 39 第4章 研究結果與討論 43 4-1 Bi-3.5Ag-xCu銲料合金之微結構 43 4-2 Bi-3.5Ag-xCu銲料之微硬度 54 4-3 剪切強度測試 57 4-4 銲點斷口分析 63 4-5 Bi-3.5Ag-xCu銲料與Cu基板銲接界面層微結構分析 68 第5章 綜合討論 75 第6章 結論 77 第7章 未來研究建議與方向 78 參考文獻 79

    [1] M. Rettenmayr, P. Lambracht, B. Kempf, and M. Graff, “High melting Pb‐free solder alloys for die‐attach applications,” Advanced engineering materials, vol. 7, no. 10, pp. 965-969, 2005.
    [2] B. Joseph, F. Barbier, G. Dagoury, and M. Aucouturier, “Rapid penetration of liquid Bi along Cu grain boundaries,” Scripta materialia, vol. 39, no. 6, pp. 775-781, 1998.
    [3] 王怡茹, “高溫鉛錫銲料之機械性質與顯微組織研究,” 機械工程學系, 國立成功大學, 台南市, 2015.
    [4] 吳維軒, “高溫銲料銲點界面反應及組織研究,” 機械工程學系, 國立成功大學, 台南市, 2015.
    [5] 蘇品睿, “Bi-3.5Ag-xSn高溫無鉛銲料微觀結構與機械性質之研究,” 機械工程學系, 國立成功大學, 台南市, 2021.
    [6] J.-M. Song, H.-Y. Chuang, and Z.-M. Wu, “Substrate dissolution and shear properties of the joints between Bi-Ag alloys and Cu substrates for high-temperature soldering applications,” Journal of electronic materials, vol. 36, pp. 1516-1523, 2007.
    [7] J. E. Spinelli, B. L. Silva, N. Cheung, and A. Garcia, “The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi–Ag solder alloys,” Materials characterization, vol. 96, pp. 115-125, 2014.
    [8] M. Nahavandi, M. Hanim, Z. Ismarrubie, and F. Baserfalak, “Interfacial reaction of Bi–Ag and Bi–Sb solders on copper substrate with multiple reflow number,” Materials Research Innovations, vol. 18, no. sup6, pp. S6-318-S6-321, 2014.
    [9] L. Yin, D. Li, Z. Yao, G. Wang, and A. Blackburn, “Microstructures and properties of Bi10Ag high temperature solder doped with Cu element,” Microelectronics Reliability, vol. 80, pp. 79-84, 2018.
    [10] M. Yu, K. Matsugi, Z. Xu, Y. Choi, J. Yu, S. Motozuka, Y. Nishimura, and K.-i. Suetsugu, “High temperature characterization of binary and ternary Bi alloys microalloyed with Cu and Ag,” Materials transactions, vol. 59, no. 2, pp. 303-310, 2018.
    [11] I. Karakaya, and W. Thompson, “The Ag-Bi (silver-bismuth) system,” Journal of phase equilibria, vol. 14, pp. 525-530, 1993.
    [12] National Institute of Standards and Technology (NIST). "Ag-Bi-Cu System," https://www.msed.nist.gov/phase/solder/agbicu.html [Accessed] June 17, 2024
    [13] "THE London Metal Exchange," https://www.lme.com/en/Metals/Non-ferrous/LME-Copper#Summary [Accessed] July 16, 2024
    [14] T. INC. "白銀價格走勢," https://www.truney.com/silver-chart [Accessed] July 16, 2024
    [15] G. Zeng, S. McDonald, and K. Nogita, “Development of high-temperature solders,” Microelectronics Reliability, vol. 52, no. 7, pp. 1306-1322, 2012.
    [16] Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, I. Ohnuma, and K. Ishida, “Reliability of wire-bonding and solder joint for high temperature operation of power semiconductor device,” Microelectronics Reliability, vol. 47, no. 12, pp. 2147-2151, 2007.
