| 研究生: |
賴培元 Lai, Pei-Yuan |
|---|---|
| 論文名稱: |
氮化銦之光電特性及蕭基二極體的備製和研究 The Investigation of InN Optoelectronic Properties and Schottky Diodes |
| 指導教授: |
張守進
Chang, Shoou-Jinn 陳志方 Chen, Jone-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 分子束磊晶法 、光暗電流比 、蕭基二極體 、氮化銦 |
| 外文關鍵詞: | InN, MBE, contrast ratio, Schottky diode |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化銦是能隙約為0.7電子伏特的窄能隙半導體材料,因其具有較低的有效電子質量以及高的電子遷移率和飽和漂移速度等特性,使得氮化銦在製作高頻電子元件和近紅外光電元件方面具有不錯的發展潛力。本論文主要為探討氮化銦的光電特性以及蕭基二極體的備製與研究。
本論文研究可分為三個部份,第一部份主要是探討使用分子束磊晶法在氮化鎵模板上成長之氮化銦薄膜的材料特性。從霍爾量測的結果中,我們可以得知氮化銦試片的載子濃度和載子遷移率。透過X光繞射分析和電子光譜化學分析,我們也可了解氮化銦試片的晶體結構以及縱深原子分佈情形。此外,從光致激發光譜圖中,我們可以觀察到有強烈的Moss-Burstein效應產生。
第二部份則是使用鋁金屬來備製金半金結構的氮化銦元件並探討其相關的光電特性。鋁電極在元件特性上表現出可靠的蕭基接觸特性。另外,我們使用電極退火以及加入一層二氧化矽層的方法來改善鋁電極在氮化銦薄膜上的蕭基特性。在電極退火方面,我們可以發現元件在氮氣下經過400℃退火後,其在5伏特偏壓下可得到約1270的光暗電流比。另外,當二氧化矽層在氧氣下經過300℃退火後,我們也可發現元件在5伏特偏壓下可得到約107的光暗電流比。
最後一個部份將針對以鈀金屬為歐姆接觸和鋁金屬為蕭基接觸的蕭基二極體來進行相關探討。從電流電壓特性圖中,我們可以發現蕭基二極體的啟始電壓約在1.23伏特,而且元件表現出不錯的整流特性。在-3伏特的偏壓之下,我們可以發現蕭基二極體有約6210的光暗電流比。此外,我們也分別使用thermionic emission model、H(I) model、Norde model以及Power exponent model來計算蕭基二極體的理想因子和蕭基能障大小。
A narrow band-gap (~0.7eV) and superior electron transport properties (eg., low effective mass, high predicted electron mobility of ~4400 cm2/Vs at 300K, and saturation drift velocity) make InN a very attractive material for high-frequency electronic devices and near-infrared optoelectronics. My major research in this dissertation is the investigation of InN optoelectronic properties and Schottky diodes.
This thesis is made up of three parts, in the first part, we focused on the material study of InN films. The InN samples were grown on GaN templates by Molecular Beam Epitaxy system. From Hall measurement results, we could find out the carrier concentrations and the mobilities of the InN samples. By using X-ray diffraction and electron spectroscopy for chemical analysis to know the crystal structure and the depth profiles of the InN samples. Besides, a strong Moss-Burstein effect is observed from photoluminescence spectrum.
In the second part, we fabricated the metal-semiconductor-metal devices with Al electrodes and investigated the optoelectronic properties of the InN devices. The Al contact formed a reliable Schottky characteristic. Furthermore, we used two methods which were contact-annealing and inserting a SiO2 insulating layer to improve the Al Schottky properties on InN. By using contact-annealing at 400℃ in N2, the higher contrast ratio, ~1270, was observed with 5V applied bias. And when the SiO2 layer annealed at 300℃ in O2, we got the higher contrast ratio with 5V applied bias was about 107.
In the last part, it was the study of the Schottky diodes. The Pd (60nm) ohmic contacts were deposited onto the InN layers and the samples were annealed at 400℃ in N2. The Al (40nm) was deposited as Schottky contacts later. From the I-V curves, we could observe that the diodes showed rectifiable characteristics and the turn-on voltage was about 1.23 V. Under reverse bias, we found the contrast ratio was about 6210 at -3V. In addition, we calculated the ideality factors and Schottky barrier heights of the diodes by thermionic emission model, H(I) model, Norde model, and Power exponent model.
