簡易檢索 / 詳目顯示

研究生: 陳怡忻
Chen, Yi-Hsin
論文名稱: 膠體性COD對MBR實廠處理光電廢水硝化效能影響之研究
Effect of colloidal COD on Nitrification performance in full-scale membrane bioreactors treating TFT-LCD wastewater
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 136
中文關鍵詞: 光電廢水薄膜生物反應器膠體性COD溶解性微生物產物芳香烴蛋白
外文關鍵詞: TFT-LCD, Membrane Bioreactor (MBR), Colloidal COD, Soluble Microbial Product (SMP), Aromatic Protein (AP)
相關次數: 點閱:132下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前光電產業蓬勃發展,台灣也不例外,產生之廢水量也相當可觀,而光電廢水則屬於高氮廢水,且其成分相當複雜,大多不易被一般好氧微生物利用。因此,實廠則以結合傳統活性污泥與薄膜技術之生物薄膜反應器(MBR)來處理光電廢水,以達到廢水回收的目的。而在處理系統中,則必須注意其硝化效能,以提升整體除氮之效率。由於MBR中使用之UF薄膜會將微生物死亡後釋放的物質或本身產物如溶解性微生物產物(SMP)與胞外聚合物(EPS)截留在好氧槽內,而這些物質會造成好氧槽中COD濃度上升,即稱為膠體性COD,而過去觀察發現膠體性COD會對硝化造成影響,故本研究的目的則是對膠體性COD作進一步解析,並找出其與硝化之間更加確切的關係。
    本研究對兩個不同廠區監測其水質,並且對其好氧槽之膠體性COD以高效能粒徑排除層析儀(HPSEC)與螢光激發/發散陣列光譜儀(FEEM)進行分析,其結果發現兩個廠區好氧槽中所含不同大小之分子量有機質會造成不同的硝化表現。主要測得有機質含碳碳雙鍵疏水性有機物、溶解性微生物副產物、類黃酸、類腐植酸與芳香烴蛋白,當分子量大於106 Da之物質主要就是膠體性COD的來源,而分子量大於107 Da之物質則明顯影響到硝化作用,而影響硝化較為明顯之物質是較大分子的芳香烴蛋白物質。
    另外,以實驗室馴養的兩組不同好氧污泥進行硝化測試批次,以馴養207天之好氧污泥其比硝酸生成速率(S.NPR)與比氨氧化速率(S.AOR)分別為0.513與0.322 mg-N/g VSS-hr,而馴養87天(以F(B)上層液作為進流)好氧污泥其比硝酸生成速率(S.NPR)與比氨氧化速率(S.AOR)分別為1.046與0.749 mg-N/g VSS-hr,發現造成此硝化效能差異的原因是實驗進行中的18小時,硝化較差那一組中分子量大於107.48 Da之溶解性微生物產物與芳香烴蛋白類的物質突然上升的緣故。
    膠體性COD成分中所含較大分子之有機物質會影響MBR處理光電廢水中之硝化效能,若能解決膠體性COD的問題,並搭配上適合硝化菌生長之操作參數,則能使實廠整體系統處理效能提升。

    Due to the amount wastewater of thin film transistor liquid crystal display (TFT-LCD) that increased in Taiwan. The TFT-LCD wastewater was the nitrogen-rich and the composition of them was so complicated that the general microorganisms used difficultly. Therefore, the membrane bioreactor (MBR) combined the activated sludge process with the membrane technology was applied in the TFT-LCD wastewater treatment. In MBR, the soluble microbial products (SMP) and extracellular polymeric substances (EPS)that produced by microorganisms. The SMP and EPS were intercepted by ultrafiltration membrane. The substances called the colloidal COD that cause the COD concentration increased in the aerobic tank. Hence, the aim of this study is analyzed the composition of the colloidal COD and found the accurate relationship between the colloidal COD and nitrification.
    The composition of the colloidal COD in two full-scale treatment plant was analyzed by the high performance size exclusion chromatography (HPSEC) and Excitation/Emission Matrix Spectrofluorometer (FEEM). The different molecular weight of organic materials were observed in two full-scale MBR with different nitrification performance. Higher portion of organic compounds were larger than 107 Da in the MBR with bad nitrification. The results show the higher molecular weight of aromatic protein was obvious one of organic compounds to effect nitrification.