    [17] P. Gerlach, C. Linder, and K.-H. Becks, “Multi chip modules technologies,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 473, no. 1-2, pp. 102-106, 2001.
    [18] H. Lee, Y. Jeong, J. Shin, J. Baek, M. Kang, and K. Chun, “Package embedded heat exchanger for stacked multi-chip module,” Sensors and Actuators A: Physical, vol. 114, no. 2-3, pp. 204-211, 2004.
    [19] J. H. Lau, “Recent advances and trends in advanced packaging,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 2, pp. 228-252, 2022.
    [20] G. R. Blackwell, "Surface mount technology," Electronic systems maintenance handbook, pp. 12-1-12-20: CRC Press, 2017.
    [21] K. Suganuma, S.-J. Kim, and K.-S. Kim, “High-temperature lead-free solders: properties and possibilities,” JOM Journal of the Minerals, Metals and Materials Society, vol. 61, no. 1, pp. 64, 2009.
    [22] S.-J. Kim, K.-S. Kim, S.-S. Kim, C.-Y. Kang, and K. Suganuma, “Characteristics of Zn-Al-Cu alloys for high temperature solder application,” Materials transactions, vol. 49, no. 7, pp. 1531-1536, 2008.
    [23] M. Abtew, and G. Selvaduray, “Lead-free solders in microelectronics,” Materials Science and Engineering: R: Reports, vol. 27, no. 5-6, pp. 95-141, 2000.
    [24] R. R. Tummala, “SOP: what is it and why? A new microsystem-integration technology paradigm-Moore's law for system integration of miniaturized convergent systems of the next decade,” IEEE Transactions on Advanced Packaging, vol. 27, no. 2, pp. 241-249, 2004.
    [25] Y. Liu, J. Teo, S. Tung, and K. Lam, “High-temperature creep and hardness of eutectic 80Au/20Sn solder,” Journal of Alloys and Compounds, vol. 448, no. 1-2, pp. 340-343, 2008.
    [26] W. Liu, R. An, C. Wang, and Y. Tian, “Effect of Au-Sn IMCs’ formation and morphologies on shear properties of laser reflowed micro-solder joints,” Soldering & Surface Mount Technology, vol. 27, no. 1, pp. 45-51, 2015.
    [27] J. Kim, D. Kim, and C. C. Lee, “Fluxless flip-chip solder joint fabrication using electroplated Sn-rich Sn-Au structures,” IEEE transactions on advanced packaging, vol. 29, no. 3, pp. 473-482, 2006.
    [28] T. Takahashi, S. Komatsu, H. Nishikawa, and T. Takemoto, “Improvement of high-temperature performance of Zn-Sn solder joint,” Journal of electronic materials, vol. 39, pp. 1241-1247, 2010.
    [29] D. Sarwono, and K.-L. Lin, “Wetting and IMC Growth Behavior Between Cu Substrate and Zn-25Sn-x Cu-y Ti High-Temperature Solder Alloys,” Journal of Electronic Materials, vol. 48, pp. 99-106, 2019.
    [30] Y. Wei, Y. Liu, X. Zhao, C. Tan, Y. Dong, and J. Zhang, “Effects of minor alloying with Ge and In on the interfacial microstructure between Zn–Sn solder alloy and Cu substrate,” Journal of Alloys and Compounds, vol. 831, 2020.
    [31] T. Jun, H. Li-Hua, H. Chun-Fu, Y. Xiao-Hui, and D. Pin-Qiang, “Effects of Ni-Doping on Microstructures and Properties of Zn-20Sn High-Temperature Lead-Free Solders,” Chinese Journal of Structural Chemistry, vol. 38, pp. 1107-1115, 2019.
    [32] T. Nagaoka, Y. Morisada, M. Fukusumi, and T. Takemoto, “Selection of soldering temperature for ultrasonic-assisted soldering of 5056 aluminum alloy using Zn–Al system solders,” Journal of Materials Processing Technology, vol. 211, no. 9, pp. 1534-1539, 2011.
