| 研究生: |
楊莛莛 Yang, Ting-ting |
|---|---|
| 論文名稱: |
以生活型態為核心之導覽推薦系統 Lifestyle-oriented recommendation system |
| 指導教授: |
陸定邦
Luh, Ding-bang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 生活型態 、博物館體驗 、推薦系統 、冷開機問題 |
| 外文關鍵詞: | Museum experience, Recommendation system, Cold-start problem, Lifestyle |
| 相關次數: | 點閱:94 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今推薦系統大多在於找出更有效率的演算法則來進行推薦,但在新使用者或新項目加入時,卻難以推薦有效的項目給使用者,容易產生冷開機(cold-start)問題。因此,現今推薦系統面臨的問題是如何改善系統限制問題並提升推薦效率。
在研究過程中發現,現今推薦系統尚未考慮到使用者生活層面而無法深入瞭解使用者喜好,導致降低推薦品質。因此,本研究將應用生活型態導入推薦系統中,予以深入探討使用者的特性及喜好,並發展以生活型態為核心之推薦系統來改善系統限制問題。本系統將應用博物館展示項目之推薦服務做為先導性研究,予以改善博物館標準化展示服務、提升參訪者的滿意度。
本研究透過生活型態的調查結果,找出四種族群的分群規則並建立其推薦路徑,據以建構成生活型態導覽推薦系統。研究結果顯示,生活型態導覽推薦系統在使用者觀看時間、各推薦項目滿意度評比分數,均顯著高於現今推薦系統。因此,研究發現將生活型態導入推薦系統後,能夠有效解決現今系統的限制問題,並提升系統的推薦成效。
The recommendation systems modify the algorithms to increase recommended efficiency. However, when there are new users or new displaying contents added in, it is hard to recommendation items to new users effectively and caused a “cold-start” problem. Therefore, the recommendation system faces a problem how to improve the system limitation problem and increased the efficiency of recommendation.
In this study, the recommendation system did not take the lifestyle of the users into consideration, it is unable to know the actual factors of the favorite recommended items of the users thus it tended to decrease the recommendation quality in practical. Therefore, we applied the concept of lifestyle merge the recommendation system to find out the demands of users and solve the system limitation problems. We will take the museum displaying items recommend as a plot study. It improve the standard of displaying items and increase satisfaction of visit。
The results of study showed: We found out the group classification rules and the recommendation way, and develop a Lifestyle-oriented recommendation system. In the result, the Lifestyle-oriented recommendation system was higher than the current recommendation system significantly. Therefore, the Lifestyle-oriented recommendation system can solve the system limitations problems effectively, and increased the efficiency of recommendation.
中文文獻:
1.白滌清(2006)。消費者行為。台北:臺灣培生教育
2.余少卿(2003),個人化行動數位導覽之互動設計探討-以故宮博物院「乾隆皇帝的文化大業」特展為例,私立元智大學資訊傳播學系碩士論文。
3.李專文譯,(1997),有效展示設計評定成功的標準、展示設計方式與研究策略,「博物館學季刊」,第11卷,第2期,頁29-39,台中市:國立自然科學博物館出版。
4.吳麗玲(2000),博物館導覽與觀眾涉入程度之研究-以達文西特展為例,臺北市立師範學院視覺藝術研究所碩士論文。
5.吳晨帆(2005),推薦策略與推薦資訊對線上推薦績效影響之研究,中原大學資訊管理學系碩士學位論文。
6.別蓮蒂(2000),「生活型態白皮書」,台北市:商業周刊。
7.別蓮蒂(2000),「2007年台灣消費者生活型態白皮書」,台北市:東方線上出版。
8.李惠文(1997),有效展示的設計─評定成功的標準、展示設計方法與研究策略,「博物館學季刊」,第11卷第2期,頁29-39,台中市: 國立自然科學博物館。
9.林建煌(2002),「消費者行為」,台北市:智勝出版社。
10.林宏熒(2003),博物館導覽服務設施規劃研究-以掌上型數位影音系統為 例,臺南藝術學院博物館學研究所碩士論文。
11.林震岩(2007),「多變量分析SPSS的操作與應用」,台北市:智勝文化出版。
12.洪櫻純(2005),博物館與休閒規劃:閒暇時間與自由感,「博物館學季刊」, 第19卷第3期,頁52-61,台中市:國立自然科學博物館出版。
13.胡幼慧(1996),質性研究-理論、方法及本土女性研究實例,臺北市:巨流圖書公司。
14.席玉蘋譯(2007),「匠心獨具 :史特拉第瓦里與琴的傳奇故事」,臺北市 :臺灣商務出版。