    Nitrification activity batch experiments were also conducted using sludge from lab-scale MBR systems. The result shows that SMP-like and AP-like materials which might be released from microorganisms could cause bad nitrification.
    Thus, organic compounds, or colloidal COD which due probably to long-time operation might influence nitrification performance in membrane bioreactors (MBR) treating TFT-LCD wastewater.

    摘要 I Extended Abstract III 致謝 VII 目錄 IX 圖目錄 XI 表目錄 XV 第一章 前言 1 第二章 文獻回顧 5 2.1 TFT-LCD 產業 5 2.1.1 製程程序 5 2.1.2 主要廢水來源 7 2.1.3 主要廢水成分特性 11 2.1.4 廢水處理機制 21 2.2 TFT-LCD有機製程廢水硝化機制 24 2.2.1 生物除氮 26 2.2.2 硝化作用 27 2.2.3 脫硝作用 30 2.3 薄膜生物反應器(Membrane Bioreactor, MBR) 33 2.3.1 薄膜介紹及其應用 33 2.3.2 薄膜阻塞問題及膠體性COD產生 37 2.4 膠體性COD之組成成分 39 第三章 實驗設備與分析方法 43 3.1 實驗架構 43 3.1.1 實廠生物處理流程(F(A)、F(B))概述 44 3.1.2 MBR模組 47 3.1.3 好氧批次設計 49 3.2 水質分析與使用儀器 52 3.2.1 一般水質分析 52 3.2.2 特殊成分分析 53 3.3 膠體性COD之特性分析 55 3.3.1 高效能粒徑排除層析儀(High performance size exclusion chromatography, HPSEC) 55 3.3.2 螢光激發/發散陣列光譜儀(Excitation/Emission Matrix Spectrofluorometer, EEMs) 57 3.3.3 多醣體分析 58 3.3.4 蛋白質分析 59 第四章 結果與討論 61 4.1 F(A)、F(B) MBR廢水處理系統 62 4.1.1 F(A)系統操作參數與硝化效能評估 63 4.1.2 F(B)系統操作參數與硝化效能評估 67 4.1.3 F(A)與F(B)比較 71 4.2 F(A)、F(B)系統中膠體性COD成分探討 73 4.2.1 F(A) 78 4.2.2 F(B) 85 4.2.3 綜合討論與比較 90 4.2.4 統計分析比較 93 4.3 膠體性COD影響硝化之批次試驗 96 4.4 實驗室規模之MBR模組 105 4.4.1 操作參數與硝化效能評估 105 4.4.2 膠體性COD成分探討 111 4.4.3 利用馴養之污泥進行硝化活性批次試驗 116 第五章 結論與建議 122 5.1 結論 122 5.2 建議 123 參考文獻 124

    Alvarez, Laura, Bricio, Carlos, Blesa, Alba, Hidalgo, Aurelio, and Berenguer, José. 2014. Transferable Denitrification Capability of Thermus thermophilus. Applied and environmental microbiology, 80(1), 19-28.
    Andreae, M. 1980. Dimethylsulfoxide in marine and fresh-waters. Limnol. Oceanogr, 25, 1054-1063.
    Anthonisen, AC, Loehr, RC, Prakasam, TBS, and Srinath, EG. 1976. Inhibition of nitrification by ammonia and nitrous acid. Journal (Water Pollution Control Federation), 835-852.
    Anthony, Christopher. 1982. Biochemistry of methylotrophs. Academic Press.
    Asakawa, Susumu, Sauer, Karin, Liesack, Werner, and Thauer, Rudolf K. 1998. Tetramethylammonium: coenzyme M methyltransferase system from Methanococcoides sp. Archives of microbiology, 170(4), 220-226.
    Bhatia, Divya, Bourven, Isabelle, Simon, Stéphane, Bordas, François, van Hullebusch, Eric D, Rossano, Stéphanie, Lens, Piet NL, and Guibaud, Gilles. 2013. Fluorescence detection to determine proteins and humic-like substances fingerprints of exopolymeric substances (EPS) from biological sludges performed by size exclusion chromatography (SEC). Bioresource technology, 131, 159-165.
    Bradbeer, Clive. 1965. The clostridial fermentations of choline and ethanolamine I. Preparation and properties of cell-free extracts. Journal of Biological Chemistry, 240(12), 4669-4674.
