簡易檢索 / 詳目顯示

研究生: 楊佳明
Yang, Chia-Ming
論文名稱: 鐵硒超導體系統之化學摻雜及晶體相變機制探討
Study of Chemical Doping and Crystal Phase Transition in FeSe Superconductor System
指導教授: 陳引幹
Chen, In-Gann
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 142
中文關鍵詞: 硒化鐵碲化鐵鐵基超導體晶體成長非擴散相變
外文關鍵詞: FeSe, FeTe, iron based superconductor, crystal growth, diffusion less phase transition
相關次數: 點閱:67下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究焦點為(1) FeSe系統化學摻雜對材料物理性質變化; (2) FeSe相變過程及顯微結構分析。化學摻雜包含Te/Se取代效應及Li摻雜對FeSe1-xTex材料於原子結構、電子能帶結構、聲子振動模式之影響與超導性質表現作比較,藉此探討臨界溫度提升可能性。相變過程分析部分先將FeSe前驅物粉末以Bridgman法製程製作高優選方向晶體樣品,藉由分析晶體FeSe相之方位分布、Fe析出相成份及方向性分布,搭配熱差分析儀去整合可能FeSe相變途徑及最終顯微結構控制之可行性。
    於化學摻雜研究,本研究以原子序較低的Li元素,對FeSe1-xTex系統進行不同濃度摻雜。觀察重點有: 一、同為1wt%Li摻雜對不同Se/Te比例之性質影響;二、不同Li摻雜濃度對相同Se/Te比例之性質影響。本研究結果指出,Li摻雜於FeSe1-xTex平均可提升臨界溫度約1.5K,且在Te較多(x > 0.7)及Te較少(x < 0.7)的情況發生兩種不同摻雜機制,分別造成晶格扭曲(distortion) 及c軸拉長 (elognation) 等兩種晶格應力模型。Li摻雜後於Te及Se原子造成不同的價電子態影響,可說明不同Se/Te比例為何會造成不同摻雜機制。但不同摻雜機制所造成的應力模型皆可能影響Fe原子的振動模型,導致臨界溫度於聲子振動頻率可繪製出一關係曲線,該曲線表示在某一振動頻率可能有磁結構穩定態而抑制超導臨界溫度,當摻雜使振動頻率偏離此值後,臨界溫度會逐漸上升。
    於相變研究,本實驗以高溫度梯度之Bridgman法製程得一連續性胞狀結構的優選方向晶體。晶體相鑑定部分以X光繞射技術搭配EDS能譜成分分析,觀測到晶體包含FeSe四方晶相、FeSe六方晶相及兩種Fe相。晶格方位分析以二維X光繞射技術及背向電子繞射技術等,得到FeSe晶體存在六種從優取向晶粒方位。此六種晶粒方位存在兩種對稱模式:第一個對稱模式是因單位晶胞由六方晶(六軸對稱)轉為四方晶(四軸對稱)之對稱型態差異造成,另一對稱模式則是同一平面方位存在正方向及負方向等兩種相變可能。配合熱差分析儀結果,可推測本對稱結構於非擴散型相變有關。

    We focused on (1) chemical dopping effect on physics property of FeSe superconductor system. (2) Phase transition and microstructure analysis of FeSe crystal. To discusss the chemical doping effect, substitution of Te and insert of Li were used to change the atomic structure, valance state, and phonon vibration mode of FeSe1-xTex, which may affect superconductivite critical temperature. To discuss the phase transformation, the high prefer orientation FeSe crystal is fabricated by Bridgman process. It is possible to control the microstructure by realizeing the phase transform routes, orienation distribution and second phase precipitation.
    The low atomic number Li was used to dope into FeSe1-xTex with different concentration. Two factors are controlled. First, the different Li doping concentrration in specific x value (Se/Te ratio is a constant). Second, the Li doping effect in different Se/Te ratio. It is showed that the superconductivite critical temperature increased about 1.5K, and at least two possible doping mechanisms. In the region of x=0.5~0.7, the inserted Li ions occupy the interstitial sites between the Fe-Se layers, expands the unit cell in the c-axis direction. In the region of x=0.7~0.9, due to the disordered coordination of Se and Te, the interstitial sites in the c-axis may exhibit a greater degree of crystal distortion as compared to that of x=0.5~0.6. It exhibited the different responses of valence states for Te and Se with Li doping, and it is the possible reason cause different doping mechansims. However, both mechanisms affect the vibration of iron, and the well fitting curves are displayed, which shows the relationship between Tc and Raman active modes. It implicated the specific vibration frequency may lilmit the superconductivity, and Tc will increase when the vibration frequency change.
