| 研究生: |
阮文身 Nguyen, Van-Than |
|---|---|
| 論文名稱: |
廚餘與狼尾草複合基質藉不同植種源探討好氧水解及厭氧產能效能 Biodegradability Study of Kitchen Waste and Napier grass Through Aerobic and Anaerobic Bio-Processes with different Microsortia Seeding in Different Bioreactors |
| 指導教授: |
鄭幸雄
Cheng, Sheng-Shung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 固態醱酵 、厭氧固態醱酵 、廚餘狼尾草 、木質素降 |
| 外文關鍵詞: | Solid sate fermentation (SSF), anaerobic SSF, aerobic degraded SSF, cellulose degraded, lignin degraded, heterotrophic bacteria, COD removal, Napier grass, kitchen –waste |
| 相關次數: | 點閱:142 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
兩階段廚餘堆肥植種策略,能促進農作廢棄物與廚餘之生物分解能力,包括廚餘複合基質與植物纖維素。應用一系列瓶罐批分式生物分解實驗,探討不同微生物植種來源馴養分解廚餘中碳水化合物、蛋白質及木質纖維素之生物可分解率。在厭氧生物有機固體物半乾醱酵實驗中,廚餘可被有效分解酸化而產生氫氣與二氧化碳。堆肥植種源含有細菌類與真菌類之菌落數各別皆大於108~1010.3 CFU/g乾重。經30天批次生物分解97%之油脂類可被高效率分解。而後生化產氫潛能實驗,在35℃下及第二道植種後產甲烷潛能可增加70%,本研究發現固態有機物之好氧及後續厭氧反應中,水解作用為速率限制步驟。因此植種自屏科大厭氧廚餘醱酵槽之厭氧菌最為適當分解溶解性化學需氧量。前述好氧生物滴濾床分解廚餘與狼尾草成層為有效之好氧固態醱酵程序。木質纖維素逐漸水解,真菌類裂解木質素可藉過氧化氫產生自由基後,可降解木質素29%在pH5.2至8.8範圍。
另行完全攪拌式好氧生物醱酵槽,植種食品廢水廠之馴化活性污泥並行不同水力停留時間之測試,長者化學需氧量去除68%,短者去除45%,污泥沉澱指標25ml/g相當密緻。纖維素去除率也達84%,同時也有氨氮硝化功能。後續完全攪拌式厭氧生物醱酵程序分解廚餘中溶解性化學需氧量,在30天之馴化後達80%去除率,亦證實好氧後續厭氧生物程序可有效去除廚餘與狼尾草纖維素之有機基質。
ABSTRACT
Two stage strategies seeding through anaerobic solid state fermentation (SSF) for degradation of farm waste and kitchen-waste enhanced ability of biodegradation process. In different jar tests with different seeding sources affected on degraded lignocelluloses, oil and grease, biogas production through process also after biological pretreatment farm waste and kitchen-waste. However in jar contained kitchen waste, kitchen waste compost observed H2 production during anaerobic SSF process. Addition, the number of bacteria and fungi increased CFUs values after added seeding, almost achieved more than 108-1010.3 CFU/g dry weight. The oil and grease degraded by fungi and bacterial through 30 days biodegradation about more than 97%. At Biochemical Hydrogen Potential (BHP) test, we saw that seeding microbes adapted to the mesophilic condition at 35oC. The substrate after biodegraded continuous collected for Biochemical Methane Potential (BMP) test, at sample content kitchen waste and kitchen waste compost got higher composition biogas production more than 70%. Addition, in different soluble COD concentration, seeding sources we got several of biogas production. In this experiment higher COD concentration got higher biogas composition, but the start phase took long time for stage hydrolysis. The seeding most suitable for anaerobic biogas fermentation of soluble COD came from anaerobic kitchen waste digester in Ping tong city.
Aerobic biological process with Napier grass and kitchen-waste on Oxic Leaching Filter (OxLF) was conducted with aerobic SSF process. In this experiment we want to design and operation of bioreactor for lignocelluloses degradation under solid state fermentation. In this case, oxygen and carbon dioxides were important for controlling activity of microorganisms during bioreactor operation. The results suggested that cycle operation was 2 hours re-aeration follow with 1 hour recirculation. Through aerobic SSF on OxLF NH3 and H2O2 were released, so far led pH values increased from 5.2 to 8.8 in substrate final. Addition the lignin was degraded from 29% into 21% with 21 days aerobic SSF process.