    Brimblecombe, Peter and Shooter, David. 1986. Photo-oxidation of dimethylsulphide in aqueous solution. Marine Chemistry, 19(4), 343-353.
    Calderón, Kadiya, González-Martínez, Alejandro, Montero-Puente, Camino, Reboleiro-Rivas, Patricia, Poyatos, José M, Juárez-Jiménez, Belén, Martínez-Toledo, María Victoria, and Rodelas, Belén. 2012. Bacterial community structure and enzyme activities in a membrane bioreactor (MBR) using pure oxygen as an aeration source. Bioresource technology, 103(1), 87-94.
    Chang, Kuan-Foo, Yang, Show-Ying, You, Huey-Song, and Pan, Jill Ruhsing. 2008. Anaerobic treatment of tetra-methyl ammonium hydroxide (TMAH) containing wastewater. Semiconductor Manufacturing, IEEE Transactions on, 21(3), 486-491.
    Charlson, Robert J, Lovelock, James E, Andreae, Meinrat O, and Warren, Stephen G. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326(6114), 655-661.
    Chen, TK, Ni, CH, and Chen, JN. 2003a. Nitrification–denitrification of opto-electronic industrial wastewater by anoxic/aerobic process. Journal of Environmental Science and Health, Part A, 38(10), 2157-2167.
    Chen, Wen, Westerhoff, Paul, Leenheer, Jerry A, and Booksh, Karl. 2003b. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental science & technology, 37(24), 5701-5710.
    Cicek, N. 2003. A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Canadian Biosystems Engineering, 45, 6.37-36.37.
    Cicek, Nazim, Winnen, Hans, Suidan, Makram T, Wrenn, Brian E, Urbain, Vincent, and Manem, Jacques. 1998. Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds. Water Research, 32(5), 1553-1563.
    Cote, Pierre, Buisson, Hervé, and Praderie, Matthieu. 1998. Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Science and Technology, 38(4), 437-442.
    De Bont, JAM, Van Dijken, JP, and Harder, W. 1981. Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. Journal of General Microbiology, 127(2), 315-323.
    Domínguez Chabaliná, Liuba, Rodríguez Pastor, Manuel, and Rico, Daniel Prats. 2013. Characterization of soluble and bound EPS obtained from 2 submerged membrane bioreactors by 3D-EEM and HPSEC. Talanta, 115, 706-712.
    Drews, Anja. 2010. Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. Journal of Membrane Science, 363(1), 1-28.
    Drews, Anja, Mante, Jan, Iversen, Vera, Vocks, Martin, Lesjean, Boris, and Kraume, Matthias. 2007. Impact of ambient conditions on SMP elimination and rejection in MBRs. Water Research, 41(17), 3850-3858.
    Drews, Anja, Vocks, Martin, Iversen, Vera, Lesjean, Boris, and Kraume, Matthias. 2006. Influence of unsteady membrane bioreactor operation on EPS formation and filtration resistance. Desalination, 192(1), 1-9.
    Duan, Liang, Song, Yonghui, Yu, Huibin, Xia, Siqing, and Hermanowicz, Slawomir W. 2014. The effect of solids retention times on the characterization of extracellular polymeric substances and soluble microbial products in a submerged membrane bioreactor. Bioresource technology, 163, 395-398.
    Dubois, Michel, Gilles, K Ao, Hamilton, J Ko, Rebers, PAt, and Smith, Fred. 1956. Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
    Fan, Xiao-Jun, Urbain, Vincent, Qian, Yi, and Manem, Jacques. 1996. Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Water Science and Technology, 34(1), 129-136.
    Fu, Zhimin, Yang, Fenglin, Zhou, Feifei, and Xue, Yuan. 2009. Control of COD/N ratio for nutrient removal in a modified membrane bioreactor (MBR) treating high strength wastewater. Bioresource technology, 100(1), 136-141.
    Garnier, Josette, Billen, Gilles, and Cébron, Aurélie. 2007. Modelling nitrogen transformations in the lower Seine river and estuary (France): impact of wastewater release on oxygenation and N2O emission. Hydrobiologia, 588(1), 291-302.
    Germain, Eve, Nelles, F, Drews, A, Pearce, P, Kraume, M, Reid, E, Judd, Simon J, and Stephenson, Tom. 2007. Biomass effects on oxygen transfer in membrane bioreactors. Water research, 41(5), 1038-1044.