Chapter 1 References
[1] R. Juza, and H. Hahn, Z. Anorg. Alleg. Chem., 239, 282
(1938).
[2] K.S.A. Butcher, and T.L. Tansley, Superlattices
Microstruct., 38, 1 (2005).
[3] H. J. Hovel, and J. J. Cuomo, Appl. Phys. Lett., 20,
71 (1972).
[4] V.A. Tyagi, V.A. Eustignev, A.M. Krasilo, A.F.
Andreeva, and V. Yu. Malatidiou, Sov. Phys. Semicond.,
11, 1257 (1977).
[5] K.L. Westra, R.P.W. Lawson, and M.J. Brett, J. Vac.
Sci. Technol. A, 6, 1730 (1988).
[6] T.L. Tansley, and C.P. Foley. In: D.C. Look and J.S.
Blakemore, Editors, Semi-Insulating III–V Compounds,
Shiva, (1984).
[7] T.L. Tansley, and C.P. Foley, J. Appl. Phys., 59, 3241
(1986).
[8] T. Matsuoka, H. Tanaka, and A. Katsui, Institute of
Physics Conference Series, 106, 141 (1990).
[9] S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C.
Wetzel, H. Amano, and I. Akasaki, Appl. Phys. Lett.,
76, 876 (2000).
[10] H. Lu, W.J. Schaff, J. Hwang, H. Wu, W. Yeo, A.
Pharkya, and L.F. Eastman, Appl. Phys. Lett., 77,
2548 (2000).
[11] V. Yu. Davydov et al, Phys. Status Solidi B, 229, R1
(2002).
[12] K. Sugita, H. Takatsuka, A. Hashimoto, and A.
Yamamoto, Phys. Status Solidi (b), 240, 421 (2003).
[13] Y. Saito, T. Yamaguchi, K. Kano, T. Araki, Y.
Nanishi, N. Teraguchi, and A. Suzuki, J. Cryst.
Growth, 237, 1017 (2002).
[14] C.H. Swartz, R.P.Tomkins, T.H. Myers, H. Lu, and W.J.
Schaff, Phys. Status Solidi (c), 2, 2250 (2005).
[15] J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E.
Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi,
Appl. Phys. Lett., 80, 3967 (2002).
[16] Y. Nanishi, Y. Saito, and T. Yamaguchi, Jpn. J. Appl.
Phys., 42, 2549 (2003).
[17] S.C. Jain, M. Willander, J. Narayan, and R.V.
Overstraeten, J. Appl. Phys., 87, 965 (2000).
[18] S. Strite, and H. Morkoc, J. Vac. Sci. Technol. B,
10, 1237 (1992).
[19] S.N. Mohammad, and H. Morkoc, Prog. Quantum
Electron., 20, 361 (1996).
[20] O. Ambacher, J. Phys. D, 31, 2653 (1998).
[21] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto,
Sol. Energy Mater. Sol. Cells, 35, 53 (1994).
[22] B.E. Foutz, S.K. O’leary, M.S. Shur, and L.F.
Eastman, J. Appl. Phys., 85, 7727 (1999).
[23] M. Leroux, B. Gil, in: J.H. Edgar, S. Strite, I.
Akasaki, H. Amano, and C. Wetzel, Gallium Nitride and
Related Semiconductors, INSPEC, (1999).
[24] H. Lu, W.J. Schaff, and L.F. Eastman, Mater. Res.
Soc. Symp. Proc., 693, 9 (2002).
[25] H. Lu, W.J. Schaff, and L.F. Eastman, J. Appl. Phys.,
96, 3577 (2004).
[26] M.E. Lin, F.Y. Huang, and H. Morkoc, Appl. Phys.
Lett., 64, 2557 (1994).
[27] F. Ren, C.R. Abernathy, S.N.G. Chu, J.R. Lothain, and
S.J. Pearton, Appl. Phys. Lett., 66, 1503 (1995).
[28] S.M. Donovan, J.D. MacKenzie, C.R. Abernathy, S.J.
Pearton, F. Ren, K. Jones, and M. Cole, Appl. Phys.
Lett., 70, 2592 (1997).
Chapter 2 References
[1] R.K. Watts, J.L. Vossen, and W. Kern, eds., Thin Flim
Processes, Academic, (1978).
[2] C.Y. Chang, and S.M. Sze, ULSI Technology, (1996).
[3] J.L. Vossen, and J.J. Cuomo, Thin Film Processes,
(1978).