    The high preferred orientation celluar like crystal is fabricated by the high undercooling Bridgman process. FeSe tetragonal phase, FeSe hexagonal phase, and two Fe phase was defined by the x-ray diffraction and energy dispersive spectrum. Orientation is investigated by two dimension x-ray diffraction and electron backscatteered diffraction, which showed six possible preferred orientations in the FeSe crystal. Two types of the crystal symetry are observed: First, due to the crystal transform from hexagonal symetry to tetragonal symetry, the difference symmetry model caused the rotation symetry in final microstructure. Another reflection symetry structure is caused by the two direction of phase transformation for every plane. Thermal differential analysis suggested the diffusion less phase transform induce the periodic symetry structure.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 XI 圖目錄 XII 第一章 緒 論 1 1-1 前 言 1 1-2 鐵基超導體的發現 2 1-3研究目的 3 1-3.1 以化學晶格應力探討FeSe超導發生機制 3 1-3.2 FeSe優選方向晶體相變態觀察及顯微結構分析 4 第二章 理論基礎與文獻回顧 5 2-1超導體基礎理論 5 2-1.1 超導體發展歷史 5 2-1.2 超導體應用發展 6 2-1.3超導體基本性質 7 2-2 超導發生機制 9 2-2.1 BCS理論 9 2-2.2 超導發生機制概述[8] 10 2-3 高溫銅氧超導體 11 2-3.1 銅氧類超導體起源[9] 11 2-3.2 銅氧類超導體結構 11 2-2.3 銅氧類超導體發展現況 12 2-4 鐵基超導體簡介 13 2-4.1 磁性材料概論 13 2-4.2 鐵砷化合物高溫超導現象 14 2-4.3 鐵砷超導化合物之特性及組態 14 2-4.4 鐵硒介金屬化合物的發現 15 2-4.6 鐵硒化合物超導現象探討 16 2-5 鐵硒化合物近期研究 17 2-5.1 鐵硒化合物摻雜效應研究 17 2-5.2 鐵硒晶體技術開發 18 2-5-3. 鐵硒超導體未來展望 19 2-6 超導體重要歷史年表[49] 20 第三章 實驗方法及步驟 45 3-1 實驗材料 47 3-2 實驗流程步驟 48 3-2.1前驅物粉末配置流程 48 3-2.2 化合物成品製備流程 48 3-2.3 化合物粉末成品分析前處理 48 3-2.4硒化鐵優選方向多晶粒晶體成長 49 3-3 性質分析 52 3-3.1 成品粉末相成分之鑑定 52 3-3.2 晶格常數計算及原子位置模擬 52 3-3.3 超導性能量測 53 3-3.4 元素成分分析 53 3-3.5 拉曼光譜分析 54 3-3.6 X光螢光光譜、吸收光譜分析 54 3-3.7微結構觀察 54 第四章 結果與討論 57 4-1 Li掺雜於FeSe1-xTex系統化合物之相結構及超導性質影響 57 4-1.1 Li摻雜於FeSe, FeTe之相結構及超導性能影響 57 4-1.2 1wt%Li摻雜於不同Se/Te比例之FeSe1-xTex之相結構及超導性能影響 58 4-1.3不同Li摻雜濃度於FeSe0.5Te0.5之相結構及超導性質影響 61 4-1.4不同Li摻雜濃度於不同Se/Te比例之FeSe1-xTex之臨界溫度變化探討 61 4-1.4 小結 62 4-2 Li摻雜現象探討FeSe1-xTex系統化合物超導發生機制 73 4-2.1 以Retiveld 模擬Li摻雜對FeSe1-xTex之晶格結構影響 73 4-2.2 Li摻雜對FeSe1-xTex系統電子能譜結構影響 74 4-2.3 Li摻雜對FeSe1-xTex系統化合物拉曼能譜影響 76 4-2.4 小結 78 4-3.1 X光繞射對FeSe晶體進行晶相鑑定 90 4-3.2 EDS顯微結構、析出物成分鑑定 91 4-3.3 偏光顯微鏡結構觀測及胞狀成長機構 92 4-3.4 FeSe晶體之超導性質量測 93 4-3.5 小結 93 4-4 FeSe優選方向晶體之相生成機制探討 103 4-4.1 鐵析出物相鑑定及相分布討論 103 4-4.2 熱差分析及非擴散形相變探討 104 4-4.3 以二維X光繞射技術觀測FeSe晶體織構結構 104 4-4.4 以背向電子繞射技術觀測微觀FeSe晶體織構 106 4-4.5 FeSe特殊晶位對稱結構及生成機制探討 107 4-4.6 小結 110 第五章 結論 134 5-1 FeSe系統化學摻雜對材料物理性質變化 134 5-2 FeSe相轉換機制探討 135 Reference 137