    Hütter, MM, Kramer-Schafhalter, A, and Mayr, B. 2000. Integration of membrane technology in communal wastewater treatment: operation and cost analysis. European Water Management, 3(3), 33-42.
    Hampton, D. and Zatman, L. 1973. The Metabolism of Tetrametbylammoniuin Chloride by Bacterium 5H2. Biochemical Society Transactions, 1(667-668).
    Henze, Mogens. 2000. Activated sludge models ASM1, ASM2, ASM2d and ASM3.9. IWA publishing.
    Her, Namguk, Amy, Gary, Sohn, Jinsik, and Gunten, Ursvon. 2008. UV absorbance ratio index with size exclusion chromatography (URI-SEC) as an NOM property indicator. Journal of Water Supply: Research & Technology-AQUA, 57(1).
    Hirano, Keiji, Okamura, Junji, Taira, Tsutomu, Sano, Kunio, Toyoda, Arata, and Ikeda, Mitsuaki. 2001. An efficient treatment technique for TMAH wastewater by catalytic oxidation. Semiconductor Manufacturing, IEEE Transactions on, 14(3), 202-206.
    Hockenbury, Melvin R and Grady Jr, CP Leslie. 1977. Inhibition of nitrification-effects of selected organic compounds. Journal (Water Pollution Control Federation), 768-777.
    Hudson, Naomi, Baker, Andy, and Reynolds, Darren. 2007. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Research and Applications, 23(6), 631-649.
    Hyman, Michael R, Murton, Ian B, and Arp, Daniel J. 1988. Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Applied and environmental microbiology, 54(12), 3187-3190.
    Itokawa, Hiroki, Hanaki, Keisuke, and Matsuo, Tomonori. 2001. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research, 35(3), 657-664.
    Jefferson, B, Laine, A, Judd, S, and Stephenson, T. 2000. Membrane bioreactors and their role in wastewater reuse. Water Science and Technology, 41(1), 197-204.
    Jones, A and Turner, JM. 1973. Microbial metabolism of amino alcohols. 1-Aminopropan-2-ol and ethanolamine metabolism via propionaldehyde and acetaldehyde in a species of< italic> Pseudomonas</italic>. Biochem. J, 134, 167-182.
    Judd, Simon. 2010. The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment. Elsevier.
    Juliastuti, SR, Baeyens, Jan, and Creemers, Claude. 2003. Inhibition of nitrification by heavy metals and organic compounds: the ISO 9509 test. Environmental engineering science, 20(2), 79-90.
    Kaplan, Barry H and Stadtman, ER. 1968. Ethanolamine Deaminase, a Cobamide Coenzyme-dependent Enzyme I. PURIFICATION, ASSAY, AND PROPERTIES OF THE ENZYME. Journal of Biological Chemistry, 243(8), 1787-1793.
    Ke, SC. 2003. Spin–spin interaction in ethanolamine deaminase. Biochimica et Biophysica Acta (BBA)-General Subjects, 1620(1), 267-272.
    Keener, William K and Arp, Daniel J. 1994. Transformations of aromatic compounds by Nitrosomonas europaea. Applied and environmental microbiology, 60(6), 1914-1920.
    Keltjens, Jan T and Vogels, Godfried D. 1993. Conversion of methanol and methylamines to methane and carbon dioxide, 253-303, Methanogenesis. Springer.
    Kino, Kuniki, Murakami-Nitta, Takako, Oishi, Masashi, Ishiguro, Seiji, and Kirimura, Kohtaro. 2004. Isolation of dimethyl sulfone-degrading microorganisms and application to odorless degradation of dimethyl sulfoxide. Journal of bioscience and bioengineering, 97(1), 82-84.
    Klemedtsson, L, Jiang, Q, Kasimir Klemedtsson, Å, and Bakken, L. 1999. Autotrophic ammonium-oxidising bacteria in Swedish mor humus. Soil Biology and Biochemistry, 31(6), 839-847.
    Knapp, Jeremy S, Jenkey, Nicholas D, and Townsley, Colin C. 1996. The anaerobic biodegradation of diethanolamine by a nitrate reducing bacterium. Biodegradation, 7(3), 183-189.