    [33] M. Rettenmayr, P. Lambracht, B. Kempf, and C. Tschudin, “Zn-Al based alloys as Pb-free solders for die attach,” Journal of electronic materials, vol. 31, pp. 278-285, 2002.
    [34] C. Yao, S. L. Tay, T. Zhu, H. Shang, and W. Gao, “Effects of Mg content on microstructure and electrochemical properties of Zn–Al–Mg alloys,” Journal of Alloys and Compounds, vol. 645, pp. 131-136, 2015.
    [35] K.-L. Lin, L.-H. Wen, and T.-P. Liu, “The microstructures of the Sn-Zn-Al solder alloys,” Journal of electronic materials, vol. 27, pp. 97-105, 1998.
    [36] I. Kostolný, R. Koleňák, E. Hodúlová, P. Zacková, and M. Kusý, “Investigation of ultrasound-assisted soldering of SiC ceramics by Zn-Al-In high-temperature solder,” Welding in the World, vol. 63, pp. 1449-1459, 2019.
    [37] Y. Takaku, L. Felicia, I. Ohnuma, R. Kainuma, and K. Ishida, “Interfacial reaction between Cu substrates and Zn-Al base high-temperature Pb-free solders,” Journal of Electronic Materials, vol. 37, pp. 314-323, 2008.
    [38] N. Kang, H. S. Na, S. J. Kim, and C. Y. Kang, “Alloy design of Zn–Al–Cu solder for ultra high temperatures,” Journal of Alloys and compounds, vol. 467, no. 1-2, pp. 246-250, 2009.
    [39] J.-M. Song, H.-Y. Chuang, and Z.-M. Wu, “Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates,” Journal of electronic materials, vol. 35, pp. 1041-1049, 2006.
    [40] Y. Shi, W. Fang, Z. Xia, Y. Lei, F. Guo, and X. Li, “Investigation of rare earth-doped BiAg high-temperature solders,” Journal of Materials Science: Materials in Electronics, vol. 21, pp. 875-881, 2010.
    [41] P. Fima, W. Gąsior, A. Sypień, and Z. Moser, “Wetting of Cu by Bi–Ag based alloys with Sn and Zn additions,” Journal of Materials Science, vol. 45, pp. 4339-4344, 2010.
    [42] J. N. Lalena, N. F. Dean, and M. W. Weiser, “Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment,” Journal of electronic materials, vol. 31, pp. 1244-1249, 2002.
    [43] K. Tanaka, A. Ninomiya, T. Ishigohka, and K. Kurahashi, “Measurement of joint resistance of Bi-2223/Ag tapes using one-turn shorted coil,” IEEE transactions on applied superconductivity, vol. 11, no. 1, pp. 3002-3005, 2001.
    [44] T. Kobayashi, K. Kobayashi, K. Mitsui, and I. Shohji, “Comparison of Sn‐5Sb and Sn‐10Sb Alloys in Tensile and Fatigue Properties Using Miniature Size Specimens,” Advances in Materials Science and Engineering, vol. 2018, no. 1, pp. 1416942, 2018.
    [45] T. Kobayashi, I. Shohji, and Y. Nakata, “Effect of Power Cycling and Heat Aging on Reliability and IMC Growth of Sn‐5Sb and Sn‐10Sb Solder Joints,” Advances in Materials Science and Engineering, vol. 2018, no. 1, pp. 4829508, 2018.
    [46] R. J. McCabe, and M. E. Fine, “High creep resistance tin-based alloys for soldering applications,” Journal of electronic materials, vol. 31, pp. 1276-1282, 2002.
    [47] Y. Plevachuk, W. Hoyer, I. Kaban, M. Köhler, and R. Novakovic, “Experimental study of density, surface tension, and contact angle of Sn–Sb-based alloys for high temperature soldering,” Journal of Materials Science, vol. 45, pp. 2051-2056, 2010.