    1. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, “Superconductivity at 93K in a New Mixed-phase Y-Ba-Cu-O Compound System at Ambient Pressure” Physical Review Letters, 58, 908 (1987)
    2. D. C. Larbalestler et al., “Strongly linked current flow in polycrystalline forms of the superconductor MgB2”, Nature, 410, 186 (2001)
    3. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, “Superconductivity at 39K in magnesium diboride” Nature, 410, 63 (2001)
    4. K. Shimizu, H. Ishikawa, D. Takao, T. Yagi and K. Amaya, “Superconductivity in compressed lithium at 20 K” Nature, 419, 597 (2002)
    5. T. Yabuuchi, T. Matsuoka, Y. Nakamoto, K. Shimizu, “Superconductivity of Ca Exceeding 25 K at Megabar Pressures” Jappense Journal of Physical Society, 75, 083703 (2006)
    6. Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, H. Hosono, “Iron-Based Layered Superconductor: LaOFeP” Journal of American Chemical Society, 128, 10012-10013 (2006)
    7. 陳柏偉, “滲透法及奈米添加物對Y-BCu-O超導體的超導性及微結構影響”, 國立成功大學材料科學與工程研究所博士論文, 101年5月
    8. 張裕恆, 李玉芝, “超導物理”, 儒林圖書有限公司, 81年12月
    9. 下山淳一, “圖解超導體” 世貿出版社, 96年1月
    10. S. S. Parkin, V. Y. Lee,A. I. Nazzal, R. savoy, R. Beyer “Tl1Can-1Ba2CunO2n+3(n=1,2,3): A new class of crystal structures exhibiting volume superconductivity at up to ~110K” Physical Review Letters, 64, 751~753(1988)
    11. M. Morita, S. Takebayashi, M. Tanaka and K. Kimura, “Quench and Melt Growth (QMG) Process for Large Bulk Superconductor Fabrication“ Advanced Superconductors, 3, 733 (1991)
    12. K. Sawano, M. Morita, M. Tanaka, T. Sasaki, K. Kimura, S. Takebayashi, M. Kimura and K. Miyamoto, “High Magnetic Flux Trapping by Melt-Grown YBaCuO Superconductors” Japanese Journal of Applied Physics, 30, L1157 (1991)
    13. X. Chaud, D. Isfort, E. Beaugnon and R. tournier, “Isothermal growth of large YBa2Cu3O7-x single domains up to 93mm.” Physica C, 341-348, 2413-2416 (2000).