    Knowles, G, Downing, Al L, and Barrett, MJ. 1965. Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer. Journal of General Microbiology, 38(2), 263-278.
    Koito, Tatsuya, Tekawa, Masafumi, and Toyoda, Arata. 1998. A novel treatment technique for DMSO wastewater. Semiconductor Manufacturing, IEEE Transactions on, 11(1), 3-8.
    Kraume, Matthias and Drews, Anja. 2010. Membrane bioreactors in waste water treatment–Status and trends. Chemical engineering & technology, 33(8), 1251-1259.
    Kumar, Mathava, Lee, Pei-Yun, Fukusihma, Toshikazu, Whang, Liang-Ming, and Lin, Jih-Gaw. 2012. Effect of supplementary carbon addition in the treatment of low C/N high-technology industrial wastewater by MBR. Bioresource technology, 113, 148-153.
    Laspidou, Chrysi S and Rittmann, Bruce E. 2002. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 36(11), 2711-2720.
    Lei, Chin-Nan, Whang, Liang-Ming, and Chen, Po-Chun. 2010. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors. Chemosphere, 81(1), 57-64.
    Lesjean, B, Rosenberger, S, Laabs, C, Jekel, M, Gnirss, R, and Amy, G. 2005. Correlation between membrane fouling and soluble/colloidal organic substances in membrane bioreactors for municipal wastewater treatment. Water Science & Technology, 51(6-7), 1-8.
    Liao, BQ, Allen, DG, Droppo, IG, Leppard, GG, and Liss, SN. 2001. Surface properties of sludge and their role in bioflocculation and settleability. Water Research, 35(2), 339-350.
    Lowry, Oliver H, Rosebrough, Nira J, Farr, A Lewis, and Randall, Rose J. 1951. Protein measurement with the Folin phenol reagent. J biol Chem, 193(1), 265-275.
    Manem, J., Trouve, E., Beaubien, A., Huyard, A., and Urbain, V. 1993. Membrane bioreactor for urban and industrial wastewater treatment: Recent Advances. Proc. 66th WEF Ann. Conf., Anaheim, Calif.
    Melin, T, Jefferson, B, Bixio, D, Thoeye, C, De Wilde, W, De Koning, J, Van der Graaf, J, and Wintgens, T. 2006. Membrane bioreactor technology for wastewater treatment and reuse. Desalination, 187(1), 271-282.
    Mosier, A, Schimel, D, Valentine, D, Bronson, K, and Parton, W. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 350(6316), 330-332.
    Muller, EB, Stouthamer, AH, van Verseveld, H W van, and Eikelboom, DH. 1995. Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration. Water Research, 29(4), 1179-1189.
    Murakami-Nitta, Takako, Kirimura, Kohtaro, and Kino, Kuniki. 2003. Degradation of dimethyl sulfoxide by the immobilized cells of< i> Hyphomicrobium denitrificans</i> WU-K217. Biochemical Engineering Journal, 15(3), 199-204.
    Murakami-Nitta, Takako, Kurimura, Hiroyuki, Kirimura, Kohtaro, Kino, Kuniki, and Usami, Shoji. 2002. Continuous degradation of dimethyl sulfoxide to sulfate ion by< i> Hyphomicrobium denitrificans</i> WU-K217. Journal of bioscience and bioengineering, 94(1), 52-56.
    Muratani, Toshiaki. 1999. Biological treatment of wastewater containing DMSO. SHAPU GIHO, (73), 20-25.
    Nah, YM, Ahn, KH, and Yeom, IT. 2000. Nitrogen removal in household wastewater treatment using an intermittently aerated membrane bioreactor. Environmental technology, 21(1), 107-114.
    Narrod, Stuart A and Jakoby, William B. 1964. Metabolism of ethanolamine an ethanolamine oxidase. Journal of Biological Chemistry, 239(7), 2189-2193.
    Ndegwa, Anne W, Wong, Ron CK, Chu, Angus, Bentley, Laurence R, and Lunn, Stuart RD. 2004. Degradation of monoethanolamine in soil. Journal of Environmental Engineering and Science, 3(2), 137-145.
    Okabe, S, Oozawa, Y, Hirata, K, and Watanabe, Y. 1996. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C: N ratios. Water Research, 30(7), 1563-1572.
