| 研究生: |
何佳諺 Ho, Jia-yan |
|---|---|
| 論文名稱: |
懸浮式連續流甲苯共代謝三氯乙烯之研究 |
| 指導教授: |
高銘木
Kao, Ming-Muh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 連續流 、共代謝 、甲苯 、三氯乙烯 |
| 外文關鍵詞: | CSTR, cometabolism, Toluene, TCE |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在瞭解以懸浮式連續流方式,採用甲苯/三氯乙烯之最佳濃度配比為20,培養甲苯分解菌(T1菌)共代謝三氯乙烯之生物降解情形,並探討固定水力停留時間,不同基質濃度對連續流試驗之影響,以及改變水力停留時間後,微生物降解甲苯及三氯乙烯之變化影響。
在水力停留時間三天的操作條件下,改變基質濃度對共代謝三氯乙烯之影響方面,添加不同三氯乙烯濃度(0.5、1和2 mg/L)及不同甲苯濃度(10、20和40 mg/L)操作下,在試驗開始後即能展現良好共代謝效果,三氯乙烯去除率皆能達到97.9 %以上。在三氯乙烯的出流濃度方面,各組之三氯乙烯最終出流濃度分別為3.8、16.0和59.0 μg/L,顯示基質濃度的提高對三氯乙烯之共代謝效率略微抑制。
改變水力停留時間之連續流試驗方面,在2天的水力停留時間操作下,各組之甲苯及三氯乙烯代謝效果依然良好,其三氯乙烯去除率能達到95.8 %以上,但低水力停留時間下之三氯乙烯出流濃度較第一階段高水力停留時間連續流試驗之各組稍高,其出流濃度分別為8.1、38.0和75.4μg/L,顯示在較長的水力停留時間下,微生物能將三氯乙烯代謝的更完全。
試驗期間之pH和溶氧量並無太大之變化(pH:5.8~6.6、DO:1 mg/L以上),顯示懸浮式連續流甲苯共代謝三氯乙烯系統之操作良好。
The main objective of this study is to find the best operate conditions for cometabolize trichloroethylene (TCE) using Toluene in a continuous stirred tank reactor (CSTR). We cultivate that toluene degrading bacterium strain T1 with the best toluene/TCE (20/1) ratio to cometabolize TCE. Also, different HRT and substrate concentration are explore the influence of TCE cometabolism in the CSTR.
For the TCE cometabolism experiments, Toluene and TCE could be rapidly degraded in the initial stage. The TCE removal efficiency could reach upward 97.9% with the HRT of 3 days. When TCE concentration at 0.5, 1 and 2 mg/L, TCE was partially removed by the Toluene degraders to reach 3.8, 16.0 and 59.0 μg/L, respectively. The results show that high initial concentration of TCE would restrain the efficiency of TCE cometabolism using Toluene. On the other hand, the cometabolic TCE removal efficiency decreased with the initial concentration of TCE raised.
When HRT changed from 3 days to 2 days, TCE removal efficiency could still reach upward 95.8 %. When TCE concentration at 0.5, 1 and 2 mg/L, TCE was partially removed by the Toluene degraders to reach 8.1, 38.0 and 75.4 μg/L, respectively. The results show that lower HRT could not cometabolize TCE much completely than higher HRT.
In addition, dissolved oxygen and pH didn’t have evident variation (pH: 5.8~6.6 and dissolved oxygen: greater than 1 mg/L) during the experiment periods. It seems to be lower relation among pH, dissolved oxygen, and TCE removal efficiency in the above operation condition.
盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,第102-177頁,1989。
蔡文田、邱伸彥,「蒸氣脫脂用含氯溶劑之特性管制和污染預防」,工業污染防治,第41期,第145-160頁,1992。
蔡文田,「含氯有機溶液之毒性及新陳代謝機制」,工業污染防治﹐第43期,第175-187頁,1992。
蔡文田,「含氯溶劑可行減廢技術介紹」,工業污染防治,第47期,第171-182頁,1993。
蔡文田、張慶源,「揮發性有機物(VOCs)催化燃燒處理」,環境工程會刊,第四期,第41-58頁,1992。
行政院勞工委員會,「物質安全資料表及參考範例」,1997。
行政院環境保護署,網站名稱http://www.epa.gov.tw。
林建芬,「甲烷分解菌對三氯乙烯喜氣生物分解之影響」,第十八屆廢水處理技術研討會論文集,第287-294頁,1993。
江美幸,「甲烷分解菌及苯環類分解菌共代謝三氯乙烯之比較」,碩士論文,國立中興大學環境工程研究所,台中,1995。
官知嫺,「苯環類分解菌共代謝三氯乙烯」,碩士論文,國立中興大學環境工程研究所,台中,1998。
呂淑慧,「酚分解菌共代謝三氯乙烯之連續流試驗」,碩士論文,國立中興大學環境工程研究所,台中,1999。
邱應志、盧至人、葉孟芬、楊中治,「地下水中四氯乙烯強化生物分解之研究」,第二十二屆廢水研討會,第325-331頁,1997
邱應志、盧至人、楊中治、周鴻盛,「模擬地下水中四氯乙烯厭氧生物復育之研究」,第二十三屆廢水研討會,第880-887頁,1998
黃錦怡、盧至人、張峻嘉、謝瑜芬,「固定化細胞對三氯乙烯好氧分解的效應」,第二十四屆廢水研討會,第519-523頁,1999
簡義杰,「固定化甲苯分解菌共代謝水中三氯乙烯之研究」,碩士論文,國立成功大學環境工程學研究所,台南,2001。
周孟琦,「三氯乙烯在土壤之吸附反應及共代謝生物降解之研究」,碩士論文,國立成功大學環境工程學研究所,台南,2002。
Barkach, J. H., J Dragun, and S. A. Mason, “Soil and ground water clean-up standards as approached by the Michigan department of natural resources”, The Environmental Professional, Vol.12, p.319-333, 1990.