    14. C. M. Yang, S. Y. Wang, Y. C. Huang, P. W. Chen, I. G. Chen, and M. K. Wu, "The Optimal Growth of Single Grain Bulk Y–Ba–Cu–O Superconductors With Nd–Ba–Cu–O Thin Film Seed" IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 23, 6800204(2013)
    15. P. Sch¨atzle et al. “Multi-seeded melt crystallization of YBCO bulk material for cryogenic applications” Superconductor Science and Technology, 12, 69–76 (1999)
    16. T. Y. Li, C. L. Wang, L. J. Sun, S. B. Yan, L. Cheng, X. Yao, J. Xiong, B. W. Tao, J. Q. Feng, X. Y. Xu, C. S. Li, and D. A. Cardwell, “Multi seeded melt growth of bulk Y–Ba–Cu–O using thin film seeds” Journal of Applied Physics, 108, 023914 (2010)
    17. K. Salama and V. Selvamanickam “Joining of high current bulk Y-B-C-O superconductors” Applied Physics Letters, 60, 17 (1992)
    18. C. Harnois, G. Desgardin, I. Laffez, X. Chaud, D. Bourgault “High quality weld of melt textured YBCO using Ag doped YBCO junctions” Physica C, 383, 269–278 (2002)
    19. S. Kang, A. Goyal, J. Li, A. A. Gapud, P. M. Martin, L. Heatherly, J.R. Thompson, D.K. Christen, F.A. List, M. Paranthaman, D.F. Lee, “High- Performance High-Tc Superconducting Wires”, Science, 311, 1911-1914 (2006)
    20. 李俊仁, “順磁性材料的示範實驗”, 中原大學化學系碩士論文, 92年6月
    21. Y. Kamihara, M. Hirano, H. Yanagi, T. Kamiya, Y. Saitoh, E. Ikenaga, K. Kobayashi, H. Hosono “Electromagnetic properties and electronic structure of the iron-based layered superconductor LaFePO” Physical Review B, 77, 214515 (2008)
    22. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono “Iron-Based Layered Superconductor La[O1-xFx]FeAs (x )=0.05-0.12) with Tc ) 26 K” American Chemical Society, 130, 3296–3297 (2008)
    23. A. Martinelli, M. Ferretti, P. Manfrinetti, A. Palenzona, M. Tropeano, M. R. Cimberle, C. Ferdeghini, R. Valle, C. Bernini, M. Putti and A. S. Siri “Synthesis, crystal structure, microstructure, transport and magnetic properties of SmFeAsO and SmFeAs(O0.93F0.07)” Superconductor Science and Technology, 21, 095017 (7pp) (2008)
    24. M. J. Pitcher, D. R. Parker, P. Adamson, S. J. C. Herkelrath, “Structure and superconductivity of LiFeAs” Chemical Communications, 5918 - 5920(2008)
    25. C. G. Fu, L. Zheng, L. Gang, H. W. Zheng, D. Jing, Z. Jun, Z. X. Dong, Z. Ping, W. N. Lin, L. J. Lin “Superconductivity in Hole-Doped (Sr1¡xKx)Fe2As2” Chinese Physics Letter , 25-9, 3403 (2008)
    26. http://arxiv.org/abs/0808.4093v3
    27. A. Yamamoto, A. A. Polyanskii, J. Jiang, F. Kametani, C. Tarantini, F. Hunte, J. Jaroszynski, E. E. Hellstrom, P. J. Lee, A. Gurevich ”Evidence for two distinct scales of current flow in polycrystalline Sm and Nd iron Oxypnictides” Superconductor Science and Technology, 21, 095008 (11pp) (2008)
    28. F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. Chi . Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, M. K Wu “Superconductivity in the PbO-type structure –FeSe” Proceedings of the National Academy of Sciences, 105-38, 14262 (2008)
    29. Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi and Y. Takano “Superconductivity at 27 K in tetragonal FeSe under high pressure” Applied Physics Letters, 93, 152505 (2008)
    30. S. Medvedev, T. M. McQueen, I. Trojan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann and C. Felser “Superconductivity at 36 K in β-Fe1.01Se with the Compression of the Interlayer Separation Under Pressure” Science in China, G 51, 719 (2008)
    31. M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, Z. Q. Mao “Superconductivity close to magnetic instability in Fe(Se1−xTex)0.82” Physical Review B, 78, 224503 (2008)