    Park, Se-Jin, Yoon, Tai-Il, Bae, Jae-Ho, Seo, Hyung-Joon, and Park, Hyo-Jung. 2001. Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. Process Biochemistry, 36(6), 579-589.
    Poxon, Theresa L and Darby, Jeannie L. 1997. Extracellular polyanions in digested sludge: measurement and relationship to sludge dewaterability. Water Research, 31(4), 749-758.
    Ramesh, A, Lee, DJ, and Lai, JY. 2007. Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge. Applied microbiology and biotechnology, 74(3), 699-707.
    Ramesh, A, Lee, Duu-Jong, and Hong, SG. 2006. Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge. Applied microbiology and biotechnology, 73(1), 219-225.
    Randall, CW, Pattarkine, VM, and McClintock, SA. 1992. Nitrification kinetics in single-sludge biological nutrient removal activated sludge systems. Water Science & Technology, 25(6), 195-214.
    Robertson, Lesley A, Van Niel, ED WJ, Torremans, Rob AM, and Kuenen, J Gijs. 1988. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Applied and Environmental Microbiology, 54(11), 2812-2818.
    Rosenstock, T, Liptzin, Daniel, Six, Johan, and Tomich, T. 2013. Nitrogen fertilizer use in California: Assessing the data, trends and a way forward. California agriculture, 67(1), 68-79.
    Scarlett, F ANNE and Turner, JM. 1976. Microbial metabolism of amino alcohols. Ethanolamine catabolism mediated by coenzyme B12-dependent ethanolamine ammonia-lyase in Escherichia coli and Klebsiella aerogenes. Journal of general microbiology, 95(1), 173-176.
    Sha, DY, Chen, PK, and Chen, Yung-Hsin. 2008. The strategic fit of supply chain integration in the TFT-LCD industry. Supply Chain Management: An International Journal, 13(5), 339-342.
    Sharma, Bhavender and Ahlert, RC. 1977. Nitrification and nitrogen removal. Water Research, 11(10), 897-925.
    Simo, Juan C. 1998. Numerical analysis and simulation of plasticity. Handbook of numerical analysis, 6, 183-499.
    Smith, PG and Coackley, P. 1984. Diffusivity, tortuosity and pore structure of activated sludge. Water research, 18(1), 117-122.
    Stephenson, Tom, Brindle, K, Judd, S, and Jefferson, B. 2000. Membrane bioreactors for wastewater treatment. IWA Publishing.
    Stouthamer, ADRIAAN H. 1988. Dissimilatory reduction of oxidized nitrogen compounds. Biology of anaerobic microorganisms, 245-303.
    Suylen, GMH and Kuenen, JG. 1986. Chemostat enrichment and isolation of Hyphomicrobium EG. Antonie van Leeuwenhoek, 52(4), 281-293.
    Tsai, B‐N, Chang, C‐H, and Lee, D‐J. 2008. Fractionation of soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge. Environmental technology, 29(10), 1127-1138.
    U.S.E.P.Agency. 1993. Manual:Nitrogen Control. U.S. Environmental Protection Agency.
    Urakami, Teizi, Araki, Hisaya, Oyanagi, Hiromi, Suzuki, Ken-Ichiro, and Komagata, Kazuo. 1990. Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N, N-dimethylformamide. International journal of systematic bacteriology, 40(3), 287-291.
    Urbain, Vincent, Benoit, Raymond, and Manem, Jacques. 1996. Membrane bioreactor: a new treatment tool. Journal-American Water Works Association, 88(5), 75-86.
    Vannelli, TODD, Logan, MYKE, Arciero, DAVID M, and Hooper, ALAN B. 1990. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Applied and environmental microbiology, 56(4), 1169-1171.
    Visvanathan, C, Aim, R Ben, and Parameshwaran, K. 2000. Membrane separation bioreactors for wastewater treatment. Critical Reviews in Environmental Science and Technology, 30(1), 1-48.
    Wang, Zhiwei, Wu, Zhichao, and Tang, Shujuan. 2009. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water research, 43(6), 1533-1540.
    Whang, Liang-Ming, Wu, Yi-Ju, Lee, Ya-Chin, Chen, Hong-Wei, Fukushima, Toshikazu, Chang, Ming-Yu, Cheng, Sheng-Shung, Hsu, Shu-Fu, Chang, Cheng-Huey, and Shen, Wason. 2012. Nitrification performance and microbial ecology of nitrifying bacteria in a full-scale membrane bioreactor treating TFT-LCD wastewater. Bioresource technology, 122, 70-77.