15.許士軍(1986),管理學,六版,臺北市:東華。
16.陳啟添(1987),「小提琴古今談」,高雄市 :呂秋霞出版。
17.陳淑菁等(2005)。「國立科學工藝博物館各類型觀眾意見調查報告」,高雄市:工博館出版。
18.莊仲平(2006),「提琴之愛 :製琴、名琴,和擁有它們的故事」,臺北市 :如果出版
19.張紹勳(1993),「研究方法」,台中:滄海出版社。
20.黃君慧、辛一立、張哲綱、潘佳玟(2002),「消費者行為概論」,台北市:華泰文化事業股份有限公司出版。
21.楊明賢,1999,「解說教育」,台北:揚智文化出版。
22.曾鈺涓(2005),經驗無線-博物館數位導覽系統案例研究,「2005數位設計研究會」,台中市:國立臺中技術學院,頁409-417。
23.劉純如(2000),博物館館舍資訊服務系統之使用性研究-以國立自然科學博物館為例,東海大學建築學系碩士論文。
24.黃光雄(1996)。教育導論。台北:師大書苑。
英文文獻:
1.A.I. Schein, A. Popescul, L.H. Ungar, D.M. Pennock(2002). “Methods and metrics for cold-start recommendations”, in: Proceedings of SIGIR’02, ACM, Tampere, Finland, pp. 253–260
2.Andrew I. S., Alexandrin P. and Lyle H. U. (2002). “Methods and Metrics for Cold-start Recommend ations,” Appeared in Proceedings of the 25’th Annual International ACM SIGIR Conference on Research and Development in information Retrieval(SIGIR 2002), pp. 253-260.
3.Balabanovic, M. & Shoham, Y. (1997). “Fab: Content-based, Collaborative Recommendation, ” Communications of the ACM, Vol.40, No.1997,pp.66-72.
4.Beatty, Sharon E., Homer, Pamela Kahle, Lynn R.(1988). “The involvement-commitment model: Theory and implications,” Journal of Business Research, vol 2, pp. 149-167.
5.Burcaw, G. Ellis. (1979). “introduction to museum work,” Nashville:AASLH.
6.Engel, James F. , Roger D. B., & Paul W. M. (1995). Consumer Behavior, 8th ed. The Dryden Press, pp. 448-460.
7.Eugene Garfield (1997). “A Tribute To Calvin N. Mooers , A Pioneer Of Information Retrieval, ” The Scientist, Vol.11,No.6,pp.9.
8.Eric Arnould, Linda Price & George Zinkhan. (2003). 消費者行為(陳智凱)。臺北市:美商麥格羅.希爾。(英文版 2002)。
9.Fidel, R. and Crandall, M.(1997). “ Users’ perception of the performance of a filtering system, ” In Proceeding of the 20 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.198-205.
10.G. Gaskell.(2000). “Individual and Group Interviewing,” Qualitative researching with text, image and sound: a practical handbook, Sage, pp.38-56.
11.Hooper-Greenhill,E.(ed.)(1994). The Educational Role of the Museum. New York:Routledge
12.J.Herlocker, J. Konstan, A. Borchers, and J. Riedl. (1999). “An algorithmic Framework for performing collaborative filtering.” Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pp.230-237.
13.Kahle ,L.R. , Sharton E Beatty & Pamela M. Homer(1986)."Alternative Measurement Approaches to Consumer Values:The List of Values(LOV) and Values and Life Style(VALS)",Journal of Consumer Research, 13 (Dec.) ,pp.405-409.
14.Karypis, G. (2001). “Evaluation of Item-Based Top-N Recommendation Algorithms,” Proceedings of the 10th International Conference on Information and Knowledge Management, pp. 247-254.
15.Lang, K., (1995). “Newsweeder: Learning to Filter Netnews”, Proceedings of the Machine Learning conference, Tahoe City, Calif, pp. 331-339.
16.Lee, S.-H., & Sparks, B. (2007). “Cultural influences on travel lifestyle: A comparison of Korean Australians and Koreans in Korea. ” , Tourism Management, Vol.28, pp. 505–518.