Brusseau, G. A., H. C. Tsien, R. S. Hanson, and L. P. Wackett, “Optimization of trichloroethylene oxidation by Methanotrophs and the use of a colorimetric assey to detect soluble methane monooxygenase activity”, Biodegradation, Vol.1, p.19-29, 1990.
Chang, H. L., and A. C. Lisa, “Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol”, Biotechnology and Bioengineering, Vol.45, p.440-449, 1995.
Dabrock, B., J. Riedel, J. Bertram, and G. Gottochalk, “Isopropylbenzene (Cumene)-a new substrate for the isolation of trichloroethene-degrading bacteria”, Arch. Microbiol., Vol.158, p.9-13, 1992.
Ely, R. L., K. J. Williamson, M. R. Hyman, and D. J. Arp, “Cometabolism of chlorinated Solvents by nitrifying bacteria : kinetics, substrate interactions, toxicity effects, and bacterial response”, Biotechnology and Biongineering, Vol.54, p.520-534, 1997.
Ensign, S. A., M. R. Hyman, and D. J. Arp, “Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain”, Appl. Environ. Microbiol., Vol.58, No.9, p.3038-3046, 1992.
Ewers, J., W. Clemens, and H. J. Knackmuss, “Biodegradation of chloroethenes using isoprene as co-substrate”, International Symposium on Environmental biotechnology, Vol.1, Royal Flemish Society of Engineers : Ostead, Belgium, p.77-83, 1991.
Fogel, M. M., A. R. Taddeo, and S. Fogel, “Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture”, Appl. Environ. Microbiol., Vol.51, No.4, p.720-724, 1986.
Folsom, B. R., P. J. Chapman, and P. H. Pritchard, “Phenol and trichloroethylene degradation by Pseudomonas cepacia G4 : kinetics and interactions between substrate”, Appl. Environ. Microbiol., Vol.56, No.5, p.1279-1285, 1990.
Fox, B. G., J. G. Borneman, L. P. Wackett, and J. D. Lipscomb, “Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental applications”, Biochemistry, Vol.29, p.6419-6427, 1990.
Fries, M. R., L. J. Forney, and J. M. Tiedje, “Phenol-and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred”, Appl. Environ. Microbiol., Vol.63, No.4, p.1523-1530, 1997.
Hopkins, G. D., L. Semprini, and P. L. McCarty, “Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms”, Appl. Environ. Microbiol., Vol.59, No.7, p.2277-2285, 1993.
Hou, C.T., R. Patel, A. I. Laskin, N. Barnabe, and I. Barist, “Epoxidation of shortchain alkenes by resting-cell suspensions of propane-growth bacteria”, Appl. Environ. Microbiol., Vol.46, No.1, p.171-177, 1983.
Julie A. Sutfin, and Dotti Ramey, “In Situ Biological Treatment of TCE-Impacted Soil and Groundwater: Demonstration Results”, Environmental Progress, Vol.16, No.4, p.287-296, 1997.
Kim Broholm, Thomas, H. C., and Lajla Olsen, “Toxicity of 1,1,1-Trichloroethane and Trichloroethene on a Mixed Culture of Methane-Oxidizing Bacteria”, Appl. Environ. Microbiol., Vol.56, No.8, p.2488-2493, 1990.
Large, P. J., “Methylotrophy and methanogenesis”, American Society for Microbiology, Washington, DC, p.25-26, 1983.
Lisa, A. C., and P. L. McCarty, “Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells”, Appl. Environ. Microbiol., Vol.57, No.4, p.1031-1037, 1991.
Little, C. D., A. V. Palumbo, S. E. Herbes, M. E. Lidstrom, R. L. Tyndall, and P. J. Gilmer, “Trichloroethylene biodegradation by a methane-oxidizing bacterium”, Appl. Environ. Microbiol., Vol.54, No.4, p.951-956, 1988.
Mars, A. E., G. T. Prins, P. Wietzes, W. D. Koning, and D. B. Janssen, “Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria”, Appl. Environ. Microbiol., Vol.64, No.1, p.208-215, 1998.