    Whang, Liang Ming, Yang, Yai Fei, Huang, Shu Jung, and Cheng, Sheng Shung. 2008. Microbial ecology and performance of nitrifying bacteria in an aerobic membrane bioreactor treating thin-film transistor liquid crystal display wastewater. Water Science & Technology, 58(12).
    Wood, PAUL M. 1986. Nitrification as a bacterial energy source.
    Wrage, N, Velthof, GL, Van Beusichem, ML, and Oenema, O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 33(12), 1723-1732.
    Wu, Yi-Ju, Whang, Liang-Ming, Chang, Ming-Yu, Fukushima, Toshikazu, Lee, Ya-Chin, Cheng, Sheng-Shung, Hsu, Shu-Fu, Chang, Cheng-Huey, Shen, Wason, and Yang, Charn-Yi. 2013. Impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand on nitrification performance of a full-scale membrane bioreactor treating thin film transistor liquid crystal display wastewater. Bioresource technology, 141, 35-40.
    Xie, Wen-Ming, Ni, Bing-Jie, Seviour, Thomas, Sheng, Guo-Ping, and Yu, Han-Qing. 2012. Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge. Water research, 46(19), 6210-6217.
    Yang, Shuai, Yang, Fenglin, Fu, Zhimin, and Lei, Ruibo. 2009. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresource technology, 100(8), 2369-2374.
    Zhang, YaLei, Zhang, Hai, Chu, HuaQiang, Zhou, XueFei, and Zhao, YangYing. 2013. Characterization of dissolved organic matter in a dynamic membrane bioreactor for wastewater treatment. Chinese Science Bulletin, 58(15), 1717-1724.
    李展能. 2008. TFT-LCD有機廢水在好氧、缺氧及厭氧環境下分解機制之研究. 國立成功大學環境工程學系論文.
    李雅菁. 2010. 針對TFT-LCD製程廢水實廠進行硝化效能評估與氨氧化菌群生態之研究. 國立成功大學環境工程學系論文.
    周連智. 2012. 應用流體化結晶床處理含磷廢水之研究—以TFT-LCD廠為例. 國立中央大學環境工程研究所碩士論文.
    周裕然. 2002. 多段進流去氮除磷系統穩動態處理及控制特性之研究. 國立中央大學環境工程研究所博士論文.
    林宏霖. 2006. 探討生物分解光電產業製程廢水之反應動力特性研究. 國立成功大學環境工程學系碩士論文.
    洪仁陽、鄒文源、張王冠. 2001. MBR模型廠處理LCD製程廢水之案例研究. 產業環保工程實務技術研討會論文集.
    倪振鴻. 2003. 光電業廢水處理與回收案例介紹. 光電及半導體業廢水及回收新技術研討會.
    康美祝. 2002. MBR 除氮系統特性之研究. 國立中央大學環境工程研究所碩士論文.
    張王冠、鄒文源、張敏超、胡衍榮. 2002. 膜離生物反應器廢水處理應用案例探討. 產業環保工程實務技術研討會論文集.
    張明玉. 2013. 薄膜生物反應器實廠處理光電廢水之評估. 國立成功大學環境工程學系碩士論文.
    陳廷光、陳重男、倪振鴻. 2002. GREEN MEMBIOR®生物薄膜程序處理TFT-LCD製程有機廢水之研究. 第二十七屆廢水處理技術研討會論文.
    陳柏均. 2010. 光電產業TFT-LCD製程有機廢水生物降解機制及微生物生態變化之探討. 國立成功大學環境工程學系碩士論文.
    黃淑君. 2006. 不織布薄膜反應槽好氧生物分解TFT-LCD 製程有機廢水程序功能及生態變化之研究. 國立成功大學環境工程學系碩士論文.
    楊盛行. 1995. 農業與環境保育. 台北華香園出版社.
    鄭幸雄. 2005. 運用分子生物技術提升厭氧好氧薄膜濾離生物反應器之生物分解功能. 環保育成中心環保科技計畫期末報告EPA-93-U1U4-006.

    下載圖示 校內:2019-08-08公開
    校外:2019-08-08公開
    QR CODE