17.Lin, C. H. and Mcleod, D. (2000). “Temperament-Based Information Filtering: A Human Factors Approach to Information Recommendation,” Proceedings of the IEEE International Conference on Multimedia and Exposition, New York, 2000, pp.941-944.
18.McLean,Kathleen.(1993).” Planning for people in museum exhibitions.” Washington, DC: Association of Science-Technology Centeres.
19.Michael J. Pazzani(1999). “A framework for collaborative, content-based and demographic filtering”, Artificial Intelligence Review, vol.13, pp. 393-408
20.Mobasher, B., Dai, H., Luo, T., Sung, Y., Nakagawa, M. and Wiltshire, J.,(2000). “Discovery of Aggregate Usage Profiles for Web Personalization,” Proceedings of the Web Mining for E-Commerce Workshop (WebKDD’00), Boston.
21.Montaner, M., Lopcz, B., & Lluis de la Rosa, J. (2003). “A Taxonomy of Recommender Agents on the Internet,” Artificial Intelligence Review, Vol. 19, pp.285-330.
22.Nunnally , J. C. (1967). Psychometric Theory , N. Y. : McGraw - Hill , Inc.
23.Oard, W.D. (1997). “The state of the art in text filtering,” User Modeling and User-Adapted Interaction ,7[3], pp. 141-178.
24.Paolo M., Bobby B. (2004). “Using Trust in Recommender System: An Experimental Analysis,” Trust Management, Second International Conference, pp.230-237.
25.Przemysla Kazienko and Pawel Kolodziejski(2006). “Personalized integration of recommendation methods for e-commerce,” International Journal of Computer Science & Applications, Vol.3 Issue 3, pp. 12-26.
26.Reynolds, F. D. & Darden W. R.,(1974). "Constructing Life Style and Psychographics ", in William D. Well(ed.), Life style and Psychographics, Chicago: AMA, pp.74-76.
27.Screven, C. G. (1997). “Information design in informal setting: Museum and other public spaces,” In R. Jacobson (Ed), Information design, MA:MIT Press, pp.131-192.
28.Screven, C. G. (1993). “United States: A Science in the Making.” Museum International, 178, pp. 6~12.
29.Shardanand, U., & Maes, P. (1995). “Social information filtering: algorithms for automating ‘Word of Mouth,” In Proceedings of the Conference on Human Factors in Computing Systems-CHI’95.
30.Sharpe, G.W., (1982). “Interpreting the Environment,” New York: John Wiley& Sons.
31.Solomon , Michael R., (1999). Consumer Behavior, 3th ed., Int’l ed., Prentice Hall Englewood Cliff , New Jersey,pp.577-615.
32.S. Middleton, H. Alani, N. Shadbolt, and D. Roure(2002). “Exploiting synergy between ontologies and recommender systems,” In The 11th International World Wide Web Conference (WWW2002), Hawaii, USA.
33.Stephen Bitgood.(1988). “Exhibit design and visitor behavior empirical relationships.” Environment and Behavior,20(4),pp.474-491.
34. S.-T. Park, D.M. Pennock, O. Madani, N. Good, D. DeCoste,(2006). “ Naive filterbots for robust cold-start recommendations,” In: Proceedings of KDD’06, ACM, Philadelphia, PA, USA.
35.Plummer, J.T., (1974). ’’The Concept and Application of Life Style Segmentation ,’’Journal of Marketing ,38, January,p33-35
36.Wells, W . D., & Tigert, D. J.,(1971). “Activities, Interests & Opinions,” Journal of Advertising Research, Vol. 11(4),pp. 27-34.
37.William Lazer(1963). “Life Style Concepts and Marketing,” Toward Scientific Marketing, Stephen Cresyser ed. Chicago:AMA.
網路文獻:
1.SRI International, http://www.sric-bi.com/VALS/types.shtml,2008/5/25
2.岩倉建築總合研究所,http://blog.yam.com/iwakura/article/6828757,2008/5/20
3.奇美博物館,http://www.chimeimuseum.com/_chinese/01_collection/collection.aspx,2008/5/20
4.吳學昆,網路數位博物館展示與教育設計之內容分析,成人教育通訊,第八期,http://www.ace.ncnu.edu.tw/data/aeissue/aeissue8/digitalmuse.htm,2008/5/20