Aerobic degradation process was observed by continuous stirred tank reactor (CSTR) with aerobic heterotrophic bacteria from sludge of food processing plan. In this experiment we used soluble COD of substrate from OxLF for growing up bacterial from sludge. Addition we can observe CODs removal during CSTR operation with different HRT. The results showed that at longer HRT =20days got better COD removal about 68% than lower HRT= 8 days about 45%. The SVI indicator described about highly compact and good settling of activated sludge, in my reactor SVI about 25mL/g less than so much with highly good activated sludge. However cellulose degraded 84% after finished 4 runs operation. Other hand, nitrification process was observed after finished run 3 with 547 mg/L NO3-. Addition, in the SEM morphology in activated sludge showed off type of bacterial in different runs, included: Sphere shape, Rod shape and shell chain type. However, it can combine together to create shelter chain structure. Therefore we would be asserted that aerobic heterotrophic bacteria of activated sludge from food processing WWTP could help for cellulose degradation process and follow that was nitrification process in the activated sludge reactor.
Anaerobic degradation process conducted also in CSTR used soluble COD of kitchen waste with different HRT (15, 20, 25, 30 days), feed and draw several substrate and nutrient. The results showed that longer HRT = 30days was got better biogas production, biomass sustaining and COD degradation. The MLVSS and biogas production were calculated through 30 days CSTR operation and was steady at 1,100 mg/L and 80%, respectively.
REFERENCES
Ashok Pandey, C. R. S., Christian Larroche. (2008a). Modern Solid State Fermentation.
Ashok Pandey, C. R. S., Christian Larroche. (2008b). Modern Solid State Fermentation.
Ashok Pandey, C. R. S., Christian Larroche. (2008c). Modern Solid State Fermentation-Theory and practice: Springer Netherlands.
Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., et al. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology, 45(10), 65-73.
Bellon-Maurel, W., Orliac, O., & Christen, P. (2003). Sensors and measurements in solid state fermentation: a review. Process Biochemistry, 38(6), 881-896.
Bohmer, U., Frommel, S., Bley, T., Muller, M., Frankenfeld, K., & Miethe, P. (2011). Solid-state fermentation of lignocellulotic materials for the production of enzymes by the white-rot fungus Trametes hirsuta in a modular bioreactor. Engineering in Life Sciences, 11(4), 395-401.
Brown, D., & Li, Y. B. (2013). Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresource Technology, 127, 275-280.
Brown, D., Shi, J., & Li, Y. (2012). Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresource Technology, 124(0), 379-386.
C. Gallert, J. W. (2005). Environmental Biotechnology: Concept and application: Federal Republit of Germany.
C.P.Leslie Grady, J. G. T. D., Nacy G.Love, Carlos D.M.Filipe. (2011). Biological wastewater treatment London: IWA publishing.
Chang, S., Li, J.-Z., & Liu, F. (2011). Evaluation of different pretreatment methods for preparing hydrogen-producing seed inocula from waste activated sludge. Renewable Energy, 36(5), 1517-1522.
Chiaramonti, D., Prussi, M., Ferrero, S., Oriani, L., Ottonello, P., Torre, P., et al. (2012). Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass and Bioenergy, 46(0), 25-35.
Couto, S. R., Lopez, E., & Sanroman, M. A. (2006). Utilisation of grape seeds for laccase production in solid-state fermentors. Journal of Food Engineering, 74(2), 263-267.
Couto, S. R., & Sanroman, M. A. (2006). Application of solid-state fermentation to food industry - A review. Journal of Food Engineering, 76(3), 291-302.
D.A.Mitchell, N. K., M.Berovic. (2006). Solid state fermentation bioreactors. Newyork: Springer.
Dinis, M. J., Bezerra, R. M. F., Nunes, F., Dias, A. A., Guedes, C. V., Ferreira, L. M. M., et al. (2009). Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresource Technology, 100(20), 4829-4835.