McCarty, P. L., M. Reinhard, and B. E. Rittmann., “Trace organics in groundwater”, Environ. Sci. Technol., Vol.15, No.1, p.40-42, 1981.
McCarty, P. L., “Bioengineering issues related to in situ remediation of contaminated soils and groundwater”, Environ. Biotechnol., p.143-161, 1988.
McCarty, P. L., Mark N. Goltz, Gary D. Hopkins, Mark E. Dolan, Jason P. Allen, “Full-Scale Evaluation of In Situ Cometabolic Degradation of Trichloroethylene in Groundwater through Toluene Injection”, Environ. Sci. Technol, Vol.32, p.88-100,1998.
Tschantz M. F., John P. Bowman, T. L. Donaldson, P. R., J. M. Bienkowski, A. V. Strong-Gunderson, S. E. Palumbo, Herbes, and G. S. Sayler, “Methanotrophic TCE Biodegradation in a Multi-Stage Bioreactor”, Environ. Sci. Technol., Vol.29, No.8, p.2073-2082, 1995.
Mcfarland M. J., Catherine M. Vogel, and Jim C. Spain, “Methanotrophic Cometabolism of Trichloroethlene(TCE) in a Two Stage Bioreactor System”, Water Research, Vol.26, No.2, p.259-265, 1992.
Nelson, M. J. K., S. O. Montgomery, W. R. Mahaffey, and P. H. Pritchard, “Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway”, Appl. Environ. Microbiol., Vol.53, No.5, p.949-954, 1987.
Oldenhuis, R., R. L. J. M. Vink, D. B. Janssen, and B. Witholt, “Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase”, Appl. Environ. Microbiol., Vol.55, No.11, p.2819-2826, 1989.
Rasche, M.E., M. R. Hyman, and D. J. Arp, “Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: cometabolic inactivation of ammonia monooxygenase and substrate specificity”, Appl. Environ. Microbiol., Vol.57, p.2986-2994, 1991.
Shields, M. S., S. O. Montgomery, P. J. Chapmen, S. M. Cuskey, and P. H. Pritchard, “Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4”, Appl. Environ. Microbiol., Vol.55, No.4, p.1624-1629, 1989.
Shields, M. S., S. O. Montgomery, S. M. Cuskty, P. J. Chapman, and P. H. Pritchard, “Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene”, Appl. Environ. Microbiol., Vol.57, No.7, p.1935-1941, 1991.
Speitel, G. E., and D. McLay, “ Biofilm reacter for treatment of gas streams containing chlorinated solvents”, J. Envir. Engrg., Vol.119, p.658-678, 1993.
USEPA(Member Agencies of the Federal Remediation Technologies Roundtable), Abstracts of Remediation Case Studies, March, 1995.
USEPA ,Field Applications of In Situ Remediation Technologies: Chemical Oxidation, Sep., 1998, http://www.epa.gov/swertiol.
USEPA, In situ Permeable Reactive Baarrier for Contaminated Groundwater at the U.S. Cosat Guard Support Center Elizabeth City, North Carolina, U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office September 1998.
USEPA Office of Research and Development Alternative Treatment Technology Information Center(ATTIC), 4.41 Slurry Walls, Feb. 1999.
Vannelli, T., M. Logan, D. M. Arciero, and A. B. Hooper, “Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea”, Appl. Environ. Microbiol., Vol.56, No.4, p.1169-1171, 1990.
Vidic, R. D., Pohland, F.G., Treatment Wall, Technology Evaluation Report, Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA, USA, 1996.
Vogel, T. M., and P. L. McCarty, “Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions”, Appl. Environ. Microbiol., Vol.49, No.5, p.1080-1083, 1985.
Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Transformation of halogenated aliphatic compounds”, Environ. Sci. Technol., Vol.21, No.8, p.722-736, 1987.
Wackett, L. P., and D. T. Gibson, “Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1”, Appl. Environ. Microbiol., Vol.54, No.7, p.1703-1708, 1988.
Wackett, L. P., and S. R. Householder, “Toxicity of thrichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase”, Appl. Environ. Microbiol., Vol.55, No.10, p.2723-2725, 1989(a).
Wackett, L. P., G. A. Brusseau, S. R. Householder, and R. S. Hanson, “Survey of microbial oxygenases : trichloroethylene degradation by propane-oxidizing bacteria”, Appl. Environ. Microbiol., Vol.55, No.11, p.2960-2964, 1989(b).
Wilmanski, K., and A. N. vanBreemen, “Competitive adsorption of trichloroethylene and humic substances fromgroudwater on activated carbon”, Wat. Res., Vol.24, No.6, p.773-779, 1990.
Wilson, J. T., and B. H. Wilson, “Biotransformation of trichloroethene in soil”, Appl. Environ. Microbiol., Vol.49, No.1, p.242-243, 1985.
Yimu, D., and K. M. Scow, “Effect of trichloroethylene and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil”, Appl. Environ. Microbiol., Vol.60, No.10, p.2661-2665, 1994.