    [48] M. Dias, N. C. Verissimo, N. N. Regone, E. S. Freitas, N. Cheung, and A. Garcia, “Electrochemical corrosion behaviour of Sn–Sb solder alloys: the roles of alloy Sb content and type of intermetallic compound,” Corrosion Engineering, Science and Technology, vol. 56, no. 1, pp. 11-21, 2021.
    [49] J. Ciulik, and M. R. Notis, “THE AU-SN PHASE-DIAGRAM,” Journal of Alloys and Compounds, vol. 191, no. 1, pp. 71-78, 1993.
    [50] Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa, “The Sn− Zn (tin-zinc) system,” Bulletin of Alloy Phase Diagrams, vol. 6, no. 4, pp. 330-334, 1985.
    [51] F. Gonzales, and M. Rappaz, “Dendrite growth directions in aluminum-zinc alloys,” Metallurgical and Materials Transactions A, vol. 37, pp. 2797-2806, 2006.
    [52] V. Raghavan, “Al-Cu-Zn (aluminum-copper-zinc),” Journal of Phase Equilibria and Diffusion, vol. 28, no. 2, pp. 183-188, 2007.
    [53] S.-W. Chen, C.-C. Chen, W. Gierlotka, A.-R. Zi, P.-Y. Chen, and H.-J. Wu, “Phase equilibria of the Sn-Sb binary system,” Journal of Electronic Materials, vol. 37, pp. 992-1002, 2008.
    [54] W. Mullins, “The effect of thermal grooving on grain boundary motion,” Acta metallurgica, vol. 6, no. 6, pp. 414-427, 1958.
    [55] B. Joseph, F. Barbier, and M. Aucouturier, “Mechanism of liquid Bi penetration along Cu grain boundaries,” Scripta materialia, vol. 42, no. 12, pp. 1151-1158, 2000.
    [56] H. Okamoto, and T. Massalski, “Binary alloy phase diagrams,” ASM International, Materials Park, OH, USA, vol. 12, pp. 732, 1990.
    [57] J. H. Pang, K. H. Tan, X. Shi, and Z. Wang, “Thermal cycling aging effects on microstructural and mechanical properties of a single PBGA solder joint specimen,” IEEE Transactions on Components and Packaging Technologies, vol. 24, no. 1, pp. 10-15, 2001.
    [58] D. Xie, Y. C. Chan, J. Lai, and I. Hui, “Fatigue life estimation of surface mount solder joints,” IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, vol. 19, no. 3, pp. 669-678, 1996.
    [59] JESD22-B117B, "BGA Ball Shear", JEDEC Solid State Technology Association, May,2014. [Accessed]
    [60] MatWeb MATERIAL PROPERTY DATA. "Bismuth, Bi," https://www.matweb.com/search/DataSheet.aspx?MatGUID=09436237bf3c4067a2bb210cb02c31b5 [Accessed] June 17, 2024
    [61] MatWeb MATERIAL PROPERTY DATA. "Silver, Ag," https://www.matweb.com/search/DataSheet.aspx?MatGUID=63cbd043a31f4f739ddb7632c1443d33&ckck=1 [Accessed] June 17, 2024
    [62] MatWeb MATERIAL PROPERTY DATA. "Copper, Cu," https://www.matweb.com/search/datasheet.aspx?MatGUID=9aebe83845c04c1db5126fada6f76f7e [Accessed] June 17, 2024
    [63] A. Standard, “Standard test method for Knoop and Vickers hardness of materials,” ASTM International, 2011.
    [64] P. Fima, and G. Garzeł, “Thermal analysis and microstructure of the as-cast Ag–Bi–Cu alloys,” Calphad, vol. 44, pp. 48-53, 2014.
    [65] 陳宣珽, “B添加對改善Sn-1.5Ag-0.7Cu低銀無鉛銲料性能之研究,” 機械工程學系, 國立成功大學, 台南市, 2020.

    QR CODE