    32. Y. Mizuguchi, F. Tomioka,S. Tsuda, T. Yamaguchi, Y. Takano “Superconductivity in S-substituted FeTe” Applied Physics Letters, 94, 012503 (2009)
    33. W. Schuster, H. MiMer, K. L. Komarek “Transition Metal--Chalcogen Systems, VII.: The Iron elenium Phase Diagram” Monatshefte ffir Chemie, 110, 1153 (1979)
    34. M. A. McGuire, A. D. Christianson et al. “Phase transitions in LaFeAsO: structural, magnetic, elastic, and transport properties, heat capacity and Mossbauer spectra” Physical Review B, 78, 094517 (2008)
    35. A. M. Zhang, T. L. Xia, L. R. Kong, J. H. Xiao, and Q M Zhang "Effects on superconductivity of transition-metal doping in FeSe0.5Te0.5" Journal of Physical Condense Matterial, 22, 245701 (2010)
    36. B. H. Mok, S. M. Rao “Growth and Investigation of Crystals of the New Superconductor FeSe from KCl Solutions” Crystal Growth & Design, 9, 3261 (2009)
    37. K. Deguchi, Y. Mizuguchi, Y. Kawasaki, T. Ozaki, S. Tsuda, T. Yamaguchi, and Y Takano "Alcoholic beverages induce superconductivity in FeTe1-xSx" Supercond. Sci. Technol., 24, 055008 (2011)
    38. J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, "Superconductivity in the iron selenide KxFe2Se2" Physical Review B, 82, 180520 (2010)
    39. M. B. Lucas, D. G. Free, S. J. Sedlmaier, J. D.Wright, S. J. Cassidy, Yoshiaki Hara, Alex J. Corkett, Tom Lancaster, Peter J. Baker, Stephen J. Blundell and Simon J. Clarke "Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer" Nature Material, 12, 15 (2013)
    40. U. Patel, J. Hua “Growth and superconductivity of FeSex crystals” Applied Physics Letters, 94, 082508 (2009)
    41. K. W. Yeh, C. T. Ke, T. W. Huang, T. K. Chen, Y. L. Huang, P. M. Wu, and M. K. Wu, “Superconducting FeSe1-xTex Single Crystals Grown by Optical Zone-Melting Technique ” Crystal Growth & Design, 9, 4847 (2009)
    42. Y. F. Nie, E. Brahimi, J. I. Budnick, W. A. Hines, M. Jain, and B. O. Wells, “Suppression of superconductivity in FeSe films under tensile strain” Applied Physics Letters, 94, 242505 (2009)
    43. E. Bellingeri, I. Pallecchi, R. Buzio, A. Gerbi, D. Marre', M.R. Cimberle, M. Tropeano, M. Putti, A. Palenzona, C.Ferdeghini "Tc=21K in epitaxial FeSe0.5Te0.5 thin films with biaxial compressive strain" Applied Physics Letters, 96, 102512 (2010)
    44. Y. Han, W. Y. Li, L. X. Cao, X. Y. Wang, B. Xu, B. R. Zhao, Y. Q. Guo and J. L. Yang "Superconductivity in Iron Telluride Thin Films under Tensile Stress" Physical Review Letter, 104, 017003 (2010)
    45. C. L. Song, Y. L. Wang, Y. P. Jiang, L. L. Wang, K. He, X. Chen, J. E. Ho, X. C. Ma, and Q. K. Xue, "Suppression of Superconductivity by Twin Boundaries in FeSe Thin Films" Physical Review Letter, 109, 137004 (2012)
    46. L. Chen, C. F. Tsai, Y. Zhu, A. Chen, Z. X. Bi, J. Lee and H. Wang "Enhanced flux pinning properties in superconducting FeSe0.5Te0.5 thin films with secondary phases" Superconductor Science and Technology, 25, 025020 (2012)
    47. Y. Mizuguchi, K. Deguchi, S. Tsuda, T. Yamaguchi, H. Takeya, H. Kumakura, and Y. Takan "Fabrication of the Iron-Based Superconducting Wire Using Fe(Se,Te)" Apply Physics Express, 2, 083004 (2009)
    48. Y. Mizuguchi, Y. Hara, K. Deguchi, S. Tsuda, T. Yamaguchi, K. Takeda, H. Kotegawa, H. Tou and Y. Takano "Anion height dependence of Tc for the Fe-based superconductor" Superconductor Science and Technology, 23, 054013 (2010)
    49. 王上瑜,“新穎薄膜晶種成長技術於大尺寸釔鋇銅氧超導晶體之研究”,國立成功大學材料科學與工程研究所碩士論文, 101年7月
    50. T.W. Huang, T. K. Chen, K. W. Yeh, C. T. Ke, C. L. Chen, Y. L. Huang, F. C. Hsu, M. K. Wu, P. M. Wu, M. Avdeev,A. J. Studer "Structural phase transition in TmxFe1-xSe0.85 (Tm = Mn and Cu) and its relation to superconductivity" arXiv:0907.4001v1