[4] S.I. Shah, Handbook of Thin Film Process Technology,
Bristol, (1995).
[5] S.M. Sze, VLSI Technology, (1988).
[6] P. Ruterana, M. Albrecht, and J. Neugebauer, Nitride
Semiconductors : handbook on materials and devices,
Wiley-VCH, (2003).
[7] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B.
P. Keller, S. P. DenBaars, and J. S. Speck, Appl.
Phys. Lett., 68, 643 (1996)
[8] M.G. Cheong, K.S. Kim, C.S. Oh, N.W. Namgung, G.M.
Yang, C.H. Hong, K.Y. Lim, D.H. Lim, and A. Yoshikawa,
Appl. Phys. Lett., 77, 2557 (2000).
[9] Y. Fu, Y.T. Moon, F. Yun, U. Ozgur, J.Q. Xie, S.
Dogan, H. Morkoc, C.K. Inoki, T.S. Kuan, L. Zhou, and
D.J. Smith, Appl. Phys. Lett., 86, 043108 (2005).
Chapter 3 References
[1] A.G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl.
Phys., 94, 2779 (2003).
[2] M.F. Wu, S.Q. Zhou, A. Vantomme, Y. Huang, H. Wang,
and H. Yang, J. Vac. Sci. Technol. A, 24, 275 (2006).
Chapter 4 References
[1] S.N. Mohammad, and H. Morkoc, Prog. Quantum Electron.,
20, 361 (1996).
[2] S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar,
and L.F. Eastman, J. Appl. Phys., 83, 826 (1998).
[3] V.Y. Malakhov, Sol. Energy Mater. Sol. Cells, 76, 637
(2003).
[4] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto,
Sol. Energy Mater. Sol. Cells, 35, 53 (1994).
[5] J. Wu, Yu. M. Walukiewicz, J.W. Ager, E.E. Haller,
H.Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Appl.
Phys. Lett., 80, 3967 (2002).
[6] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima and E.
Kurimoto, Appl. Phys. Lett., 81, 1246 (2002).
[7] F. Fischer, and F. Schroter, Ber. Dtsch. Chem. Ges.,
43, 1465 (1910).
[8] A.G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl.
Phys., 94, 2779 (2003).
[9] O. Ambacher, M.S. Brandt, R. Dimitrov, T. Metzger, M.
Stutzmann, R.A. Fischer, A. Miehr, A. Bergmajer, and
G. Dollinger, J. Vac. Sci. Technol. B, 14, 3532 (1996).
[10] N. Miura, H. Ishii, A. Yamada, M. Konagai, Y.
Yamauchi, and A. Yamamoto, Jpn. J. Appl. Phys., 36,
L256 (1997).
[11] R.E. Jones, K.M. Yu, S.X. Li, W. Walukiewicz, J.W.
Ager, E.E. Haller, H. Lu, and W.J. Schaff, Phys. Rev.
Lett., 96, 125505 (2006).
[12] W.J. Schaff, H. Lu, J. Hwang, and H. Wu, IEEE., IV-8,
225 (2000).
[13] J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E.
Haller, H. Lu, W. J. Schaff, Y. Saito, and Y.
Nanishi, Appl. Phys. Lett., 80, 3967 (2002).
[14] S.M. Sze, Physics of Semiconductor Devices, 2nd ed.,
Wiley, 225 (1981).
[15] F.A. Padovani, and R. Stratton, Solid-State
Electron., 9, 695 (1966).
[16] C.R. Crowell, and V.L. Rideout, Solid-State
Electron., 12, 89 (1969).
[17] V.L. Rideout, Solid-State Electron., 18, 541 (1975).
[18] M. Marso, M. Horstmann, M. Hardtdegen, P. Kordos, and
H. Luth, Solide-State Electron., 41, 25 (1997).
[19] P. Bhattacharya, Semiconductor optoelectronic
devices, 2nd ed., Prentice Hall, (1997).
[20] V.T. Rangel-Kuoppa, S. Suihkonen, M. Sopanen, and H.
Lipsanen, Jpn. J. Appl. Phys., 45, 36 (2006).
Chapter 5 References
[1] H. Ohta, K. Kawamura, M. Orita, M. Hirano, N.
Sarukura, and H. Hosono, Appl. Phys. Lett., 77, 475
(2000).
[2] J.M. Lee, K.K. Kim, S.J. Park, and W.K. Choi, Appl.
Phys. Lett., 78, 3842 (2001).
[3] A.A. Iliadis, R.D. Vispute, T. Venkatesan, and K.A.
Jones, Thin Solid Films, 478, 402 (2002).
[4] A. Inumpudi, A.A. Iliadis, S. Krishnamoorthy, S.
Choopun, R.D. Vispute, and T. Venkatesan, Solid-State
Electron., 46, 1665 (2002).
[5] H.K. Kim, S.H. Han, T.Y. Seong, and W.K. Choi, Appl.
Phys. Lett., 77, 1647 (2000).
[6] H.K. Kim, S.H. Han, T.Y. Seong, and W.K. Choi, J.
Electrochem. Soc., 148, G114 (2001).
[7] J.M. Lee, K.K. Kim, S.J. Park, and W.K. Choi, Appl.
Phys. Lett., 78, 3842 (2001).
[8] H. Sheng, N.W. Emanetoglu, S. Muthukumar, S. Feng, and
Y. Lu, J. Electron. Mater., 31, 811 (2002).
[9] H. Sheng, N.W. Emanetoglu, S. Muthukumar, B.V.
Yakshinskiy, S. Feng, and Y. Lu, J. Electron. Mater.,
32, 935 (2003).
[10] H.K. Kim, K.K. Kim, S.J. Park, T.Y. Seong, and I.
Adesida, J. Appl. Phys., 94, 4225 (2003).
[11] S.Y. Kim, H.W. Jang, J.K. Kim, C.M. Jeon, W.I. Park,
G.C. Yi, and J.L. Lee, J. Electron. Mater., 31, 868
(2002).
[12] V.T. Rangel-Kuoppa, S. Suihkonen, M. Sopanen, and H.
Lipsanen, Jpn. J. Appl. Phys., 45, 36 (2006).
[13] L. Cohen Marvin, J. Vac. Sci. Technol., 16, 1307
(1979)
[14] E.H. Rhoderick, and R.H. Williams, Metal-
Semiconductor Contacts, Oxford University Press,
(1988).
[15] E.H. Rhoderick, IEE Proc., 129, 1 (1982).
[16] S.K Cheung, and N.W. Cheung, Appl. Phys. Lett., 49,
85 (1986).
[17] H. Norde, J. Appl. Phys., 50, 5052 (1979).
[18] K.E. Bohlin, J. Appl. Phys., 60, 1223 (1986).
[19] J.K. Sheu, Y.K. Su, G.C. Chi, M.J. Jou, and C.M.
Chang, Appl. Phys. Lett., 72, 3317 (1998).
[20] S.M. Sze, Physics of Semiconductor Devices, Wiley,
(1981).
[21] V. Mikhellashvili, G. Eisenstein, V. Garber, S.
Fainleib, G. Bahir, D. Ritter, M. Orenstein, and A.
Peer, J. Appl. Phys., 85, 9 (1999).
Chapter 6 References
[1] A. Yamamoto, Y. Yamauchi, T. Ogawa, M. Ohkubo, and A.
Hashimoto, Inst. Phys. Conf. Ser., 142, 879 (1996).
[2] A. Yamamoto, Y. Yamauchi, M. Ohkubo, A. Hashimoto, and
T. Saitoh, Solid-State Electron., 41, 149 (1997).
[3] T. Tsuchiya, O. Miki, K. Shimada, M. Ohnishi, A.
Wakahara, and A. Yoshida, J. Cryst. Growth, 220, 185
(2000).
[4] T. Tsuchiya, M. Ohnishi, A. Wakahara, and A. Yoshida,
J. Cryst. Growth, 220, 191 (2000).
[5] H. Lu, W.J. Schaff, J. Hwang, H. Wu, G. Koley, and L.
Eastman, Appl. Phys. Lett., 79, 1489 (2001).
[6] Q. Guo, H. Ogawa, H. Yamano, and A. Yoshida, Appl.
Phys. Lett., 66, 715 (1995).
[7] Q.X. Guo, M. Nishio, H. Ogawa, and A. Yoshida, Jpn. J.
Appl. Phys., 38, L490 (1999).
[8] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto,
Sol. Energy Mater. Sol. Cells, 35, 53 (1994).
[9] H. Lu, W.J. Schaff, L.F. Eastman, and C. Wood, Mater.
Res. Soc. Symp. Proc., 693, 9 (2002).