Dominguez, A., Rivela, I., Couto, S. R., & Sanroman, M. A. (2001). Design of a new rotating drum bioreactor for ligninolytic enzyme production by Phanerochaete chrysosporium grown on an inert support. Process Biochemistry, 37(5), 549-554.
Edberg, N., & Hofsten, B. V. (1975). Cellulose Degradation in Wastewater Treatment. Journal Water Pollution Control Federation, 47(5), 1012-1020.
Filley, T., Blanchette, R., Jellisson, J., Goodell, B., & Cody, G. D. (2001). Degradation of lignin in gymnosperm woods by wood-rot fungi as observed by C-13-labelled tmah thermochemolysis. Abstracts of Papers of the American Chemical Society, 221, U516-U516.
Franco, A., Mosquera-Corral, A., Campos, J., & Roca, E. (2007). Learning to operate anaerobic bioreactors.
Gerardi, M. H. (2002). Nitrification and denitrification in the activated sludge process. New york: A John Wiley and Sons, inc.,Publication.
Gowthaman, M. K., Krishna, C., & Moo-Young, M. (2001). Fungal solid state fermentation — an overview. In G. K. George & K. A. Dilip (Eds.), Applied Mycology and Biotechnology (Vol. Volume 1, pp. 305-352): Elsevier.
Hardin, M. T., Howes, T., & Mitchell, D. A. (2002). Mass transfer correlations for rotating drum bioreactors. Journal of Biotechnology, 97(1), 89-101.
Hardin, M. T., Mitchell, D. A., & Howes, T. (2000). Approach to designing rotating drum bioreactors for solid-state fermentation on the basis of dimensionless design factors. Biotechnology and Bioengineering, 67(3), 274-282.
Hatakka, A. I. (1984). Biological Pretreatment of Lignocellulose for Enzymatic-Hydrolysis of Cellulose. Applied Biochemistry and Biotechnology, 9(4), 363-364.
Holker, U., Hofer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175-186.
Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175-186.
Holker, U., & Lenz, J. (2005). Solid-state fermentation - are there any biotechnological advantages? Current Opinion in Microbiology, 8(3), 301-306.
Hurwitz, E., Beck, A. J., Sakellariou, E., & Krup, M. (1961). Degradation of Cellulose by Activated Sludge Treatment. Journal Water Pollution Control Federation, 33(10), 1070-1075.
Isroi, Millati, R., Syamsiah, S., Niklasson, C., Cahyanto, M. N., Lundquist, K., et al. (2011). Biological Pretreatment of Lignocelluloses with White-Rot Fungi and Its Applications: A Review. Bioresources, 6(4), 5224-5259.
J. Pe´rez , J. M. o.-D., & T. de la Rubia, J. M. n. (2002). Biodegradation and biological treatments of cellulose, hemicellulose
and lignin: an overview. International Microbiol, 5(53-63), 11.
Ji, G. D., Wu, Y. C., & Wang, C. (2012). Analysis of microbial characterization in an upflow anaerobic sludge bed/biological aerated filter system for treating microcrystalline cellulose wastewater. Bioresource Technology, 120, 60-69.
Li, C., Champagne, P., & Anderson, B. C. (2011). Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions. Bioresource Technology, 102(20), 9471-9480.
Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15(1), 821-826.
Li, Y. B., Park, S. Y., & Zhu, J. Y. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable & Sustainable Energy Reviews, 15(1), 821-826.
Liew, L. N., Shi, J., & Li, Y. B. (2012). Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass & Bioenergy, 46, 125-132.
Maine Department of Environmental Protection, D. o. W. Q. M. (2009). Notes on activated sludge process control: Maine Department of
Environmental Protection, Division of Water Quality Management.
Mata Alvarez, J. (2003). Biomethanization of the Organic Fraction of Municipal Solid Wastes. London: IWA publising.
McCarty, B. E. R. a. P. L. (2000). Environmental Biotechnology: Principle and application.
McCarty, B. E. R. a. P. L. (2001). Environmental Biotechnology: Principle and application. New York: Mc Grow-Hill Boston.