    51. M. Cyrot and D. Pavuna, “Introduction to Superconductivity and High-Tc Materials”, World Scientific, (1992).
    52. http://www.wtec.org/loyola/scpa/01_01.htm
    53. 賴柏安, “單晶粒超導塊材擄獲磁場能力與機械性質之研究”, 國立成功大學材料科學與工程研究所碩士論文, 96年1月
    54. Rohlf, James William, Modern Physics from a to Z0, Wiley 1994
    55. M. K. Wu, J. R. Ashburn, C. W. Chu et al. “Superconductivity at 93K in a new mixed phase Y-Ba-Cu-O compound system at ambient pressure” Physical Review letter, 58, 908 (1987)
    56. A.K. Saxena "high temperature superconductor" Springer Series in Materials Science, 125 (2009)
    57. H. Oh, J. Moona, D. Shin, C.Y. Moon, H. J. Choi "Brief review on iron-based superconductors:are there clues for unconventional superconductivity?" Progress in Superconductivity, 13, 65-84 (2011)
    58. 楊佳明,“新型鐵基超導才材料FeSe之性質研究”,國立成功大學材料科學與工程研究所碩士論文, 98年7月
    59. D. Telesca,Y. Nie, J. I. Budnick, B. O. Wells, B. Sinkovic "Impact of valence states on the superconductivity of iron telluride and iron selenide films with incorporated oxygen" PHYSICAL REVIEW B, 85, 214517 (2012)
    60. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, eds. "Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data" (Perkin-Elmer, Physical Electronics Division, Eden Prairie, MN, 1979).
    61. T. L. Xia, D. Hou, S. C. Zhao, A. M. Zhang, G. F. Chen, J. L. Luo, N. L. Wang, J. H. Wei, Z. Y. Lu, and Q. M. Zhang "Raman phonons of α-FeTe and Fe1.03Se0.3Te0.7 single crystals" Physical Review B, 79, 140510 (2009)
    62. P. Kumar, A. Kumar, S. Saha, D.V.S. Muthu, J. Prakash, S. Patnaik , U.V. Waghmare, A.K. Ganguli, A.K. Sood "Anomalous Raman scattering from phonons and electrons of superconducting FeSe0.82" Solid State Communnite. 150, 557 (2010)
    63. Z. Qin, C. Zhang, S. O’Malley, K. Lo, T. Zhou, and S.W. Cheong, "Crystal field excitations in the Raman spectra of FeSe1-x" Solid State Communnite. 150, 768 (2010)
    64. C. S. Lopes, C. E. Foerster, F. C. Serbena, P. R. J´unior, A. R. Jurelo, J. L. Pimentel J´unior, P. Pureur and A. L. Chinelatto "Raman spectroscopy of highly oriented FeSe0.5Te0.5 superconductor" Superconductor Science and Technology, 25, 025014 (2012)
    65. P. Diko, V. Antal, V. Kavecansky, Ch. Yang, I. Chen "Microstructure and phase transformations in FeSe superconductor" Physica C, 476, 29 (2012)
    66. P. P. Suikkanen, C. Cayron, A. J. DeArdo, L. Pentti Karjalainen "Crystallographic Analysis of Martensite in 0.2C-2.0Mn-1.5Si-0.6Cr Steel using EBSD" Journal of Material Science and Technology, 27, 920-930 (2011)
    67. L. Delaey "Diffusionless transformations, in: Phase Transformations in Materials" Materials Science and Technology, 5, R. W. Cahn, P. Haasen, and E. J. Kramer, eds., VCH, Weinheim (1972)
    68. W. Zhang, B. Wu, W.S. Zhao, D.X. Li, M.L. Sui "Formation of novel α-Ti martensites in Ti–6Al–4V under an electric-current-pulse heat treatment" Materials Science and Engineering A, 438–440, 320–323 (2006)

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE