| 研究生: |
陳正慧 Chen, Cheng-Hui |
|---|---|
| 論文名稱: |
還原態氧化石墨烯與雙胺氧化酵素固定化網版印刷碳電極於食品組織胺之檢測 Reduced Graphene Oxide and Diamine Oxidase Immobilized Screen-Printed Carbon Electrode for Histamine Detection in Food |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 還原態氧化石墨烯 、網版印刷碳電極 、組織胺檢測 、食品 |
| 外文關鍵詞: | Reduced graphene oxide, screen-printed carbon electrode, histamine detection, food |
| 相關次數: | 點閱:131 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
組織胺是生物胺的其中一種,攝入含有大於50 ppm組織胺的食品就可能對人體造成傷害,產生多種組織胺食品中毒症狀。由於人體感官可能無法察覺食品中的組織胺含量是否超過50 ppm,因此需要發展一個食品中組織胺含量檢測裝置,以避免此類食品中毒事件的發生。網版印刷電極成本便宜,具有量產的潛力,但其電化學活性較金屬電極差,對組織胺亦不具有催化性與專一性,因此需藉由表面修飾處理,使得其對組織胺的靈敏度與專一性提高。本研究使用具有良好電子傳導性與電化學活性的還原態氧化石墨烯進行網版印刷碳電極之修飾,以放大訊號和增加靈敏度。並搭配雙胺氧化酵素之修飾,使裝置對組織胺具有專一性。本裝置的量測線性範圍介於20~ 200 ppm (R2 > 0.99),已有初步的成果,其線性範圍並涵蓋食品實際樣本檢測所需的範圍,未來會更進一步研究,使整體裝置更加穩定,以及減少實際樣本中干擾物之影響等,以求此裝置未來能夠實際應用於食品中組織胺含量之檢測。
Histamine is one of the biogenic amines that may cause food poisoning when intake food contains high concentration of histamine. The critical limitation of histamine in food is 50 ppm. Food containing histamine higher than 50 ppm may harm human body. Since human sensory organ cannot sense such concentration of histamine, it’s necessary to develop a device to detect histamine in food. Screen-printed carbon electrode (SPCE) is a kind of electrode that is cheap, easy to prepare, and has the potential to mass production and commercialization. But the electrochemical activity of SPCE is lower than other metal materials, and it has no selectivity and specificity to histamine. This study applied reduced graphene oxide (RGO) and diamine oxidase (DAO) to modify the surface of SPCE to detect samples containing different concentration of histamine. The linear range of this device is 20 to 200 ppm (R2 > 0.99) that meets the requirement of food real sample detection. The selectivity, stability, and recovery rate of the device should be improved before this device is applied to food quality control use.
[1] Yano, Y., Yokoyama, K., Tamiya, E. and Karube, I. (1996). "Direct evaluation of meat spoilage and the progress of aging using biosensors." Analytica Chimca Acta 320(2-3): 269-276.
[2] Othman, N., Bakar, F. A., Salleh, A. B., Heng, L. Y. and Wagiran, R. (2006). "A preliminary investigation on a histamine biosensor constructed from diamine oxidase immobilised onto an oxygen probe." Malaysia Journal of Analytical Sciences 10(1): 137-142.
[3] Halász, A., Baráth, Á., Simon-Sarkadi, L. and Holzapfel, W. (1994). "Biogenic amines and their production by microorganisms in food." Trends in Food Science & Technology 5(2): 42-49.
[4] Maintz, L. and Novak, N. (2007). "Histamine and histamine intolerance." The American Journal of Clinical Nutrition 85(5): 1185-1196.
[5] Bowen, R. (2008). "Histamine and histamine receptors." from http://arbl.cvmbs. colostate.edu/hbooks/pathphys/endocrine/otherendo/histamine.html.
[6] Keow, C. M., Abu Bakar, F., Salleh, A. B., Heng, L. Y., Wagiran, R. and Bean, L. S. (2007). "An amperometric biosensor for the rapid assessment of histamine level in tiger prawn (Penaeus monodon) spoilage." Food Chemistry 105(4): 1636-1641.
[7] Otles, S. and Yalcin, B. (2012). "Review on the application of nanobiosensors in food analysis." Acta scientiarum polonorum. Technologia alimentaria 11(1): 7-18.