Mersmann, A., Schneider, G., Voit, H., & Wenzig, E. (1990). Selection and design of aerobic bioreactors. Chemical Engineering & Technology, 13(1), 357-370.
Mitchell, D. A., de Lima Luz, L. F., Krieger, N., & Berovič, M. (2011). 2.25 - Bioreactors for Solid-State Fermentation. In M.-Y. Editor-in-Chief: Murray (Ed.), Comprehensive Biotechnology (Second Edition) (pp. 347-360). Burlington: Academic Press.
Mitchell, D. A., Krieger, N., Stuart, D. M., & Pandey, A. (2000). New developments in solid-state fermentation II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochemistry, 35(10), 1211-1225.
Mitchell, D. A., & von Meien, O. F. (2000). Mathematical modeling as a tool to investigate the design and operation of the zymotis packed-bed bioreactor for solid-state fermentation. Biotechnology and Bioengineering, 68(2), 127-135.
Mussatto, S. I., & Teixeira, J. (2010). Lignocellulose as raw material in fermentation processes.
Nielsen, S. S. (2011). Food Analysis Laboratory Manual: Springer US.
Nigam, P., Gupta, N., & Anthwal, A. (2009). Pre-treatment of Agro-Industrial Residues. In P. Nigam & A. Pandey (Eds.), Biotechnology for Agro-Industrial Residues Utilisation (pp. 13-33): Springer Netherlands.
Owen, W. F., Stuckey, D. C., Healy Jr, J. B., Young, L. Y., & McCarty, P. L. (1979). Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research, 13(6), 485-492.
Pinto, P. A., Dias, A. A., Fraga, I., Marques, G., Rodrigues, M. A. M., Colaço, J., et al. (2012). Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresource Technology, 111(0), 261-267.
Ritter, S. K. (2008). PLANT BIOCHEMISTRY
Lignocellulose: A Complex Biomaterial. Chemical & Engineering News, 86(49), 15.
Rubin, E. M. (2008). Genomics of cellulosic biofuels. Nature, 454(7206), 841-845.
Ruiz, H. A., Rodriguez-Jasso, R. M., Rodriguez, R., Contreras-Esquivel, J. C., & Aguilar, C. N. (2012). Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochemical Engineering Journal, 65, 90-95.
Siegrist, H., Vogt, D., Garcia-Heras, J. L., & Gujer, W. (2002). Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environmental Science & Technology, 36(5), 1113-1123.
Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13-18.
Verachtert, H., Ramasamy, K., Meyers, M., & Bevers, J. (1982). Investigations on Cellulose Biodegradation in Activated-Sludge Plants. Journal of Applied Bacteriology, 52(2), 185-190.
Wang, E. Q., Li, S. Z., Tao, L., Geng, X., & Li, T. C. (2010). Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Applied Energy, 87(9), 2839-2845.
Yang, X., Zeng, Y., Ma, F., Zhang, X., & Yu, H. (2010). Effect of biopretreatment on thermogravimetric and chemical characteristics of corn stover by different white-rot fungi. Bioresource Technology, 101(14), 5475-5479.
Zakarya, I., Tajaradin, H., Abustan, I., & Ismail, N. (2008). Relationship between methane production and chemical oxygen demand (COD) in anaerobic digestion of food waste. Paper presented at the Proceedings of the International Conference on Construction and Building Technology.
Zeng, J. J., Singh, D., & Chen, S. L. (2011). Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts. Bioresource Technology, 102(3), 3206-3214.
Zeng, Y., De Guardia, A., Ziebal, C., De Macedo, F. J., & Dabert, P. (2012). Nitrification and microbiological evolution during aerobic treatment of municipal solid wastes. Bioresource Technology, 110(0), 144-152.
Zhong, W., Zhang, Z., Luo, Y., Sun, S., Qiao, W., & Xiao, M. (2011). Effect of biological pretreatments in enhancing corn straw biogas production. Bioresource Technology, 102(24), 11177-11182.
Zhu, B. N., Zhang, R. H., Gikas, P., Rapport, J., Jenkins, B., & Li, X. J. (2010). Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system. Bioresource Technology, 101(16), 6374-6380.