[8] 高材, 林康平, 林峰輝與陳家進 (2008). 生物醫學工程導論. (第一版), 臺中市 滄海, 57-109.
[9] Mello, L. D. and Kubota, L. T. (2002). "Review of the use of biosensors as analytical tools in the food and drink industries." Food Chemistry 77(2): 237-256.
[10] Chen, C., Xie, Q., Yang, D., Xiao, H., Fu, Y., Tan, Y. and Yao, S. (2013). "Recent advances in electrochemical glucose biosensors: A review." RSC Advances 3(14): 4473.
[11] "中華民國國家標準檢驗法 cns 3689 z7043 "食品中組織胺檢驗法."
[12] Köse, S., Kaklıkkaya, N., Koral, S., Tufan, B., Buruk, K. C. and Aydın, F. (2011). "Commercial test kits and the determination of histamine in traditional (ethnic) fish products-evaluation against an EU accepted HPLC method." Food Chemistry 125(4): 1490-1497.
[13] Carelli, D., Centonze, D., Palermo, C., Quinto, M. and Rotunno, T. (2007). "An interference free amperometric biosensor for the detection of biogenic amines in food products." Biosensors and Bioelectronics 23(5): 640-647.
[14] Bard, A. J. and Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications. (2nd edition) Wiley.
[15] Skoog, D. A., Donald M. West and Holler, F. J. (1995). Fundamentals of analytical chemistry. (2nd edition) Harcourt Brace College Publishers.
[16] Bouvrette, P., Male, K. B., Luong, J. H. T. and Gibbs, B. F. (1997). "Amperometric biosensor for diamine using oxidase purified from porcine kidney." Enzyme & Microbial Technology 20(1): 32-38.
[17] Draisci, R., Volpe, G., Lucentini, L., Cecı ́lia, A., Frederico, R. and Palleschi, G. (1998). "Determination of biogenic amines with an electrochemical biosensor and its to salted anchovies." Food Chemistry 62(2): 225-232.
[18] Esti, M., Volpe, G., Massigan, L., Campagnone, D., La Notte, E. and Palleschi, G. (1998). "Determination of amines in fresh and modified atmosphere packaged fruits using electrochemical biosensors." Journal of Agricultural and Food Chemistry 46(10): 4233-4237.
[19] Niculescu, M., Fre ́bort, I., Pec, P., Galuszka, P., Mattiasson, B. and Cso ̈regi, E. (2000). "Amine oxidase based amperometric biosensors for histamine detection." Electroanalysis 12(5): 369-375.
[20] Tombelli, S. and Mascini, M. (1998). "Electrochemical biosensors for biogenic amines: A comparison between different approaches." Analytica Chimica Acta 358(3): 277-284.
[21] Hibi, T. and Senda, M. (2000). "Enzymatic assay of histamine by amperometric detection of H2O2 with a peroxidase-based sensor." Bioscience Biotechnology Biochemistry 64(9): 1963-1966.
[22] Niculescu, M., Nistor, C., Fre ́bort, I., Pec, P., Mattiasson, B. and Cso ̈regi, E. (2000). "Redox hydrogel-based amperometric bienzyme electrodes for fish freshness monitoring." Analytical Chemistry 72(7): 1591-1597.
[23] Zeng, K., Tachikawa, H., Zhu, Z. and Davidson, V. L. (2000). "Amperometric detection of histamine with a methylamine dehydrogenase polypyrrole-based sensor." Analytical Chemistry 72(10): 2211-2215.
[24] Kissinger, P. and Heineman, W. R. (1996). Laboratory techniques in electroanalytical chemistry. (7th edition) CRC.
[25] Grygar, T., Marken, F., Schröder, U. and Scholz, F. (2002). "Electrochemical analysis of solids. A review." Collection of Czechoslovak Chemical Communications 67(2): 163-208.
[26] Piermarini, S., Volpe, G., Federico, R., Moscone, D. and Palleschi, G. (2010). "Detection of biogenic amines in human saliva using a screen-printed biosensor." Analytical Letters 43(7-8): 1310-1316.
[27] Alonso-Lomillo, M. A., Dominguez-Renedo, O., Matos, P. and Arcos- Martinez, M. J. (2010). "Disposable biosensors for determination of biogenic amines." Analytica Chimica Acta 665(1): 26-31.
[28] Calvo-Pérez, A., Domínguez-Renedo, O., Alonso-Lomillo, M. A. and Arcos- Martínez, M. J. (2012). "Disposable amperometric biosensor for the determination of tyramine using plasma amino oxidase." Microchimica Acta 180(3-4): 253-259.
[29] Telsnig, D., Kalcher, K., Leitner, A. and Ortner, A. (2013). "Design of an amperometric biosensor for the determination of biogenic amines using screen printed carbon working electrodes." Electroanalysis 25(1): 47-50.
[30] Chemnitius, G. C. and Bilitewski, U. (1996). "Development of screen-printed enzyme electrodes for the estimation of fish quality." Sensors and Actuators B: Chemical 32(2): 107-113.
[31] Di Fusco, M., Federico, R., Boffi, A., Macone, A., Favero, G. and Mazzei, F. (2011). "Characterization and application of a diamine oxidase from lathyrus sativus as component of an electrochemical biosensor for the determination of biogenic amines in wine and beer." Anal Bioanal Chem 401(2): 707-716.
[32] Lange, J. and Wittmann, C. (2002). "Enzyme sensor array for the determination of biogenic amines in food samples." Analytical and bioanalytical chemistry 372(2): 276-283.
[33] Wang, Y., Li, Z., Wang, J., Li, J. and Lin, Y. (2011). "Graphene and graphene oxide: Biofunctionalization and applications in biotechnology." Trends of Biotechnology 29(5): 205-212.
[34] Mani, V., Dinesh, B., Chen, S. M. and Saraswathi, R. (2014). "Direct electrochemistry of myoglobin at reduced graphene oxide-multiwalled carbon nanotubes-platinum nanoparticles nanocomposite and biosensing towards hydrogen peroxide and nitrite." Biosensors and Bioelectronics 53: 420-427.
[35] Fuhrer, M. S. (2008). "Physicists show electrons can travel more than 100 times faster in graphene." from https://newsdesk.umd.edu/scitech/release.cfm? ArticleID=1621.
[36] Casero, E., Alonso, C., Vázquez, L., Petit-Domínguez, M. D., Parra-Alfambra, A. M., de la Fuente, M., Merino, P., Álvarez-García, S., de Andrés, A., Pariente, F. and Lorenzo, E. (2013). "Comparative response of biosensing platforms based on synthesized graphene oxide and electrochemically reduced graphene." Electroanalysis 25(1): 154-165.
[37] Jung, J. H., Cheon, D. S., Liu, F., Lee, K. B. and Seo, T. S. (2010). "A graphene oxide based immuno-biosensor for pathogen detection." Angewandte Chemie International Edition 49(33): 5708-5711.
[38] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T. and Ruoff, R. S. (2007). "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide." Carbon 45(7): 1558-1565.
[39] Pei, S. and Cheng, H.-M. (2012). "The reduction of graphene oxide." Carbon 50(9): 3210-3228.
[40] Choi, W., Lahiri, I., Seelaboyina, R. and Kang, Y. S. (2010). "Synthesis of graphene and its applications: A review." Critical Reviews in Solid State and Materials Sciences 35(1): 52-71.
[41] McGrath, A. P., Caradoc-Davies, T., Collyer, C. A. and Guss, J. M. (2010). "Correlation of active site metal content in human diamine oxidase with trihydroxyphenylalanine quinone cofactor biogenesis." Biochemistry 49(38): 8316-8324.
[42] Kano, K., Mori, T., Uno, B., Goto, M. and Ikeda, T. (1993). "Characterization of topa-quinone cofactor." Biochimica et Biophysica Acta 1157(3): 324-331.
[43] from http://www.ChemDrug.com.
[44] Mauritz, K. A. and Moore, R. B. (2004). "State of understanding of nafion." Chemical Review 104(10): 4535-4586.
[45] Hummers, W. S. and Offeman, R. E. (1958). "Preparation of graphitic oxide." Journal of the American Chemical Society 80(6): 1339-1339.
[46] Yang, W., Ratinac, K. R., Ringer, S. P., Thordarson, P., Gooding, J. J. and Braet, F. (2010). "Carbon nanomaterials in biosensors: Should you use nanotubes or graphene?" Angewandte Chemie International Edition 49(12): 2114-2138.
[47] Yang, C. C., Kumar, A. S. and Zen, J. M. (2005). "Precise blood lead analysis using a combined internal standard and standard addition approach with disposable screen-printed electrodes." Analytical Biochemistry 338(2): 278-283.
[48] Sudhakara Prasad, K., Muthuraman, G. and Zen, J.-M. (2008). "The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid." Electrochemistry Communications 10(4): 559-563.
[49] Unnikrishnan, B., Palanisamy, S. and Chen, S. M. (2013). "A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite." Biosensors and Bioelectronics 39(1): 70-75.
[50] Apetrei, I. M. and Apetrei, C. (2013). "Amperometric biosensor based on polypyrrole and tyrosinase for the detection of tyramine in food samples." Sensors and Actuators B: Chemical 178: 40-46.
[51] Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J. and Guo, S. (2010). "Reduction of graphene oxide via l-ascorbic acid." Chemical Communications (Cambridge) 46(7): 1112-1114.
[52] Wang, G., Qian, F., Saltikov, C. W., Jiao, Y. and Li, Y. (2011). "Microbial reduction of graphene oxide by Shewanella." Nano Research 4(6): 563-570.
[53] Eigler, S., Dotzer, C. and Hirsch, A. (2012). "Visualization of defect densities in reduced graphene oxide." Carbon 50(10): 3666-3673.
[54] Ambrosi, A. and Pumera, M. (2013). "Precise tuning of surface composition and electron-transfer properties of graphene oxide films through electroreduction." Chemistry 19(15): 4748-4753.
[55] Yang, T.-H., Hung, C.-L., Ke, J.-H. and Zen, J.-M. (2008). "An electrochemically preanodized screen-printed carbon electrode for achieving direct electron transfer to glucose oxidase." Electrochemistry Communications 10(7): 1094-1097.
[56] Moore, R. R., Banks, C. E. and Compton, R. G. (2004). "Basal plane pyrolytic graphite modified electrodes: Comparison of carbon nanotubes and graphite powder as electrocatalysts." Analytical Chemistry 76(10): 2677-2682.
[57] Zeng, F., Sun, Z., Sang, X., Diamond, D., Lau, K. T., Liu, X. and Su, D. S. (2011). "In situ one-step electrochemical preparation of graphene oxide nanosheet-modified electrodes for biosensors." ChemSusChem 4(11): 1587-1591.
[58] Keow, C. M., Bakar, F. A., Salleh, A. B., Heng, L. Y., Wagiran, R. and Siddiquee, S. (2012). "Screen-printed histamine biosensors fabricated from the entrapment of diamine oxidase in a photocured poly(HEMA) film." International Journal of Electrochemical Science 7(5): 4702-4715.
[59] Alwarappan, S., Liu, C., Kumar, A. and Li, C.-Z. (2010). "Enzyme-doped graphene nanosheets for enhanced glucose biosensing." The Journal of Physical Chemistry C 114(30): 12920-12924.
[60] Liu, J., Kong, N., Li, A., Luo, X., Cui, L., Wang, R. and Feng, S. (2013). "Graphene bridged enzyme electrodes for glucose biosensing application." Analyst 138(9): 2567-2575.
[61] Bao, Y., Song, J., Mao, Y., Han, D., Yang, F., Niu, L. and Ivaska, A. (2011). "Graphene oxide-templated polyaniline microsheets toward simultaneous electrochemical determination of AA/DA/UA." Electroanalysis 23(4): 878-884.
[62] Ping, J., Wu, J., Wang, Y. and Ying, Y. (2012). "Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode." Biosensors and Bioelectronics 34(1): 70-76.
[63] Sun, C. L., Lee, H. H., Yang, J. M. and Wu, C. C. (2011). "The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites." Biosensors and Bioelectronics 26(8): 3450-3455.
[64] Xing, X., Liu, S., Yu, J., Lian, W. and Huang, J. (2012). "Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine." Biosensors and Bioelectronics 31(1): 277-283.